Math 1313

Test 2 Review

Sections 1.4, 1.5, Chapter 2 and Chapter 3

Example 1: Pull Company installed a new machine in one of its factories at a cost of $\$ 150,000$. The machine is depreciated linearly over 10 years with no scrap value. Find an expression for the machine's book value in the t -th year of use ($0 \leq \mathrm{t} \leq 10$)

Example 2: A piece of equipment was purchased by a company for $\$ 10,000$ and is assumed to have a scrap value of $\$ 3,000$ in 5 years. If its value is depreciated linearly, find the value of the equipment after 3 years $(0 \leq \mathrm{t} \leq 5)$.

Example 3: A bicycle manufacturer experiences fixed monthly costs of $\$ 75,000$ and fix costs of $\$ 75$ per standard model bicycle produced. The bicycles sell for $\$ 125$ each.
a. What is the cost, revenue and profit functions?
b. What is the break-even point?

Review Test 2

Example 4: Solve using Gauss-Jordon.
$\left[\begin{array}{ccc|c}1 & 3 & 1 & 3 \\ 0 & 1 & 0 & 2 \\ 1 & -6 & 0 & -13\end{array}\right]$

Example 5: Determine which of the following matrices are in row-reduced form. If a matrix is not in row-reduced form, state why.
a. $\left[\begin{array}{cc:c}1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right]$
b. $\left[\begin{array}{cc|c}0 & 1 & -2 \\ 1 & 0 & 3\end{array}\right]$
c. $\left[\begin{array}{lll|l}1 & 9 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

Example 6: The reduced form for the augmented matrix of a system with 3 equations and 3 unknowns is given. Give the solution to the system, if it exists.
a. $\left[\begin{array}{ccc|c}1 & 0 & -5 & -3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 6\end{array}\right]$
b. $\left[\begin{array}{lll:l}1 & 0 & 0 & \mid \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
c. $\left[\begin{array}{lll|l}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & \mid\end{array}\right]$

Review Test 2

Example 7: Find the value for x and y :

$$
\left[\begin{array}{cc}
1 & 2 \\
3 & 4 \\
x & -1
\end{array}\right]-3\left[\begin{array}{cc}
y-1 & 2 \\
1 & 2 \\
4 & -3
\end{array}\right]=2\left[\begin{array}{cc}
-4 & -2 \\
0 & -1 \\
4 & 4
\end{array}\right]
$$

Example 8: Given the following matrices find the product.

$$
\left[\begin{array}{lll}
0 & -2 & 1 \\
4 & -1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
0 & 1 \\
-2 & -1
\end{array}\right]
$$

Example 9: Find the transpose of matrix A.

$$
A=\left[\begin{array}{ccc}
1 & -4 & 3 \\
-2 & 7 & \frac{4}{3}
\end{array}\right]
$$

Review Test 2

Example 10: Find the inverse of matrix A.

$$
\left[\begin{array}{cc}
-3 & 4 \\
1 & -2
\end{array}\right]
$$

Example 11: Solve the system of equations by using the inverse of the coefficient matrix. $x-y=-4$ $5 x+6 y=2$

Review Test 2

Example 12: A vineyard produces two special wines a white and a red. A bottle of the white wine requires 14 pounds of grapes and one hour of processing time. A bottle of red wine requires 25 pounds of grapes and 2 hours of processing time. The vineyard has on hand 2,198 pounds of grapes and can allot 160 hours of processing time to the production of these wines. A bottle of the white wine makes $\$ 11.00$ profit, while a bottle of the red wines makes $\$ 20.00$ profit. Set-up the linear programming problem so that profit can be maximized.
13. Solve the linear programming problem.
$\operatorname{Max} \mathrm{P}(\mathrm{x})=3 \mathrm{x}+7 \mathrm{y}$
St: $\quad 2 x+5 y \leq 20$
$x+y \leq 7$
$\mathrm{x}, \mathrm{y} \geq 0$

Review Test 2
14. Solve the linear programming problem.

$$
\begin{aligned}
& \operatorname{Min} C(x)=x+6 y \\
& \text { St: } \\
& \begin{array}{ll}
3 x+4 y \geq 36 \\
& 2 x+y \geq 14 \\
& x, y \geq 0
\end{array}
\end{aligned}
$$

