Math 1310 Section 5.1/5.2: Exponential Functions and the Number *e*

Functions whose equations contain a variable in the exponent are called exponential functions.

Real-life situations that can be described using exponential functions:

- 1. population growth
- 2. growth of an epidemic
- 3. radioactive decay
- 4. other changes that involve rapid increase or decrease

The function $f(x) = a^x$ is the exponential function with base a > 0 and $a \neq 1$.

We'll be interested in graphing exponential functions. What you already know about graphing functions using transformations will apply.

We'll look at two cases of the exponential function, a > 1 and 0 < a < 1.

For a > 1: Domain: $(-\infty,\infty)$ Range: $(0, \infty)$ Key point: (0, 1)Horizontal asymptote: y = 0 since $y \rightarrow 0$ as $x \rightarrow -\infty$ The graph of $f(x) = a^x$ with a > 1 has this shape (larger *a* results in a steeper graph):

Math 1310

For $0 \le a \le 1$: Domain: $(-\infty,\infty)$ Range: $(0, \infty)$ Key point: (0, 1)Horizontal asymptote: y = 0 since $y \to 0$ as $x \to \infty$ The graph of $f(x) = a^x$ with $0 \le a \le 1$ has this shape (smaller *a* results in a steeper graph):

Example 1: Sketch the graph of $f(x) = 2^{x+1} - 3$ by transforming the graph of $f(x) = 2^x$. State the domain, range, asymptote and translation of the key point.

Math 1310

Example 2: Sketch the graph of $f(x) = -2^{x+1} + 2$ by transforming the graph of $f(x) = 2^x$. State the domain, range, asymptote and translation of the key point.

Example 3 Sketch the graph of $f(x) = (2/3)^x$ -2 by transforming the graph of $f(x) = (2/3)^x$. State the domain, range, asymptote and translation of the key point.

Sometimes you'll just be given a couple of points that lie on the graph of the function. You can use the same method to find the equation.

Example 4: Suppose f(x) is an exponential function which passes through (0, 1) and (3, 125). Find f(x).

Example 5: Given the graph, determine the function associated with it.

Section 5.2: The number *e*

Definition: *e* is the "limiting value" of $\left(1 + \frac{1}{x}\right)^x$ as *x* grows to infinity.

 $e \approx 2.718281282459$. It is an irrational number, like π . This means it cannot be written as a fraction nor as a terminating or repeating decimal.

Since e > 1, *e* can be the base of an exponential function. So everything we learned in Section 5.1 about graphing exponential functions will apply to graphing the function $f(x) = e^x$

The graph of $f(x) = e^x$ will have the following features: Domain: $(-\infty, \infty)$ Range: $(0, \infty)$ Key point: (0, 1)Horizontal asymptote: y = 0 since $y \rightarrow 0$ as $x \rightarrow -\infty$

Here is the graph of $f(x) = e^x$:

Example 1: Sketch the graph of the function of $f(x) = -e^{x+2} + 2$ using transformations. State the domain, range, asymptote and translation of the key point.