Math 1313 Section 7.1

Section 7.1: Random Variables

A rule that assigns a number to each outcome of an experiment is called a random variable.

We can construct the probability distribution associated with a random variable

If $x_1, x_2, x_3, ..., x_n$ are values assumed by the random variable *X* with associated probabilities $P(X = x_1), P(X = x_2), ..., P(X = x_n)$, respectively, then the probability distribution of *X* may be expressed in the following way.

x	P(X=x)
<i>x</i> ₁	$P(X=x_1)=p_1$
<i>x</i> ₂	$P(X=x_{2})=p_{2}$
•	•
•	•
x_n	$P(X=x_n)=p_n$

We can also graphically represent the probability distribution of a R.V.

A bar graph which represents the probability distribution of a random variable is called a histogram.

EX:

Example 1: The probability distribution of the random variable *X* is shown in the accompanying table: x -2 -1 0 1 2 3

P(X=x)	0.01	0.11	0.20	0.32	0.21	0.15

Find:

a. P(X = -2)

b. $P(-1 \le X < 1)$

c. P(X > 0)

Math 1313 Section 7.1

Example 2: A survey was conducted by the Public Housing Authority in a certain community among 920 families to determine the distribution of families by size.

The results follow:

Family Size	2	3	4	5
Frequency of Occurrence	350	200	245	125

a. Let *X* denote the number of persons in a randomly chosen family. Find the probability distribution for this experiment.

b. Draw the histogram corresponding to the probability distribution in part a.

- c. What is the $P(3 < X \le 5)$?
- d. What is the P(X > 2)?
- e. What is the $P(2 \le X \le 5)$?

Math 1313 Section 7.1

Example 3: A coin is tossed twice. Let the random variable X denote the number of tails that occur in the two tosses. Find the probability distribution for X and then draw the histogram corresponding to the probability distribution of X.