Math 1313 Section 3.5
Section 3.5: The Inverse of a Matrix

Over the set of real number we have what we call the multiplicative inverse or reciprocal. The multiplicative inverse of a number is a second number that when multiplied by the first number yields the multiplicative identity 1.

This is where the Identity Matrix comes in.

Let A be a square matrix of size n and another square matrix A^{-1} of size n such that $A A^{-1}=A^{-1} A=I_{n}$ is called the inverse of \mathbf{A}.

Note: Not every square matrix has an inverse. A matrix with no inverse is called singular.
Finding the Inverse of a Matrix
Given the n x n matrix A :

1. Adjoin the n x n identity matrix I to obtain the augmented matrix $(A \mid I)$
2. Use the Gauss-Jordan elimination method to reduce $(A \mid I)$ to the form $(I \mid B)$, if possible.

The matrix B is the inverse of A.

Example 1: Find the inverse, if possible and check:

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]
$$

Math 1313 Section 3.5
Example 2: Find the inverse of a 3×3 matrix.(Use Gauss-Jordan)

$$
C=\left(\begin{array}{ccc}
1 & 4 & -1 \\
2 & 3 & -2 \\
-1 & 2 & 3
\end{array}\right)
$$

Math 1313 Section 3.5

Example 3: Find the inverse.

$$
B=\left(\begin{array}{ccc}
4 & 2 & 2 \\
-1 & -3 & 4 \\
3 & -1 & 6
\end{array}\right)
$$

Matrices That Have No Inverses

If there is a row to the left of the vertical line in the augmented matrix containing all zeros, then the matrix does not have an inverse. Example 3 has this problem and does not have an inverse.

Math 1313 Section 3.5
Formula for the Inverse of a 2X2 Matrix
Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Suppose $D=a d-b c$ is not equal to zero. Then A^{-1} exists and is given by $A^{-1}=\frac{1}{D}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$

Example 4: Find the inverse of the following matrices.
a. $A=\left(\begin{array}{cc}-5 & 10 \\ 2 & 7\end{array}\right)$
b. $B=\left(\begin{array}{cc}8 & -4 \\ -4 & 2\end{array}\right)$

Matrix Representation

A system of linear equations may be written in a compact form with the help of matrices.
Example 5: Given the following system of equations, write it in matrix form.

$$
\begin{aligned}
& 2 x-4 y+z=6 \\
& -3 x+6 y-5 z=-1 \\
& x-3 y+7 z=0
\end{aligned}
$$

Math 1313 Section 3.5

Example 6: Write each system of equations as a matrix equation and then solve the system using the inverse of the coefficient matrix.

$$
\begin{aligned}
& 2 x+3 y=5 \\
& 3 x+5 y=8
\end{aligned}
$$

The use of inverses to solve systems of equations is advantageous when we are required to solve more than one system of equations $\mathbf{A X}=\mathbf{B}$, involving the same coefficient matrix, \mathbf{A}, and different matrices of constants, B.

Example 7: A performance theatre has 10,000 seats. The ticket prices are either $\$ 25$ or $\$ 35$, depending on the location of the seat. Assume every seat can be sold.
a. How many tickets of each type should be sold to bring in a return of $\$ 275,000$?
b. How many tickets of each type should be sold to bring in a return of $\$ 300,000$?

Let $x=$ number of $\$ 25$ tickets and $y=$ number of $\$ 35$ tickets

