Math 1310
Section 3.5: Maximum and Minimum Values
A quadratic equation is of the form $f(x)=a x^{2}+b x+c$, where a, b, and care real and $a \neq 0$ We have seen the graphs of parabolas.

If $a>0$ then the parabola will open upwards.

If $a<0$ then the parabola will open downwards.

Note: The larger $|a|$, the narrower the parabola

The vertex is the turning point of the parabola and is the minimum point on the graph when it opens upward and the maximum point on the graph when it opens downward. Every parabola has a maximum or minimum, but NOT both.

The axis of symmetry is a vertical line through the vertex that divides the graph in half.

The Standard form of a Quadratic Function

The quadratic function $f(x)=a(x-h)^{2}+k$ is in standard form
The vertex is the point (h, k) and the axis of symmetry is $x=h$
The domain is $(-\infty, \infty)$.
The range is $[k, \infty)$ if $a>0$ or $(-\infty, k]$ if $a<0$
Our first task will be to change a given quadratic function from the form $f(x)=a x^{2}+b x+c$ to standard form. We'll complete the square to do this. Once the function is in standard form, we can sketch a graph using transformations and then read off the maximum or minimum value

Example 1: Write the following quadratic in standard form. Then find the vertex and the axis of symmetry.
a. $f(x)=3 x^{2}-12 x-1$
b. $f(x)=-x^{2}+2 x+3$

Graphing Quadratic Functions with Equations in Standard Form

1. Determine whether the parabola opens upward or downward.
2. Determine the vertex.
3. Find any x-intercept by replacing $f(x)$ with 0 and then solving for x.
4. Find the y-intercept by replacing x with 0 .
5. Plot the intercept(s) and vertex, sketch the graph and draw the axis of symmetry.

Example 2: Sketch the graph of $f(x)=-x^{2}+2 x+3$

Shortcut:
For $f(x)=a x^{2}+b x+c$, the vertex is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$. So the axis of symmetry is $x=-\frac{b}{2 a}$.

Example 3: Let $f(x)=2 x^{2}+4 x+7$. Determine, without graphing, whether the given quadratic function has a minimum or maximum value. Then find the coordinates of the minimum or maximum point

Example 4: Suppose $f(x)=5 x^{2}-30 x+41$ Write the equation in standard form. State the coordinates of the vertex. Determine, without graphing, whether the given quadratic function has a minimum or maximum value. Then find the coordinates of the minimum or maximum point.

Finally, given the vertex or the x-intercepts of a quadratic function and one other point that lies on the graph of the quadratic function, you should be able to write the quadratic function.

Example 5: Find a quadratic function with vertex $(2,6)$ which passes through $(-1,4)$.

Example 6: Find a quadratic function with x-intercepts -4 and 3 , with a y-intercept of 6 .

