Section 2.8: Absolute Value

Definition: The absolute value of x, denoted $|x|$, is the distance x s from 0 .

Solving Absolute Value Equations

- If $|x|=0$ then $\mathrm{x}=0$.
- If C is positive, then $|x|=\mathrm{C}$ if and only if $x= \pm \mathrm{C}$.
- If C is negative, then $|x|=\mathrm{C}$ has no solution.

Example 1: Solve.
a. $|2 x-3|=7$
b. $|6-2 x|+6=14$
c. $-2|2 x-8|+4=30$
d. $-4\left|\frac{1}{2} x+1\right|+3=11$

Next, we'll look at inequalities. The approach to these problems will depend on whether the problem is a "less than" problem or a "greater than" problem. If C is zero, then $x=0$.

Solving Absolute Value Inequalities

- If C is positive, then $|x|<\mathrm{C}$ if and only if $x<\mathrm{C}$ AND $x>-\mathrm{C}$. (This is also true if you use \leq.)
- If C is positive, then $|x|>C$ if and only if $x>\operatorname{C~OR} x<-C$. (This is also true if you use \geq.)

Example 2: Solve the inequality. Graph the solution on the real number line. Write the solution using interval notation:
a. $|x+3| \leq 8$
b. $2\left|\frac{-x+3}{4}\right|>6$
c. $3|1-4 x|+1<25$

Special Case:

If C is negative, then:
a) The inequalities $|x|<C$ and $|x| \leq C$ have no solution.
b) Every real number satisfies the inequalities $|x|>C$ and $|x| \geq C$

Example 3: Solve each inequality and write the solution in interval notation.
a. $3|3 x-10|+7>1$
b. $-2|x+2|-10>4$

