Math 1330 Section 5.2
For the following functions:

$$
y=A \sin (B x-C) \quad \text { and } \quad y=A \cos (B x-C)
$$

Amplitude $=|A| \quad$ (Note: Amplitude is always positive.) If A is negative, that means an x - axis reflection.

Period $=\frac{2 \pi}{B} \quad B=\frac{2 \pi}{\text { perial }}$
Translation in horizontal direction (called the phase shift) $=\frac{C}{B}$
We'll ask you to learn the shape of the graph and just graph five basic points, the x and y intercepts and the maximum and the minimum.

One complete cycle of the sine curve includes three x-intercepts, one maximum point and one minimum point. The graph has x-intercepts at the beginning, middle, and end of its full period.

One complete cycle of the cosine curve includes two x-intercepts, two maximum points and one minimum point. The graph has x-intercepts at the second and fourth points of its full period.

Key points in graphing these functions are obtained by dividing the period into four equal parts.

Math 1330 Section 5.2
Example 9: Give a function of the form $y=A \sin (B x-C)+D$ and $y=A \cos (B x-C)+D$, which could be used to represent the graph. Note: these answers are not unique.

For $\cos (Q)$
No phase shift; $C=0$

$$
\begin{aligned}
& y=4 \cos (1 \cdot x)+1 \\
& y=4 \cos (x)+1
\end{aligned}
$$

$A_{-p}: \frac{5-(-3)}{2}=\frac{8}{2}=4$

$$
A=4
$$

Vertical Shift (D)

$$
D=\frac{\mu_{a x}+\mu_{i n}}{2}=\frac{5+(-3)}{2}=1
$$

$$
\text { Period }=2 \pi
$$

$$
B=\frac{2 \pi}{p e r i o d}=\frac{2 \pi}{2 \pi}=1
$$

For $\sin \theta ;$ Need ra puce $\begin{array}{r}\text { suit }\end{array}$
(1) $y=4 \sin (1-x-c)+1$

Back $\frac{\pi}{2}$ units

$$
\begin{gathered}
\frac{\pi}{2}=\frac{C}{B} ; C=\frac{\pi}{2} \cdot B \\
C=\frac{\pi}{2} \\
y=4 \sin \left(x+\frac{\pi}{2}\right)+1
\end{gathered}
$$

or
(2)

$$
y=-4 \sin \left(x-\frac{\pi}{2}\right)+1
$$

Section 5.3a: Secant and Cosecant Functions

Remember: $\csc x=\frac{1}{\sin x}$ so whenever $\sin (x)=0, \csc (x)$ has an asymptote.
Cosecant: $f(x)=\csc x$

To graph $y=A \csc (B x-C)$, first graph, the helper graph, $y=A \sin (B x-C)$
Remember: $\sec x=\frac{1}{\cos x}$ so whenever $\cos (x)=0, \sec (x)$ has an asymptote.

$$
x \neq \frac{(2 n-1) \pi}{2}
$$

Secant: $f(x)=\sec x$

To graph $y=A \sec (B x-C)$, first graph $y=A \cos (B x-C)$.

Example 1: Graph $y=2 \csc \left(\frac{x}{4}\right)$ over one period. Helper Function

Amp: 2
Period: $\frac{2 \pi}{B}=\frac{2 \pi}{14}=4 \pi$

Math 1330 Section 5.3a
Example 2: Graph $f(x)=4 \sec \left(\frac{x}{2}\right)$ over one period.
Helper $y=4 \cos \left(\frac{x}{2}\right)$

$$
\begin{aligned}
& \text { Amp }=4 \\
& \text { Period }=\frac{2 \pi}{3}=\frac{2 \pi}{\frac{1}{2}}=4 \pi \quad \begin{array}{l}
2 \times \text {-ints } \\
2 M-x \\
1 M i n
\end{array}
\end{aligned}
$$

Math 1330 Section 5.3a
Example 3: Sketch $f(x)=-3 \csc (x)+1$ over one period.

$$
\begin{aligned}
& y=-3 \sin (x) \\
& A m_{p}=3 \\
& \text { Period }=\frac{2 \pi}{B}=\frac{2 \pi}{1}=2 \pi
\end{aligned}
$$

Section 5.3b: Graphs of the Tangent and Cotangent Functions

Remember $\tan x=\frac{\sin x}{\cos x}$, so where $\cos (x)=0, \tan (x)$ has an asymptote and where $\sin (x)=0$, $\tan (x)$ has an x-intercept.

Tangent: $f(x)=\tan x$

Domain: $x \neq \frac{(2 \sim-1) \pi}{2}$
Range: \qquad
Period: \qquad

Vertical Asymptotes:

x - intercepts:
N. π
y-intercept: $(0,0)$

How to graph $y=A \tan (B x-C)$:

1. The period is given by $\frac{\pi}{B}$. Find two consecutive asymptotes by setting $B x-C$ equal to $-\frac{\pi}{2}$ and $\frac{\pi}{2}$, then solve for x.
2. Find the x-intercept by taking the average of the two points on the x-axis where consecutive asymptotes pass.
3. Find the points on the graph $1 / 4$ and $3 / 4$ of the way between the consecutive asymptotes. The y-coordinates of these points are $-A$ and A

Math 1330 Section 5.3b
Example 1: Graph $f(x)=1 \tan \left(\frac{x}{2}-\frac{\pi}{4}\right)$ over one period.

$$
A=1
$$

Find Ass rotates

Lett $B x-C=-\frac{\pi}{2}$

$$
\begin{aligned}
& \frac{x}{2}-\frac{\pi}{4}=-\frac{\pi}{2} \\
& \frac{x}{2}=-\frac{\pi}{4} \\
& x=\frac{-2 \pi}{4}=\frac{-\pi}{2}
\end{aligned}
$$

Right $B x-C=\frac{\pi}{2}$

$$
\begin{aligned}
& \frac{x}{2}-\frac{\pi}{4}=\frac{\pi}{2} \\
& \frac{x}{2}=\frac{3 \pi}{4} \\
& x=\frac{6 \pi}{4}=\frac{3 \pi}{2}
\end{aligned}
$$

Remember $\cot x=\frac{\cos x}{\sin x}$, so where $\sin (x)=0, \operatorname{tn}(x)$ has an asymptote and where $\cos (x)=0$,
$\operatorname{Rn}(x)$ has an x-intercept.
cot
Cotangent: $f(x)=\cot x$

Domain: $x \neq \sim \cdot \pi$
Range: $(-\infty, \infty)$
Period: π

Vertical Asymptotes:

$$
x=\sim \cdot \pi
$$

y-intercept: \qquad

How to graph $y=A \cot (B x-C)$:

1. The period is given by $\frac{\pi}{B}$. Find two consecutive asymptotes by setting $B x-C$ equal to 0 and π, then solve for x.
2. Find the x-intercept by taking the average of the two points on the x-axis where consecutive asymptotes pass.
3. Find the points on the graph $1 / 4$ and $3 / 4$ of the way between the consecutive asymptotes. The y-coordinates of these points are $-A$ and A

Math 1330 Section 5.3b
Example 2: Graph $y=\cot 2 x$ over one period.

$$
\text { Period }=\frac{\pi}{B}=\frac{\pi}{2}=\frac{\pi}{2}
$$

Left Asymptote

$$
\begin{aligned}
& B x-C=0 \\
& 2 x=0 \\
& x=0
\end{aligned}
$$

Right Asymptote

$$
\begin{gathered}
B x-C=\pi \\
2 x=\pi \\
x=\frac{\pi}{2}
\end{gathered}
$$

Math 1330 Section 5.3b
Example 3: Sketch $f(x)=\cot \left(x-\frac{\pi}{2}\right)-2$

$$
\text { Period }=\frac{\pi}{B}=\frac{\pi}{1}=\pi
$$

LA.

$$
\begin{gathered}
B x-C=0 \\
x-\frac{\pi}{2}=0 \\
x=\frac{\pi}{2}
\end{gathered}
$$

RA.

$$
B x-C=T
$$

$$
x-\frac{\pi}{2}=\pi
$$

$$
x=\frac{3 \pi}{2}
$$

