Math 1313 Section 7.3

Section 7.3: Variance and Standard Deviation

The **Variance** of a random variable *X* is the measure of degree of dispersion, or spread, of a probability distribution about its mean (i.e. how much on average each of the values of *X* deviates from the mean).

Note: A probability distribution with a small (large) spread about its mean will have a small (large) variance.

Variance of a Random Variable X

Suppose a random variable has the probability distribution

x	x_1	<i>x</i> ₂	 x_n
P(X = x)	p_1	p_2	 p_n

and expected value $E(X) = \mu$. Then the variance of the random variable X is

$$Var(X) = p_1(x_1 - \mu)^2 + p_2(x_2 - \mu)^2 + \dots + p_n(x_n - \mu)^2$$

Note: We square each since some may be negative.

Standard Deviation measures the same thing as the variance. The standard deviation of a Random Variable X is

$$\sigma = \sqrt{\operatorname{Var}(X)} = \sqrt{p_1(x_1 - \mu)^2 + p_2(x_2 - \mu)^2 + \dots + p_n(x_n - \mu)^2}$$

Example 1: Compute the mean, variance and standard deviation of the random variable X with probability distribution as follows:

X	P(X=x)
-3	0.4
2	0.3
5	0.3

i.

Math 1313 Section 7.3

Example 2: An investor is considering two business ventures. The anticipated returns (in thousands of dollars) of each venture are described by the following probability distributions:

	Venture 1	Venture 2		
Earnings	Probability	Earning	Probability	
-5	0.2	1.5	0.15	
30	0.6	50	0.75	
60	0.2	100	0.10	

a. Compute the mean and variance for each venture.

- b. Which investment would provide the investor with the higher expected return (the greater mean)?
- c. Which investment would the element of risk be less (that is, which probability distribution has the smaller variance)?

Math 1313 Section 7.3 Chebychev's Inequality

Let *X* be a random variable with expected value μ and standard deviation σ . Then, the probability that a randomly chosen outcome of the experiment lies between $\mu - k\sigma$ and $\mu + k\sigma$ is at least $1 - \frac{1}{k^2}$; that is, $P(\mu - k\sigma \le X \le \mu + k\sigma) \ge 1 - \frac{1}{k^2}$

Example 3: A probability distribution has a mean 20 and a standard deviation of 3. Use Chebychev's Inequality to estimate the probability that an outcome of the experiment lies between 12 and 28.

Example 4: A light bulb has an expected life of 200 hours and a standard deviation of 2 hours. Use Chebychev's Inequality to estimate the probability that one of these light bulbs will last between 190 and 210 hours?