Math 1310

Section 5.3: Logarithmic Functions

The exponential function is $1-1$; therefore, it has an inverse function. The inverse function of the exponential function with base a is called the logarithmic function with base a.

For $x>0$ and $a>0$ and a not equal to $1, y=\log _{a} x$ is equivalent $a^{y}=x$
The function $f(x)=\log _{a} x$ is the logarithmic function with base a
The common logarithm is the logarithm with base 10 . We denote this as $\log _{10} x=\log x$ The natural logarithm is the logarithm with base e. We denote this as $\log _{e} x=\ln x$

You will find both of these logarithms on a scientific calculator.
Note: We do not typically write either $\log _{10} x$ or $\log _{e} x$.
Example 1: Write each equation in its equivalent exponential form.
a. $3=\log _{6} x$
b. $2=\log _{a} 64$
c. $\log _{3} 27=3$
d. $\log 100000=5$
e. $\ln \frac{1}{e^{2}}=-2$

Example 2: Write each equation in its equivalent logarithmic form.
a. $4^{3}=64$
b. $2^{6}=64$
c. $e^{x}=25$
d. $10^{x}=1000$

Example 3: Evaluate, if possible.
$\log _{6} 36$
$\log 100$
$\log _{3}(\sqrt[3]{81})$
$\log _{2} \frac{1}{8}$
$\log _{4} 2$
$\log _{5} \sqrt[4]{125}$

Inverse Property of Logarithms

For $a>0$ and $a \neq 1$

1. $\log _{a} a^{x}=x$
2. $a^{\log _{a} x}=x$

Example 4: Evaluate.
a. $\log _{14} 14^{3}$
b. $5^{\log _{5} 34}$
c. $e^{\ln 32}$
d. $\log _{47} 47^{\pi}$

Recall that for $x>0$ (and $a>0$ and a not equal to 1), we have $f(x)=\log _{a} x$. So the domain of $f(x)=$ $\log _{a} x$ consist of all x for which $x>0$.

Example 5: Find the domain.
a. $f(x)=\log _{2}(x-2)$
b. $f(x)=\ln (7-2 x)$
c. $f(x)=\log \left(x^{2}+1\right)$

Characteristics of the Graphs of Logarithmic Functions of the Form $f(x)=\log _{a} x$

1. The x-intercept is $(1,0)$ and there is no y-intercept.
2. The y-axis is a vertical asymptote.
3. The domain is all positive real numbers.
4. The range is all real numbers.

If $a>1$, the graph of $f(x)=\log _{a} x$ looks like:

If $0<a<1$, the graph of $f(x)=\log _{a} x$ looks like:

Note: If a logarithmic function is translated to the left or to the right, the vertical asymptote is shifted by the amount of the horizontal shift.

Example 6: Sketch the graph of $f(x)=\log _{4}(x+2)$. State the domain, range, asymptote and key point.

Example 7: Sketch the graph of $f(x)=-\ln (x-1)+1$. State the domain, range, asymptote and key point.

