Math 1310

Section 3.1: Functions- Basic Ideas

The rest of this course deals with functions.
Definition: A function, f, is a rule that assigns to each element x in a set A exactly one elements, called $f(x)$, in a set B.
Functions are so important that we use a special notation when working with them. We'll write $f(x)$ to denote the value of function f at x. We read this as " f of x." We can use letters other than f to denote a function, so you may see a function such as $g(x), h(x)$ or $P(x)$.

Definition: The set A is called the domain and is the set of all valid inputs for the function.
Definition: The set B is called the range and is the set of all possible values of $f(x)$ as x varies throughout the domain.
Sets A and B will consist of real numbers.

Example 1:

a. Given:

Is f a function?
b. Given:

Is g a function?

Next we'll consider some things you'll need to be able to do when working with functions. First, you'll need to be able to evaluate all types of functions when given a specific value for the variable.

Example 2: Let $f(x)=x^{2}-4 x$ Calculate
a. $f(-3)$
b. $-2 f(x)$
c. $f(3 x)$
d. $f(x+2)$

Example 3: Suppose $g(x)=\left\{\begin{array}{cc}2 x-6 & x<-2 \\ x^{2}+2 x+3, & -2 \leq x<3 \\ 4 x-12 & x \geq 3\end{array}\right.$ Calculate the following
a. $g(-5)$
b. $g(-2)$
c. $g(5)$

Finding the Domain of a Function

Recall: The domain is the set of all real numbers for which the expression is defined as a real number. Exclude from a function's domain real numbers that cause division by zero or real numbers that result in an even root of a negative number.

We express the set of real numbers as $(-\infty, \infty)$.
The domain of any polynomial function is $(-\infty, \infty)$.
Example 4: Find the domain of each function below and express your answer in interval notation.
a. $f(x)=-17$
b. $f(x)=3 x-4$
c. $f(x)=\frac{x-1}{5 x+10}$
d. $f(x)=\frac{x-1}{2 x-6}$
e. $p(x)=\frac{x^{2}-16}{x^{2}-4 x-12}$
f. $q(x)=\sqrt{x-4}$
g. $f(x)=\sqrt[3]{2 x+4}$
h. $f(x)=\frac{\sqrt[10]{42-6 x}}{x^{2}-11 x+10}$

