Math 1310 Section 3.2: Functions and Graphs

You can answer many questions given a graph.

Definition: The graph of a function f(x) is the set of points (x, y) whose x coordinates are in the domain of f and whose y coordinates are given by y = f(x).

First, does the graph represent a function? To answer this, you will need to use the **vertical line test (VLT)**.

The Vertical Line Test:

If you can draw a vertical line that crosses the graph more than once, it is NOT the graph of a function.

Example 1: Determine if the graph represents a function:

Section 3.2: Functions-and Graphs

Definition: An **equation defines** *y* **as a function of** *x* if when one value for *x* is substituted in the equation, **exactly one value for** *y* **is returned.**

Example 2: Does the following equation define *y* as a function of *x*?

 $y - x^2 = 4$

- 1. Solve for *y*.
- 2. For each value *x*, do we get exactly one value for *y* back?

b. $x^2 + y^2 = 9$

Solve for *y*.
For each value *x*, do we get exactly one value for *y* back?

Example 3: Find the domain and range of the function whose graph is shown.

Example 4: Suppose f(x) = 2x - 5. State the domain of the function and graph it.

Example 5: Suppose f(x) = 4x - 1, $-1 < x \le 2$. Graph the function.

Example 7: Suppose g(x) = |x + 2| + 1. State the domain of the function and graph it.

Example 8: Let $P(x) = \begin{cases} -3, & x < 2 \\ x^2, & x > 2 \end{cases}$ State the domain of the function and graph it. 2, x = 2

