Section 2.3: Quadratic Equations

Solving by Factoring

A quadratic equation is an equation that can be written in the form $a x^{2}+b x+c=0$ where a, b, and c are real numbers with $a \neq 0$.

To solve a quadratic equation by factoring, rewrite the equation, if necessary, so that one side is equal to 0 and use the Zero-Product Property:

$$
a b=0 \text { if and only if } \mathrm{a}=0 \text { or } \mathrm{b}=0 .
$$

Example 1: Solve the following equations by factoring.
a. $-3 x^{2}+21 x=0$
b. $x^{2}-3 x=18$
c. $5 x^{2}-15 x+10=0$
d. $2 x^{2}+15 x-8=0$
e. $6 x^{2}-x-12=0$

Solving by Square Root Method

Example 2: Solve the following equations by using the square root method.
a. $x^{2}-100=0$
b. $9 x^{2}=16$
c. $(x-1)^{2}=49$
d. $(x+3)^{2}=12$

Solving by Completing the Square

Given $x^{2}+b x+c=0$

1. Rewrite the equation as $x^{2}+b x=-c$
(Notice that the leading coefficient is positive 1 , if it's not then you will have to divide both sides of the equation by the leading coefficient.) and make the left hand side a perfect square.
2. Make the left-hand side a perfect square by adding $\left(\frac{b}{2}\right)^{2}$ to both sides (to balance the equation)
3. Factor the left-hand side.
4. Use the square root property to solve.

Example 3: Find all real solutions of the following equations by completing the square.
a. $x^{2}-6 x-11=0$
b. $x(x+2)=2$
c. $2 x^{2}+16 x+8=0$
d. $-3 x^{2}+12 x+9=0$

Solving by the Quadratic Formula

The solutions of the equation $a x^{2}+b x+c=0$, where $a \neq 0$,
can be found by using the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Example 4: Find all real solutions for $6 x^{2}-6 x+1=0$ by using the quadratic formula.

Note: The discriminant of the equation $a x^{2}+b x+c=0(a \neq 0)$ is given by $D=b^{2}-4 a c$.

If $\mathrm{D}>0$, then the equation $a x^{2}+b x+c=0$ has two distinct real solutions.
If $\mathrm{D}=0$, then the equation $a x^{2}+b x+c=0$ has exactly one real solution.
If $\mathrm{D}<0$, then the equation $a x^{2}+b x+c=0$ has no real solution (The roots of the equation are complex numbers and appear as complex conjugate pairs.)

Example 5: Determine the number of real solutions for: $3 x^{2}+2 x+2=0$

