Section 2.8: Absolute Value

Definition: The **absolute value** of *x*, denoted |x|, is the distance *x* s from 0.

Solving Absolute Value Equations

- If |x| = 0 then x = 0.
- If C is positive, then |x| = C if and only if $x = \pm C$.
- If C is negative, then |x| = C has no solution.

Example 1: Solve.

a. |2x - 3| = 7

b. |6 - 2x| + 6 = 14

c. -2|2x-8| + 4 = 30

d.
$$-4\left|\frac{1}{2}x+1\right|+3=11$$

Math 1310

Next, we'll look at inequalities. The approach to these problems will depend on whether the problem is a "less than" problem or a "greater than" problem. If *C* is zero, then x = 0.

Solving Absolute Value Inequalities

- If C is positive, then |x| < C if and only if x < C AND x > -C. (This is also true if you use \leq .)
- If C is positive, then |x| > C if and only if x > C OR x < -C. (This is also true if you use \ge .)

Example 2: Solve the inequality. Graph the solution on the real number line. Write the solution using interval notation:

a. $|x + 3| \le 8$

b.
$$2\left|\frac{-x+3}{4}\right| > 6$$

Math 1310 c. 3|1-4x|+1 < 25

Special Case:

If C is negative, then:

a) The inequalities $|x| \le C$ and $|x| \le C$ have no solution.

b) Every real number satisfies the inequalities |x| > C and $|x| \ge C$

Example 3: Solve each inequality and write the solution in interval notation.

a. 3|3x - 10| + 7 > 1

b. -2|x+2|-10 > 4