Math 1310

Section 5.1/5.2: Exponential Functions and the Number e

Functions whose equations contain a variable in the exponent are called exponential functions.
Real-life situations that can be described using exponential functions:

1. population growth
2. growth of an epidemic
3. radioactive decay
4. other changes that involve rapid increase or decrease

The function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{\boldsymbol{x}}$ is the exponential function with base $a>0$ and $a \neq 1$.
We'll be interested in graphing exponential functions. What you already know about graphing functions using transformations will apply.

We'll look at two cases of the exponential function, $a>1$ and $0<a<1$.
For $a>1$:
Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
Key point: $(0,1)$
Horizontal asymptote: $y=0$ since $y \rightarrow 0$ as $x \rightarrow-\infty$
The graph of $f(x)=a^{x}$ with $a>1$ has this shape (larger a results in a steeper graph):

For $0<a<1$:
Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
Key point: $(0,1)$
Horizontal asymptote: $y=0$ since $y \rightarrow 0$ as $x \rightarrow \infty$
The graph of $f(x)=a^{x}$ with $0<a<1$ has this shape (smaller a results in a steeper graph):

Example 1: Sketch the graph of $f(x)=2^{x+1}-3$ by transforming the graph of $f(x)=2^{x}$. State the domain, range, asymptote and translation of the key point.

Example 2: Sketch the graph of $f(x)=-2^{x+1}+2$ by transforming the graph of $f(x)=2^{x}$. State the domain, range, asymptote and translation of the key point.

Example 3 Sketch the graph of $f(x)=(2 / 3)^{x}-2$ by transforming the graph of $f(x)=(2 / 3)^{x}$. State the domain, range, asymptote and translation of the key point.

Sometimes you'll just be given a couple of points that lie on the graph of the function. You can use the same method to find the equation.

Example 4: Suppose $f(x)$ is an exponential function which passes through $(0,1)$ and $(3,125)$. Find $f(x)$.

Example 5: Given the graph, determine the function associated with it.

Section 5.2: The number e

Definition: e is the "limiting value" of $\left(1+\frac{1}{x}\right)^{x}$ as x grows to infinity.
$e \approx 2.718281282459$. It is an irrational number, like π. This means it cannot be written as a fraction nor as a terminating or repeating decimal.

Since $e>1, e$ can be the base of an exponential function. So everything we learned in Section 5.1 about graphing exponential functions will apply to graphing the function $f(x)=e^{x}$

The graph of $f(x)=e^{x}$ will have the following features:
Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
Key point: $(0,1)$
Horizontal asymptote: $y=0$ since $y \rightarrow 0$ as $x \rightarrow-\infty$
Here is the graph of $f(x)=e^{x}$:

Example 1: Sketch the graph of the function of $f(x)=-e^{x+2}+2$ using transformations. State the domain, range, asymptote and translation of the key point.

