Math 1310

Section 3.6: Combining Functions

Suppose we have two functions $f(x)$ and $g(x)$. The domain of $f(x)$ is the set A. The domain of $g(x)$ is the set B. We can combine these two functions together in five different ways:

Sum of Functions
 Difference of Functions
 Product of Functions
 Quotient of Functions Composition of Functions

We will discuss the first four
Sum of Functions: $(f+g)(x)=f(x)+g(x)$ with domain $\mathrm{A} \cap \mathrm{B}$
Difference of Functions: $(f-g)(x)=f(x)-g(x)$ with domain $\mathrm{A} \cap \mathrm{B}$
Product of Functions: $(f g)(x)=f(x) g(x)$ with domain $\mathrm{A} \cap \mathrm{B}$
Quotient of Functions: $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ with domain $\{x \in \mathrm{~A} \cap \mathrm{~B} \mid \mathrm{g}(\mathrm{x}) \neq 0\}$
Example 1: Suppose $f(x)=2 x-5$ and $g(x)=x^{2}-3 x-4$. Find each of the following and state the domain:
a. $(f+g)(x)$
b. $(f-g)(x)$
c. $(f g)(x)$
d. $\left(\frac{f}{g}\right)(x)$

Example 2: Let $f(x)=x^{2}-3 x-1$ and $g(x)=-3 x-10$. Find a. $(f+g)(1)$
b. $(g g)(-1)$

The Composition of Functions

The composition of the function f with g is denoted $f \circ g$ by and is defined by the

$$
(f \circ g)(x)=f(g(x))
$$

The domain of the composition $f \circ g$ is the set of all x such that

1. x is in the domain of g (the "inside" function)
2. $g(x)$ is in the domain of f (the "outside" function)

Example 3: Let $f(x)=x^{2}+1$ and $g(x)=-2 x+5$, find $(f \circ g)(x)$.

Example 4: Let $f(x)=\frac{1}{x}$ and $g(x)=\frac{5}{x+4}$, find $(g \circ f)(x)$

Example 5: Let $f(x)=\sqrt{4-x^{2}}$ and $g(x)=\sqrt{3-x}$, find $(f \circ g)(x)$.

Example 6: Suppose $f(x)=3 x-5$ and $g(x)=x^{2}+4 x+3$. Find each of the following.
a. $(f \circ g)(2)$
b. $(g \circ f)(-1)$
c. $(g \circ g)(0)$

