Math 1310

Section 3.7: Inverse Functions

Let f be a function with domain A. f is said to be one-to-one if no two elements in A have the same image.

Example 1: Determine if the following function is one-to-one.
a.

Domain $\quad f \quad$ Range

b.

Domain $g \quad$ Range

A one-to-one function has an inverse. The inverse function reverses whatever the first function did. These two statements mean exactly the same thing:

1. f is one-to-one (1-1)
2. f has an inverse function

The inverse of a function f is denoted by f^{-1}, read " f-inverse".
Note: $f^{-1}(x) \neq \frac{1}{f(x)}$ like $x^{-3}=\frac{1}{x^{3}}$

Domain and Range

Suppose f is a one-to-one function with domain A and range B. The inverse function has domain B and range A.

Example 1: Suppose f and g are inverse functions. If $f(3)=-1$ and $f(-1)=4$, then find $g(-1)$.

Property of Inverse Functions

Let f and g be two functions such that $(f \circ g)(x)=x$ for every x in the domain of g and $(g \circ f)(x)=$ x for every x in the domain of f then \boldsymbol{f} and \boldsymbol{g} are inverses of each other.

Example 2: Show that the following functions are inverses of each other.
$f(x)=3 x+7$ and $g(x)=\frac{x}{3}-\frac{7}{3}$

Example 3: Determine whether the following pair of functions are inverses of each other.
$f(x)=2 x-1$ and $g(x)=\frac{x}{2}+1$

How to find the equation of the inverse function of a one-to-one function:

1. Replace $f(x)$ by y.
2. Exchange x and y.
3. Solve for y.
4. Replace y by $f^{-1}(x)$
5. Verify.

Example 4: Write the equation of the inverse function for $f(x)=3 x-3$

Example 5: Write the equation of the inverse for $f(x)=\frac{6}{4-x}$

Example 6: Write the equation of the inverse for $f(x)=(2 x+1)^{3}+1$

Example 7: Write the equation of the inverse for $f(x)=\frac{2 x+3}{x-4}$

It is easiest to determine if a function is one-to-one by looking at its graph. We can use the Horizontal Line Test to determine if a function is one-to-one.

Horizontal Line Test: A function is one-to-one if no horizontal line intersects its graph in more than one point.

Example 8: Is the following graph the graph of a function that has an inverse function?

Graphing the Inverse Function

Given that f is $1-1$, the graph of f^{-1} is a reflection of the graph of f about the line $y=x$
Remember:

1. The inverse function reverses whatever the first function did.
2. The Domain of f becomes the Range of f^{-1} and the Range of f becomes the Domain of f^{-1}.

Example 9: Below is the graph of f. Use this graph to draw the graph of its inverse function.

