
1.2 Integers

Absolute Value: The absolute value of a real number is its distance from 0 on the number line.

The numbers 2 and -2 are both 2 units away from 0.

That is, |2| = 2 and |-2| = 2.

The absolute value of a real number is never negative!

Examples: |5| = |-5| = |1.2| = |-2.5| = |0| =

Operations with integers:

Adding Integers:

- o Same signs add and keep the sign
- o Different signs subtract their absolute values and take the sign of the number with the larger absolute value

Subtracting Integers:

o Change the problem to addition using these rules:

$$a - b = a + (-b)$$

$$a - (-b) = a + b$$

$$-a-b = -a + (-b)$$

$$-a - (-b) = -a + b$$

o Use the rules for adding integers (above)

Examples:

Perform the following operations:

1.
$$8 + (-3)$$

2.
$$6 + (-6)$$

$$3. -4 + (-6)$$

4.
$$14 - 75 + 17$$

5.
$$-17 + (-25)$$

$$6. 28 + 44$$

7.
$$6 - (-10)$$

9.
$$-8 - (-3)$$

12.
$$-22 - (-18) + 4$$

Multiplying and Dividing Integers:

- o Multiply or divide "normally"
- o If multiplying/dividing two numbers same signs means positive answer, different signs means negative answer
- o For more than two numbers even number of negative signs means the answer is positive, odd number of negative signs means a negative answer

Examples:

Perform the following operations:

1. -8(2)

2. 15(-8)

3. -12(-10)

4. (-14)(-27)(0)

5. 25(12)

6. 97(-3)

7. 4(-4)(-5)

8. -2(-3)(-4)(-5)

9. -36 ÷ 6

10. $-63 \div (-9)$

11. $0 \div 5$

12. $-72 \div 9$