Section 2.7: Nonlinear Inequalities

In this lesson, you will learn to solve nonlinear inequalities by using number line analysis.

Solving a Quadratic Inequality

- Rewrite the inequality as an equation (with an equal sign).
- Solve as done before.
- Test an x-value between the two solutions by plugging into the original inequality.
- If you get a true statement, your solution is between the two solutions.
- If you get a false statement, your solution is outside the two solutions.

Example 1: Solve each of the following inequalities.
a. $x^{2}-x>12$
b. $x^{2}+2 x-20 \leq 4$
c. $4 x^{2}+5>x^{2}+16 x$

Now we need to worry about the signs of the denominator and numerator.

Solving a Rational Inequality

- Set the denominator equal to zero and solve.
- Set the numerator equal to zero and solve.
- Plot these points on a number line (denominator is always open dot).
- Use test points between these values to determine the solution set

Example 2: Solve each of the following inequalities.
a. $\frac{x-6}{x+2}>0$
b. $\frac{3 x+6}{x-4} \leq 0$
c. $\frac{3}{x}-\frac{2}{x+2}<0$
d. $\frac{(x-3)(x+2)}{x-5}>0$
e. $\frac{3 x-5}{x+3} \leq 2$

