Math 1310

Section 3.2: Functions and Graphs

You can answer many questions given a graph.
Definition: The graph of a function $f(x)$ is the set of points (x, y) whose x coordinates are in the domain of f and whose y coordinates are given by $y=f(x)$.

First, does the graph represent a function? To answer this, you will need to use the vertical line test (VLT).

The Vertical Line Test:
If you can draw a vertical line that crosses the graph more than once, it is NOT the graph of a function.

Example 1: Determine if the graph represents a function:
a.

b.

Definition: An equation defines \boldsymbol{y} as a function of \boldsymbol{x} if when one value for x is substituted in the equation, exactly one value for \boldsymbol{y} is returned.

Example 2: Does the following equation define y as a function of x ?
$y-x^{2}=4$

1. Solve for y.
2. For each value x, do we get exactly one value for y back?
b. $x^{2}+y^{2}=9$
3. Solve for y.
4. For each value x, do we get exactly one value for y back?

Example 3: Find the domain and range of the function whose graph is shown.
Domain: \qquad
Range: \qquad

Example 4: Suppose $f(x)=2 x-5$. State the domain of the function and graph it.

Example 5: Suppose $f(x)=4 x-1,-1<x \leq 2$. Graph the function.

Example 6: Suppose $f(x)=\sqrt{x-1}$. State the domain of the function and graph it.

Example 7: Suppose $g(x)=|x+2|+1$. State the domain of the function and graph it.

Example 8: Let $P(x)=\left\{\begin{array}{ll}-3, & x<2 \\ x^{2}, & x>2 \\ 2, & x=2\end{array}\right.$ State the domain of the function and graph it.

You'll also need to be able to graph functions. For now, you can do so by plotting points. But... YOU MUST KNOW THESE FUNCTIONS AND GRAPHS
$f(x)=x^{2}$

$$
f(x)=|x|
$$

$f(x)=\frac{1}{x}$

$$
f(x)=x^{3}
$$

$f(x)=\sqrt{x}$

$f(x)=\sqrt[3]{x}$

