Math 1310

Section 4.1: Polynomial Functions and Their Graphs

A polynomial function is a function of the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x^{1}+a_{0}
$$

where $a_{n} \neq 0, a_{0}, a_{1}, \ldots, a_{n}$ are real numbers and n is a whole number.
The degree of the polynomial function is n. We call the term $a_{n} x^{n}$ the leading term, and a_{n} is called the leading coefficient.

$$
P(0)=a_{0}
$$

Our objectives in working with polynomial functions will be, first, to gather information about the graph of the function and, second, to use that information to generate a reasonably good graph without plotting a lot of points. In later examples, we'll use information given to us about the graph of a function to write its equation.

Graph Properties of Polynomial Functions

Let P be any nth degree polynomial function with real coefficients. The graph of P has the following properties.

1. P is continuous for all real numbers, so there are no breaks, holes, jumps in the graph.
2. The graph of P is a smooth curve with rounded corners and no sharp corners.
3. The graph of P has at most $n x$-intercepts.
4. The graph of P has at most $n-1$ turning points.

Example 1: Given the following polynomial functions, state the leading term, the degree of the polynomial and the leading coefficient.
a. $\quad P(x)=6 x^{4}-4 x^{3}+7 x-2$
b. $P(x)=(3 x+4)(x+1)^{2}(x+5)^{3}$

We'll start with the shapes of the graphs of functions of the form $f(x)=x^{n}, n>0$.
You should be familiar with the graphs of $f(x)=x^{2}$ and $g(x)=x^{3}$.
The graph of $f(x)=(x-a)^{n}, n>0, n$ is even, will look similar the graph of $f(x)=x^{2}$, and the graph of $f(x)=(x-a)^{n}, n>0, n$ is odd, will look similar the graph of $f(x)=x^{3}$.

Next, you will need to be able to describe the end behavior of a function.

End Behavior of Polynomial Functions

The behavior of a graph of a function to the far left or far right is called its end behavior.
The end behavior of a polynomial function is revealed by the leading term of the polynomial function.

1. Even-degree polynomials look like $. y= \pm x^{2}$

2. Odd-degree polynomials look like. $y= \pm x^{3}$

Next, you should be able to find the x intercept(s) and the y intercept of a polynomial function.

Zeros of Polynomial Functions

You will need to set the function equal to zero and then use the Zero Product Property to find the x intercept(s). That means if $a b=0$, then either $a=0$ or $b=0$. To find the y intercept of a function, you will find $f(0)$.

Example 2: Find the zeros of:
a. $f(x)=x^{4}-x^{2}$
b. $f(x)=-3 x\left(x+\frac{1}{2}\right)(x-4)^{3}$

In some problems, one or more of the factors will appear more than once when the function is factored. The power of a factor is called its multiplicity. So given $P(x)=x^{3}(x-3)^{2}(x+2)^{1}$, then the multiplicity of the first factor is 3 , the multiplicity of the second factor is 2 and the multiplicity of the third factor is 1 .

Description of the Behavior at Each x-intercept

1. Even Multiplicity: The graph touches the x-axis, but does not cross it. It looks like a parabola there.
2. Multiplicity of 1: The graph crosses the x-axis. It looks like a line there.
3. Odd Multiplicity greater than or equal 3: The graph crosses the x-axis. It looks like a cubic there.

You can use all of this information to generate the graph of a polynomial function.

- degree of the function
- end behavior of the function
- x and y intercepts (and multiplicities)
- behavior of the function through each of the x intercepts (zeros) of the function

Steps to graphing other polynomials:

1. Determine the leading term. Is the degree even or odd? Is the sign of the leading coefficient positive or negative?
2. Determine the end behavior. Which one of the 4 cases will it look like on the ends?
3. Factor the polynomial.
4. Make a table listing the factors, x intercepts, multiplicity, and describe the behavior at each x intercept.
5. Find the y-intercept.
6. Draw the graph, being careful to make a nice smooth curve with no sharp corners.

Note: without calculus or plotting lots of points, we don't have enough information to know how high or how low the turning points are

Example 3: Find the x and y intercepts. State the degree of the function. Sketch the graph of $f(x)=x^{3}+4 x^{2}+4 x$

Example 4: Find the x and y intercepts. State the degree of the function. Sketch the graph of

$$
P(x)=(x-3)^{2}(x+1)^{5}(x+2)^{3}
$$

Example 5: Find the x and y intercepts. State the degree of the function. Sketch the graph of

$$
g(x)=(3-x)(x+1)(x+5)^{2}
$$

Example 6: Write the equation of the cubic polynomial $P(x)$ that satisfies the following conditions: zeros at $x=3, x=-1$, and $x=4$ and passes through the point $(-3,7)$

Example 7: Write the equation of the quartic function with y intercept 4 which is tangent to the x axis at the points $(-1,0)$ and $(1,0)$.

