Math 1313 Section 6.2

Section 6.2: Introduction to Probability

The ratio $\frac{m}{n}$ is the relative frequency of an event E that occurs m times after n repetitions.
Note: The probability of an event is a number that lies between 0 and 1 , inclusive.
If $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n}\right\}$ is a finite sample space with n outcomes, then the events $\left\{\mathrm{s}_{1}\right\},\left\{\mathrm{s}_{2}\right\}, \ldots,\left\{\mathrm{s}_{n}\right\}$ are called simple events of the experiment.

Once probabilities are assigned to each of these simple events, we obtain a probability distribution.
The probabilities, $\mathrm{P}\left(\mathrm{s}_{1}\right), \mathrm{P}\left(\mathrm{s}_{2}\right), \ldots, \mathrm{P}\left(\mathrm{s}_{n}\right)$ have the following properties:

1. $0 \leq P\left(s_{i}\right) \leq 1, i=\{1,2,3, \ldots, n\}$
2. $\mathrm{P}\left(\mathrm{s}_{1}\right)+\mathrm{P}\left(\mathrm{s}_{2}\right)+\cdots+\mathrm{P}\left(\mathrm{s}_{\mathrm{n}}\right)=1$
3. $\mathrm{P}\left(\mathrm{s}_{i} \cup \mathrm{~s}_{j}\right)=\mathrm{P}\left(\mathrm{s}_{i}\right)+\mathrm{P}\left(\mathrm{s}_{j}\right), i \neq j$ and $i, j=1,2,3, \ldots \mathrm{n}$

Example 1: A fair die is cast. List the simple events.

A sample space in which the outcomes of an experiment are equally likely to occur is called a uniform sample space. Let $\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n}\right\}$ be a uniform sample space. Then

$$
P\left(\mathrm{~s}_{1}\right)=P\left(\mathrm{~s}_{2}\right)=\cdots=P\left(\mathrm{~s}_{n}\right)=\frac{1}{n}
$$

Finding the probability of an Event E:

1. Determine the sample space S.
2. Assign probabilities to each of the simple events of S.
3. If $\mathrm{E}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{k}\right\}$ where $\left\{\mathrm{s}_{1}\right\},\left\{\mathrm{s}_{2}\right\}, \ldots,\left\{\mathrm{s}_{k}\right\}$ are simple events then

$$
P(E)=P\left(s_{1}\right)+P\left(\mathrm{~s}_{2}\right)+\cdots+P\left(\mathrm{~s}_{k}\right)
$$

Note: If $\mathrm{E}=\varnothing$ then $\mathrm{P}(\mathrm{E})=0$.

Math 1313 Section 6.2
Example 2: The accompanying data were obtained from a survey of Americans who were asked: How safe are American-made consumer products

Rating
Very Safe
Somewhat safe

Number of Respondents

76
244
Not too safe 60
Not safe at all
8
Don't know12

Find the probability distribution associated with this experiment.

Example 3: A pair of fair dice is cast. What is the probability that a. the sum of the numbers shown is less than 5 ?
b. at least one 6 is cast?
c. you roll doubles?

		- ${ }^{\circ}$:
	(1, 1	$(1,2)(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
.	(2, 1	$(2,2)(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
二 $\because \cdot$	(3,1)	$(3,2)(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
픈 0	(4, 1)	$(4,2)(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
	$(5,1)$	$(5,2)(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
\%:	(6,	$(6,2)(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Math 1313 Section 6.2
Example 4: If one card is drawn from a well-shuffled standard 52-card deck, what is the probability that the card drawn is
a. A club?
b. A red card?
c. A seven?
d. A face card?
e. A black 9 ?

Math 1313 Section 6.2
Example 5: A survey was taken in a certain community about the number of the radios in the house, the probability distribution was constructed:

Number of Radios	0	1	2	3
Probability	0.01	0.09	0.53	0.37

What is the probability of a house chosen at random from this community having, a. 1 or 2 radios?
b. more than 1 radio?
c. not even one radio?

Example 6: Let $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$ be the sample space associated with an experiment having the following probability distribution:

Outcome	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}
Probability	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{1}{20}$	$\frac{2}{5}$	$\frac{1}{4}$

If $G=\left\{s_{2}, s_{5}\right\}, H=\left\{s_{1}, s_{2}, s_{3}\right\}$, and $I=\left\{s_{1}, s_{4}\right\}$. Find the probability.
a. $\quad P(G)$
b. $P(G \cup H)$
c. $P(I \cap G)$

