CONVERGENCE ANALYSIS OF A MULTIGRID METHOD FOR A CONVECTION-DOMINATED MODEL PROBLEM*

MAXIM A. OLSHANSKII ${ }^{\dagger}$ AND ARNOLD REUSKEN ${ }^{\ddagger}$

Abstract

The paper presents a convergence analysis of a multigrid solver for a system of linear algebraic equations resulting from the discretization of a convection-diffusion problem using a finite element method. We consider piecewise linear finite elements in combination with a streamline diffusion stabilization. We analyze a multigrid method that is based on canonical intergrid transfer operators, a "direct discretization" approach for the coarse-grid operators and a smoother of lineJacobi type. A robust (diffusion and h-independent) bound for the contraction number of the two-grid method and the multigrid W -cycle are proved for a special class of convection-diffusion problems, namely with Neumann conditions on the outflow boundary, Dirichlet conditions on the rest of the boundary, and a flow direction that is constant and aligned with gridlines. Our convergence analysis is based on modified smoothing and approximation properties. The arithmetic complexity of one multigrid iteration is optimal up to a logarithmic term.

AMS subject classifications. $65 \mathrm{~F} 10,65 \mathrm{~N} 22,65 \mathrm{~N} 30,65 \mathrm{~N} 55$

Key words. multigrid, streamline diffusion, convection-diffusion

DOI. 10.1137/S0036142902418679

1. Introduction. Concerning the theoretical analysis of multigrid methods, different fields of application have to be distinguished. For linear self-adjoint elliptic boundary value problems the convergence theory is well developed (cf. [5, 9, 35, 36]). In other areas the state of the art is (far) less advanced. For example, for convectiondiffusion problems the development of a multigrid convergence analysis is still in its infancy. In this paper we present a convergence analysis of a multilevel method for a special class of two-dimensional convection-diffusion problems.

An interesting class of problems for the analysis of multigrid convergence is given by

$$
\left\{\begin{align*}
-\varepsilon \Delta u+b \cdot \nabla u & =f \quad \text { in } \Omega=(0,1)^{2}, \tag{1.1}\\
u & =g \quad \text { on } \partial \Omega
\end{align*}\right.
$$

with $\varepsilon>0$ and $b=(\cos \phi, \sin \phi), \phi \in[0,2 \pi)$. The application of a discretization method results in a large sparse linear system which depends on a mesh size parameter h_{k}. For a discussion of discretization methods for this problem we refer to [28, 1, 2] and the references therein. Note that in the discrete problem we have three interesting parameters: h_{k} (mesh size), ε (convection-diffusion ratio), and ϕ (flow direction). For the approximate solution of this type of problems robust multigrid methods have been developed which are efficient solvers for a large range of relevant values for the parameters h_{k}, ε, ϕ. To obtain good robustness properties the components in the multigrid method have to be chosen in a special way because, in general, the

[^0]"standard" multigrid approach used for a diffusion problem does not yield satisfactory results when applied to a convection-dominated problem. To improve robustness several modifications have been proposed in the literature, such as "robust" smoothers, matrix-dependent prolongations, and restrictions and semicoarsening techniques. For an explanation of these methods we refer to $[9,33,4,13,14,18,19,37]$. These modifications are based on heuristic arguments and empirical studies and rigorous convergence analysis proving robustness is still missing for most of these modifications.

Related to the theoretical analysis of multigrid applied to convection-diffusion problems we note the following. In the literature one finds convergence analyses of multigrid methods for nonsymmetric elliptic boundary value problems which are based on perturbation arguments [6, 9, 17, 32]. If these analyses are applied to the problem in (1.1) the constants in the estimates depend on ε and the results are not satisfactory for the case $\varepsilon \ll 1$. In [11, 25] multigrid convergence for a one-dimensional convection-diffusion problem is analyzed. These analyses, however, are restricted to the one-dimensional case. In [23, 26] convection-diffusion equations as in (1.1) with periodic boundary conditions are considered. A Fourier analysis is applied to analyze the convergence of two- or multigrid methods. In [23] the problem (1.1) with periodic boundary conditions and $\phi=0$ is studied. For the discretization the streamline diffusion finite element method on a uniform grid is used. A bound for the contraction number of a multigrid V-cycle with point Jacobi smoother is proved which is uniform in ε and h_{k} provided $\varepsilon \sim h_{k}$ is satisfied. Note that due to the fact that a point Jacobi smoother is used one can not expect robustness of this method for $h_{k} \gg \varepsilon \downarrow 0$. In [26] a two-grid method for solving a first order upwinding finite difference discretization of the problem (1.1) with periodic boundary conditions is analyzed, and it is proved that the two-grid contraction number is bounded by a constant smaller than one which does not depend on any of the parameters ε, h_{k}, ϕ. In [3] the application of the hierarchical basis multigrid method to a finite element discretization of problems as in (1.1) is studied. The analysis there shows how the convergence rate depends on ε and on the flow direction, but the estimates are not uniform with respect to the mesh size parameter h_{k}. In [27] the convergence of a multigrid method applied to a standard finite difference discretization of the problem (1.1) with $\phi=0$ is analyzed. This method is based on semicoarsening and a matrix-dependent prolongation and restriction. It is proved that the multigrid W -cycle has a contraction number smaller than one independent of h_{k} and ε. The analysis in [27] is based on linear algebra arguments only and is not applicable in a finite element setting. Moreover, the case with standard coarsening, which will be treated in the present paper, is not covered by the analysis in [27].

In the present paper we consider the convection-diffusion problem

$$
\begin{align*}
-\varepsilon \Delta u+u_{x}=f & \text { in } \quad \Omega:=(0,1)^{2} \\
\frac{\partial u}{\partial x}=0 & \text { on } \quad \Gamma_{E}:=\{(x, y) \in \bar{\Omega} \mid x=1\} \tag{1.2}\\
u=0 & \text { on } \quad \partial \Omega \backslash \Gamma_{E}
\end{align*}
$$

In this problem we have Neumann boundary conditions on the outflow boundary and Dirichlet boundary conditions on the remaining part of the boundary. Hence, the solution may have parabolic layers but exponential boundary layers at the outflow boundary do not occur. For this case an a priori regularity estimate of the form $\|u\|_{H^{2}} \leq c \varepsilon^{-1}\|f\|_{L^{2}}$ holds, whereas for the case with an exponential boundary layer one only has $\|u\|_{H^{2}} \leq c \varepsilon^{-\frac{3}{2}}\|f\|_{L^{2}}$. Due to the Dirichlet boundary conditions a Fourier analysis is not applicable.

For the discretization we use conforming linear finite elements. As far as we know there is no multigrid convergence analysis for convection-dominated problems known in the literature that can be applied in a finite element setting with nonperiodic boundary conditions and yields robustness for the parameter range $0 \leq \varepsilon \leq h_{k} \leq 1$. In this paper we present an analysis which partly fills this gap. We use the streamline diffusion finite element method (SDFEM). The SDFEM ensures a higher order of accuracy than a first order upwind finite difference method (cf. [28, 38]). In SDFEM a mesh-dependent anisotropic diffusion, which acts only in the streamline direction, is added to the discrete problem. Such anisotropy is important for the high order of convergence of this method and also plays a crucial role in our convergence analysis of the multigrid method. In this paper we only treat the case of a uniform triangulation which is taken such that the streamlines are aligned with gridlines. Whether our analysis can be generalized to the situation of an unstructured triangulation is an open question.

We briefly discuss the different components of the multigrid solver.

- For the prolongation and restriction we use the canonical intergrid transfer operators that are induced by the nesting of the finite element spaces.
- The hierarchy of coarse grid discretization operators is constructed by applying the SDFEM on each grid level. Note that due to the level-dependent stabilization term we have level-dependent bilinear forms and the Galerkin property $A_{k-1}=r_{k} A_{k} p_{k}$ does not hold.
- Related to the smoother we note the following. First we emphasize that due to a certain crosswind smearing effect in the finite element discretization the x-line Jacobi or Gauss-Seidel methods do not yield robust smoothers (i.e., they do not result in a direct solver in the limit case $\varepsilon=0$; cf. [9]). This is explained in more detail in Remark 6.1 in section 6 . In the present paper we use a smoother of x-line-Jacobi type.
These components are combined in a standard W-cycle algorithm.
The convergence analysis of the multigrid method is based on the framework of the smoothing- and approximation property as introduced by Hackbusch [9, 10]. However, the splitting of the two-grid iteration matrix that we use in our analysis is not the standard one. This splitting is given in (6.8). It turns out to be essential to keep the preconditioner corresponding to the smoother (W_{k} in (6.8)) as part of the approximation property. Moreover, in the analysis we have to distinguish between residuals which after presmoothing are zero close to the inflow boundary and those that are nonzero. This is done by using a cut-off operator (Φ_{k} in (6.8)). The main reason for this distinction is the following. As is usually done in the analysis of the approximation property we use finite element error bounds combined with regularity results. In the derivation of a L^{2} bound for the finite element discretization error we use a duality argument. However, the formal dual problem has poor regularity properties, since the inflow boundary of the original problem is the outflow boundary of the dual problem. Thus Dirichlet outflow boundary conditions would appear and we obtain poor estimates due to the poor regularity. To avoid this, we consider a dual problem with Neumann outflow and Dirichlet inflow conditions. To be able to deal with the inconsistency caused by these "wrong" boundary conditions we assume the input residuals for the coarse grid correction to be zero near the inflow boundary. Numerical experiments from section 11 related to the approximation property show that such analysis is sharp.

In our estimates there are terms that grow logarithmically if the mesh size parameter h_{k} tends to zero. To compensate this the number of presmoothings has to
be taken level dependent. This then results in a two-grid method with a contraction number $\left\|T_{k}\right\|_{A^{T} A} \leq c<1$ and a complexity $\mathcal{O}\left(N_{k}\left(\ln N_{k}\right)^{4}\right)$, with $N_{k}=h_{k}^{-2}$. Using standard arguments we obtain a similar convergence result for the multigrid W -cycle.

The remainder of this paper is organized as follows. In section 2 we give the weak formulation of the problem (1.2) and describe the SDFEM. In section 3 some useful properties of the stiffness matrix are derived. In section 4 we prove some a priori estimates for the continuous and the discrete solution. In section 5 we derive quantitative results concerning the upstream influence of a right-hand side on the solution. These results are needed in the proof of the modified approximation property. Section 6 contains the main results of this paper. In this section we describe the multigrid algorithm and present the convergence analysis. In sections $7-10$ we give proofs of some important results that are used in the analysis in section 6 . In section 11 we present results of a few numerical experiments.
2. The continuous problem and its discretization. For the weak formulation of the problem (1.2) we use the $\mathrm{L}^{2}(\Omega)$ scalar product which is denoted by (\cdot, \cdot). For the corresponding norm we use the notation $\|\cdot\|$. With the Sobolev space $\mathbf{V}:=\left\{v \in \mathrm{H}^{1}(\Omega) \mid v=0\right.$ on $\left.\partial \Omega \backslash \Gamma_{E}\right\}$ the weak formulation is as follows: find $u \in \mathbf{V}$ such that

$$
\begin{equation*}
a(u, v):=\varepsilon\left(u_{x}, v_{x}\right)+\varepsilon\left(u_{y}, v_{y}\right)+\left(u_{x}, v\right)=(f, v) \text { for all } v \in \mathbf{V} \tag{2.1}
\end{equation*}
$$

From the Lax-Milgram lemma it follows that a unique solution of this problem exists. For the discretization we use linear finite elements on a uniform triangulation. For this we use a mesh size $h_{k}:=2^{-k}$ and grid points $x_{i, j}=\left(i h_{k}, j h_{k}\right), 0 \leq i, j \leq h_{k}^{-1}$. A uniform triangulation is obtained by inserting diagonals that are oriented from southwest to northeast. Let $\mathbb{V}_{k} \subset \mathbf{V}$ be the space of continuous functions that are piecewise linear on this triangulation and have zero values on $\partial \Omega \backslash \Gamma_{E}$. For the discretization of (2.1) we consider the SDFEM: find $u_{k} \in \mathbb{V}_{k}$ satisfying

$$
\begin{equation*}
\left(\varepsilon+\delta_{k} h_{k}\right)\left(\left(u_{k}\right)_{x}, v_{x}\right)+\varepsilon\left(\left(u_{k}\right)_{y}, v_{y}\right)+\left(\left(u_{k}\right)_{x}, v\right)=\left(f, v+\delta_{k} h_{k} v_{x}\right) \text { for all } v \in \mathbb{V}_{k} \tag{2.2}
\end{equation*}
$$

with

$$
\delta_{k}= \begin{cases}\bar{\delta} & \text { if } \frac{h_{k}}{2 \varepsilon} \geq 1 \tag{2.3}\\ 0 & \text { otherwise }\end{cases}
$$

The stabilization parameter $\bar{\delta}$ is a given constant of order 1 . For an analysis of the SDFEM we refer to $[28,15]$. In this paper we assume

$$
\begin{equation*}
\bar{\delta} \in\left[\frac{1}{3}, 1\right] . \tag{2.4}
\end{equation*}
$$

The value $\frac{1}{3}$ for the lower bound is important for our analysis. The choice of 1 for the upper bound is made for technical reasons and this value is rather arbitrary. The finite element formulation (2.2) gives rise to the (stabilized) bilinear form

$$
\begin{equation*}
a_{k}(u, v):=\left(\varepsilon+\delta_{k} h_{k}\right)\left(u_{x}, v_{x}\right)+\varepsilon\left(u_{y}, v_{y}\right)+\left(u_{x}, v\right), \quad u, v \in \mathbf{V} \tag{2.5}
\end{equation*}
$$

Note the following relation for the bilinear form $a_{k}(\cdot, \cdot)$:

$$
\begin{equation*}
a_{k}(v, v)=\varepsilon\left\|v_{y}\right\|^{2}+\left(\varepsilon+\delta_{k} h_{k}\right)\left\|v_{x}\right\|^{2}+\frac{1}{2} \int_{\Gamma_{E}} v^{2} d y \quad \text { for } \quad v \in \mathbf{V} \tag{2.6}
\end{equation*}
$$

The main topic of this paper is a convergence analysis of a multigrid solver for the algebraic system of equations that corresponds to (2.2). In this convergence analysis the particular form of the right-hand side in (2.2), which is essential for consistency in the SDFEM, does not play a role. Therefore for an arbitrary $f \in \mathrm{~L}^{2}(\Omega)$ we will consider the problems

$$
\begin{align*}
u \in \mathbf{V} & \text { such that } a_{k}(u, v)=(f, v) \text { for all } v \in \mathbf{V}, \tag{2.7}\\
u_{k} \in \mathbb{V}_{k} & \text { such that } a_{k}\left(u_{k}, v_{k}\right)=\left(f, v_{k}\right) \text { for all } v_{k} \in \mathbb{V}_{k} . \tag{2.8}
\end{align*}
$$

Note that u and u_{k} depend on the stabilization term in the bilinear form and that these solutions differ from those in (2.1) and (2.2).
3. Representation of the stiffness matrix. We now derive a representation of the stiffness matrix corresponding to the bilinear form $a_{k}(\cdot, \cdot)$ that will be used in the analysis below. The standard nodal basis in \mathbb{V}_{k} is denoted by $\left\{\phi_{\ell}\right\}_{1 \leq \ell \leq N_{k}}$ with N_{k} the dimension of the finite element space, $N_{k}:=h_{k}^{-1}\left(h_{k}^{-1}-1\right)$. Define the isomorphism:

$$
P_{k}: X_{k}:=\mathbb{R}^{N_{k}} \rightarrow \mathbb{V}_{k}, \quad P_{k} x=\sum_{i=1}^{N_{k}} x_{i} \phi_{i} .
$$

On X_{k} we use a scaled Euclidean scalar product $\langle x, y\rangle_{k}=h_{k}^{2} \sum_{i=1}^{N_{k}} x_{i} y_{i}$ and corresponding norm denoted by $\|\cdot\|$ (note that this notation is also used to denote the $\mathrm{L}^{2}(\Omega)$ norm $)$. The adjoint $P_{k}^{*}: \mathbb{V}_{k} \rightarrow X_{k}$ satisfies $\left(P_{k} x, v\right)=\left\langle x, P_{k}^{*} v\right\rangle_{k}$ for all $x \in X_{k}, v \in \mathbb{V}_{k}$. The following norm equivalence holds:

$$
\begin{equation*}
C^{-1}\|x\| \leq\left\|P_{k} x\right\| \leq C\|x\| \quad \text { for all } x \in \mathrm{X}_{k}, \tag{3.1}
\end{equation*}
$$

with a constant C independent of k. The stiffness matrix A_{k} on level k is defined by

$$
\begin{equation*}
\left\langle A_{k} x, y\right\rangle_{k}=a_{k}\left(P_{k} x, P_{k} y\right) \quad \text { for all } x, y \in \mathrm{X}_{k} . \tag{3.2}
\end{equation*}
$$

In an interior grid point the discrete problem has the stencil

$$
\frac{1}{h_{k}^{2}}\left[\begin{array}{ccc}
0 & -\varepsilon & 0 \tag{3.3}\\
-\varepsilon_{k} & 2\left(\varepsilon_{k}+\varepsilon\right) & -\varepsilon_{k} \\
0 & -\varepsilon & 0
\end{array}\right]+\frac{1}{h_{k}}\left[\begin{array}{ccc}
0 & -\frac{1}{6} & \frac{1}{6} \\
-\frac{1}{3} & 0 & \frac{1}{3} \\
-\frac{1}{6} & \frac{1}{6} & 0
\end{array}\right], \quad \varepsilon_{k}:=\varepsilon+\delta_{k} h_{k} .
$$

For a matrix representation of the discrete operator we first introduce some notation and auxiliary matrices. Let $n_{k}:=h_{k}^{-1}$ and

$$
\begin{aligned}
& \hat{D}_{x}:=\frac{1}{h_{k}} \operatorname{tridiag}(-1,1,0) \in \mathbb{R}^{n_{k} \times n_{k}}, \\
& \hat{A}_{x}:=\hat{D}_{x}^{T} \hat{D}_{x}=\frac{1}{h_{k}^{2}}\left(\begin{array}{ccccc}
2 & -1 & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1
\end{array}\right) \in \mathbb{R}^{n_{k} \times n_{k}}, \\
& \hat{A}_{y}:=\frac{1}{h_{k}^{2}} \operatorname{tridiag}(-1,2,-1) \in \mathbb{R}^{\left(n_{k}-1\right) \times\left(n_{k}-1\right)}, \\
& \hat{J}:=\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right) \in \mathbb{R}^{n_{k} \times n_{k}}, \quad \hat{T}:=\operatorname{tridiag}(0,0,1) \in \mathbb{R}^{n_{k} \times n_{k}} .
\end{aligned}
$$

Furthermore, let I_{m} be the $m \times m$ identity matrix. We finally introduce the following $N_{k} \times N_{k}$ matrices

$$
D_{x}:=I_{n_{k}-1} \otimes \hat{D}_{x}, \quad A_{x}:=I_{n_{k}-1} \otimes \hat{A}_{x}=D_{x}^{T} D_{x}, \quad A_{y}:=\hat{A}_{y} \otimes \hat{J}
$$

and the $N_{k} \times N_{k}$ blocktridiagonal matrix

$$
B:=\operatorname{blocktridiag}\left(I_{n_{k}}, 4 I_{n_{k}}, \hat{T}\right)
$$

Using all this notation we consider the following representation for the stiffness matrix A_{k} in (3.2):

$$
\begin{equation*}
A_{k}=\left(\varepsilon+\left(\delta_{k}-\frac{1}{3}\right) h_{k}\right) A_{x}+\varepsilon A_{y}+\frac{1}{6} B D_{x} \tag{3.4}
\end{equation*}
$$

The latter decomposition can be written in stencil notation as

$$
\frac{\bar{\varepsilon}_{k}}{h_{k}^{2}}\left[\begin{array}{rrr}
0 & 0 & 0 \tag{3.5}\\
-1 & 2 & -1 \\
0 & 0 & 0
\end{array}\right]+\frac{\varepsilon}{h_{k}^{2}}\left[\begin{array}{rrr}
0 & -1 & 0 \\
0 & 2 & 0 \\
0 & -1 & 0
\end{array}\right]+\frac{1}{6 h_{k}}\left[\begin{array}{rrr}
0 & -1 & 1 \\
-4 & 4 & 0 \\
-1 & 1 & 0
\end{array}\right]
$$

with $\bar{\varepsilon}_{k}=\varepsilon+\left(\delta_{k}-\frac{1}{3}\right) h_{k}>0$.
Some properties of the matrices used in the decomposition (3.4) are collected in the following lemma.

For $B, C \in \mathbb{R}^{n \times n}$ we write $B \geq C$ iff $x^{T} B x \geq x^{T} C x$ for all $x \in \mathbb{R}^{n}$.
Lemma 3.1. The following inequalities hold:

$$
\begin{align*}
A_{x} D_{x}^{-1} & \geq 0 \tag{3.6}\\
A_{y} D_{x}^{-1} & \geq 0 \tag{3.7}\\
B & \geq 2 I \tag{3.8}\\
A_{k} D_{x}^{-1} & \geq \frac{1}{3} I \tag{3.9}\\
\left\|D_{x} A_{k}^{-1}\right\| & \leq 3 \tag{3.10}
\end{align*}
$$

Proof. To check (3.6) observe $A_{x} D_{x}^{-1}=D_{x}^{T} D_{x} D_{x}^{-1}=D_{x}^{T}$. Now note that $D_{x}^{T}+D_{x}$ is symmetric positive definite.

To prove (3.7) it suffices to show that $D_{x}^{T} A_{y} \geq 0$ holds. We have

$$
K:=D_{x}^{T} A_{y}=\left(I_{n_{k}-1} \otimes \hat{D}_{x}^{T}\right)\left(\hat{A}_{y} \otimes \hat{J}\right)=\hat{A}_{y} \otimes \tilde{D}_{x}^{T}
$$

with the matrix

$$
\tilde{D}_{x}^{T}=\frac{1}{h_{k}}\left(\begin{array}{cccc}
1 & -1 & & \\
& \ddots & \ddots & \\
& & 1 & -\frac{1}{\frac{1}{2}}
\end{array}\right)
$$

Hence in the matrix $K+K^{T}=\hat{A}_{y} \otimes\left(\tilde{D}_{x}^{T}+\tilde{D}_{x}\right)$ both factors \hat{A}_{y} and $\tilde{D}_{x}^{T}+\tilde{D}_{x}$ are symmetric positive definite. From this the result follows.

To prove (3.8) we define $R:=B-4 I$ and note that $\|R\|^{2} \leq\|R\|_{\infty}\|R\|_{1} \leq 4$. Using this we get

$$
\langle B x, x\rangle_{k}=4\|x\|^{2}+\langle R x, x\rangle_{k} \geq 4\|x\|^{2}-\|R\|\|x\|^{2} \geq 2\|x\|^{2}
$$

which proves the desired result. Inequality (3.9) follows immediately from the representation of A_{k} in (3.4) and inequalities (3.6)-(3.8). From the result in (3.9) it follows that $D_{x}^{T} A_{k} \geq \frac{1}{3} D_{x}^{T} D_{x}$. This implies $\left\|D_{x} x\right\|^{2} \leq 3\left\langle A_{k} x, D_{x} x\right\rangle_{k} \leq 3\left\|A_{k} x\right\|\left\|D_{x} x\right\|$ for all $x \in \mathrm{X}_{k}$ and thus estimate (3.10) is also proved.
4. A priori estimates. In this paper we study the convergence of a multigrid method for solving the system of equations

$$
\begin{equation*}
A_{k} x_{k}=b \tag{4.1}
\end{equation*}
$$

with A_{k} the stiffness matrix from the previous section. As already noted in the introduction, our analysis relies on smoothing and approximation properties. For establishing a suitable approximation property we will use regularity results and a priori estimates for solutions of the continuous and the discrete problems. Such results are collected in this section. In the remainder of the paper we restrict ourselves to the convection-dominated case.

Assumption 4.1. We consider only values of k and ε such that $\varepsilon \leq \frac{1}{2} h_{k}$.
If instead of the factor $\frac{1}{2}$ in this assumption we take another constant C, our analysis can still be applied but some technical modifications are needed (to distinguish between $\delta_{k}=\bar{\delta}$ and $\delta_{k}=0$) which make the presentation less transparent.

We consider this convection-dominated case to be the most interesting one. Many results that will be presented also hold for the case of an arbitrary positive ε but the proofs for the diffusion-dominated case often differ from those for the convectiondominated case. In view of the presentation we decided to treat only the convectiondominated case. Note that then

$$
\begin{equation*}
\delta_{k}=\bar{\delta} \in\left[\frac{1}{3}, 1\right] \quad \text { and } \quad \frac{1}{3} h_{k} \leq \varepsilon_{k}=\varepsilon+\bar{\delta} h_{k} \leq \frac{3}{2} h_{k} \tag{4.2}
\end{equation*}
$$

For the inflow boundary we use the notation $\Gamma_{W}:=\{(x, y) \in \bar{\Omega} \mid x=0\}$. For the continuous solution u the following a priori estimates hold.

Theorem 4.1. For $f \in L_{2}(\Omega)$ let u be the solution of (2.7). There is a constant c independent of k and ε such that

$$
\begin{align*}
\|u\|+\left\|u_{x}\right\| & \leq c\|f\|, \tag{4.3}\\
\sqrt{\varepsilon}\left\|u_{y}\right\| & \leq c\|f\|, \tag{4.4}\\
h_{k}\left\|u_{x x}\right\|+\sqrt{\varepsilon h_{k}}\left\|u_{x y}\right\|+\varepsilon\left\|u_{y y}\right\| & \leq c\|f\|, \tag{4.5}\\
\int_{\Gamma_{E}} u^{2} d y+h_{k} \int_{\Gamma_{W}} u_{x}^{2} d y+\varepsilon \int_{\Gamma_{E}} u_{y}^{2} d y & \leq c\|f\|^{2} . \tag{4.6}
\end{align*}
$$

Proof. Since $f \in L_{2}(\Omega)$, the regularity theory from [8] ensures that the solution u of (2.7) belongs to $\mathrm{H}^{2}(\Omega)$. Hence we can consider the strong formulation of (2.7),

$$
\begin{equation*}
-\varepsilon u_{y y}-\varepsilon_{k} u_{x x}+u_{x}=f \tag{4.7}
\end{equation*}
$$

with boundary conditions as in (1.2). Now we multiply (4.7) with u_{x} and integrate by parts. Taking boundary conditions into account, we get the following terms:

$$
\begin{aligned}
-\varepsilon\left(u_{y y}, u_{x}\right) & =\frac{\varepsilon}{2}\left(\left(u_{y}^{2}\right)_{x}, 1\right)=\frac{\varepsilon}{2} \int_{\Gamma_{E}} u_{y}^{2} d y \\
-\varepsilon_{k}\left(u_{x x}, u_{x}\right) & =-\frac{\varepsilon_{k}}{2}\left(\left(u_{x}^{2}\right)_{x}, 1\right)=\frac{\varepsilon_{k}}{2} \int_{\Gamma_{W}} u_{x}^{2} d y \geq c h_{k} \int_{\Gamma_{W}} u_{x}^{2} d y \quad \text { (we use (4.2)), } \\
\left(u_{x}, u_{x}\right) & =\left\|u_{x}\right\|^{2} \geq\|u\|^{2} \\
\left(f, u_{x}\right) & \leq \frac{1}{2}\|f\|^{2}+\frac{1}{2}\left\|u_{x}\right\|^{2}
\end{aligned}
$$

From these relations the results (4.3) and (4.6), except the bound for $\int_{\Gamma_{E}} u^{2} d y$, easily follow. Next we multiply (4.7) with u and integrate by parts to obtain

$$
\varepsilon\left\|u_{y}\right\|^{2}+\varepsilon_{k}\left\|u_{x}\right\|^{2}+\frac{1}{2} \int_{\Gamma_{E}} u^{2} d y=(f, u) \leq\|f\|\|u\| \leq c\|f\|^{2} \quad \text { (we use (4.3)). }
$$

Estimate (4.4) and the remainder of (4.6) now follow. To prove (4.5) we introduce $F=f-u_{x}$. Due to (4.3) we have $\|F\| \leq c\|f\|$. Moreover $-\varepsilon u_{y y}-\varepsilon_{k} u_{x x}=F$ holds. If we square both sides of this equality and integrate over Ω we obtain

$$
\begin{equation*}
\varepsilon^{2}\left\|u_{y y}\right\|^{2}+2 \varepsilon \varepsilon_{k}\left(u_{y y}, u_{x x}\right)+\varepsilon_{k}^{2}\left\|u_{x x}\right\|^{2}=\|F\|^{2} \leq c\|f\|^{2} \tag{4.8}
\end{equation*}
$$

Further note that for any sufficiently smooth function v, satisfying the boundary conditions in (1.2), the relations

$$
v_{x x}(x, 0)=v_{x x}(x, 1)=0, x \in(0,1), \quad v_{y}(0, y)=v_{x y}(1, y)=0, y \in(0,1)
$$

hold, and thus

$$
\left(v_{y y}, v_{x x}\right)=-\left(v_{y}, v_{x x y}\right)=\left(v_{x y}, v_{x y}\right)
$$

Using a standard density argument we conclude that for the solution $u \in \mathrm{H}^{2}(\Omega)$ of (2.7) the relation $\left(u_{y y}, u_{x x}\right)=\left(u_{x y}, u_{x y}\right)$ holds. Now (4.8) gives

$$
\varepsilon^{2}\left\|u_{y y}\right\|^{2}+2 \varepsilon \varepsilon_{k}\left\|u_{x y}\right\|^{2}+\varepsilon_{k}^{2}\left\|u_{x x}\right\|^{2} \leq c\|f\|^{2}
$$

In combination with (4.2) this yields (4.5).
The next lemma states that the x-derivative of the discrete solution is also uniformly bounded if the right-hand side is from \mathbb{V}_{k}.

Lemma 4.2. For $f_{k} \in \mathbb{V}_{k}$ let $u_{k} \in \mathbb{V}_{k}$ be a solution to (2.8); then

$$
\begin{equation*}
\left\|\left(u_{k}\right)_{x}\right\| \leq c\left\|f_{k}\right\| \tag{4.9}
\end{equation*}
$$

Proof. The result in (4.9) follows from the estimate (3.10) in Lemma 3.1. To show this we need some technical considerations.

First we show how the size of the x-derivative of a finite element function $v \in \mathbb{V}_{k}$ can be determined from its corresponding coefficient vector $P_{k}^{-1} v \in X_{k}$. Let \mathcal{I} be the index set $\left\{(i, j) \mid 0 \leq i \leq n_{k}-1, \quad 1 \leq j \leq n_{k}-1\right\}$. For $(i, j) \in \mathcal{I}$ let $T_{(i, j)}^{l}$ and $T_{(i, j)}^{u}$ be the two triangles in the triangulation which have the line between the grid
points $x_{i, j}$ and $x_{i+1, j}$ as a common edge. Let $v \in \mathbb{V}_{k}$ be given. For $1 \leq j \leq n_{k}-1$ we introduce the vector $\mathbf{v}_{j}=\left(v\left(x_{1, j}\right), \ldots, v\left(x_{n_{k}, j}\right)\right)^{T}$. We then obtain

$$
\begin{aligned}
\left\|v_{x}\right\|^{2} & =\sum_{(i, j) \in \mathcal{I}}\left(\int_{T_{(i, j)}^{l}} v_{x}^{2} d x d y+\int_{T_{(i, j)}^{u}} v_{x}^{2} d x d y\right) \\
& =\sum_{(i, j) \in \mathcal{I}}\left(\frac{v\left(x_{i+1, j}\right)-v\left(x_{i, j}\right)}{h_{k}}\right)^{2} h_{k}^{2}=h_{k}^{2} \sum_{1 \leq j \leq n_{k}-1}\left(D_{x} \mathbf{v}_{j}\right)^{T}\left(D_{x} \mathbf{v}_{j}\right) \\
& =h_{k}^{2}\left(D_{x} P_{k}^{-1} v\right)^{T}\left(D_{x} P_{k}^{-1} v\right)=\left\|D_{x} P_{k}^{-1} v\right\|^{2}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\|v_{x}\right\|=\left\|D_{x} P_{k}^{-1} v\right\| \quad \text { for any } \quad v \in \mathbb{V}_{k} \tag{4.10}
\end{equation*}
$$

For the discrete solution of (2.8) with $f=f_{k}$ we have the representation $u_{k}=$ $P_{k} A_{k}^{-1} P_{k}^{*} f_{k}$. Now from (3.10) and (4.10) it follows that

$$
\left\|\left(u_{k}\right)_{x}\right\|=\left\|D_{x} A_{k}^{-1} P_{k}^{*} f_{k}\right\| \leq 3\left\|P_{k}^{*} f_{k}\right\| \leq c\left\|f_{k}\right\|
$$

with a constant c independent of k and ε.
The next lemma gives some bounds on the difference between discrete and continuous solutions

LEMMA 4.3. Define the error $e_{k}=u-u_{k}$, where u and u_{k} are solutions of the problems (2.7) and (2.8) with right-hand side $f=f_{k} \in \mathbb{V}_{k}$. Then the following estimates hold:

$$
\begin{gather*}
\left\|\left(e_{k}\right)_{x}\right\| \leq c\left\|f_{k}\right\| \tag{4.11}\\
\varepsilon\left\|\left(e_{k}\right)_{y}\right\|^{2}+\frac{1}{2} \int_{\Gamma_{E}} e_{k}^{2} d y \leq c \frac{h_{k}^{2}}{\varepsilon}\left\|f_{k}\right\|^{2} \tag{4.12}
\end{gather*}
$$

Proof. Estimate (4.11) directly follows from (4.3) and (4.9) by a triangle inequality. The proof of (4.12) is based on standard arguments: the Galerkin orthogonality, approximation properties of \mathbb{V}_{k}, and a priori estimates from (4.5). Indeed

$$
\begin{aligned}
& \varepsilon\left\|\left(e_{k}\right)_{y}\right\|^{2}+\left(\varepsilon+\bar{\delta} h_{k}\right)\left\|\left(e_{k}\right)_{x}\right\|^{2}+\frac{1}{2} \int_{\Gamma_{E}} e_{k}^{2} d y=a_{k}\left(e_{k}, e_{k}\right)=\inf _{v_{k} \in \mathbb{V}_{k}} a_{k}\left(e_{k}, u-v_{k}\right) \\
& \quad \leq \inf _{v_{k} \in \mathbb{V}_{k}}\left(\varepsilon\left\|\left(e_{k}\right)_{y}\right\|\left\|\left(u-v_{k}\right)_{y}\right\|+\left(\varepsilon+\bar{\delta} h_{k}\right)\left\|\left(e_{k}\right)_{x}\right\|\left\|\left(u-v_{k}\right)_{x}\right\|+\left\|\left(e_{k}\right)_{x}\right\|\left\|u-v_{k}\right\|\right) \\
& \quad \leq c\left(\varepsilon h_{k}\left\|\left(e_{k}\right)_{y}\right\|\|u\|_{H^{2}}+h_{k}^{2}\left\|\left(e_{k}\right)_{x}\right\|\|u\|_{H^{2}}\right) \\
& \quad \leq c\left(h_{k}\left\|\left(e_{k}\right)_{y}\right\|\left\|f_{k}\right\|+\frac{h_{k}^{2}}{\varepsilon}\left\|f_{k}\right\|^{2}\right) \leq \frac{\varepsilon}{2}\left\|\left(e_{k}\right)_{y}\right\|^{2}+c \frac{h_{k}^{2}}{\varepsilon}\left\|f_{k}\right\|^{2} .
\end{aligned}
$$

The estimate (4.12) follows.
5. Upstream influence of the streamline diffusion method. Consider the continuous problem (2.7). The goal of this section is to estimate the upstream influence of the right-hand side function f on the solution u. The same will be done for the corresponding discrete problem. In the literature, results of such type are known for the problem with Dirichlet boundary conditions and typically formulated
in the form of estimates on the (discrete) Greens function (see, e.g., $[31,20,16]$). A typical result is that the value of the solution at a point x is essentially determined by the values of the right-hand side in a "small" strip that contains x. This strip has a crosswind width of size $O\left(\varepsilon^{*}|\ln h|\right)$, where $\varepsilon^{*}=\max \left\{\varepsilon, h^{\frac{3}{2}}\right\}$, and in the streamline direction it ranges from the inflow boundary to a $\mathcal{O}(h|\ln h|)$ upstream distance from x. In our analysis we need precise quantitative results for the case with Neumann outflow boundary conditions. In the literature we did not find such results. Hence we present proofs of the results that are needed for the multigrid convergence analysis further on. Our analysis uses the known technique of cut-off functions (e.g., [7, 16]), it avoids the use of an adjoint problem and is based on the following lemma.

LEMMA 5.1. For $\varepsilon_{k}=\varepsilon+\bar{\delta} h_{k}$ assume a function $\phi \in H_{\infty}^{1}(0,1)$, such that $0 \leq-\varepsilon_{k} \phi_{x} \leq \phi$. Denote by $\|\cdot\|_{\phi}$ a semi-norm induced by the scalar product $(\phi \cdot, \cdot)$. Then the solution u of (2.7) satisfies

$$
\begin{align*}
\left\|u_{x}\right\|_{\phi} & \leq 2\|f\|_{\phi} \tag{5.1}\\
\varepsilon_{k} \phi(0) \int_{\Gamma_{W}} u_{x}^{2} d y & \leq\|f\|_{\phi}^{2} \tag{5.2}\\
\frac{1}{4}\|u\|_{-\phi_{x}}^{2}+\varepsilon\left\|u_{y}\right\|_{\phi}^{2} & \leq(\phi f, u) \tag{5.3}
\end{align*}
$$

Proof. We consider the strong formulation (4.7) and multiply it with ϕu_{x} and integrate by parts. We then get the following terms:

$$
\begin{aligned}
-\varepsilon\left(u_{y y}, \phi u_{x}\right) & =\frac{\varepsilon}{2}\left\|u_{y}\right\|_{-\phi_{x}}^{2}+\frac{\varepsilon}{2} \phi(1) \int_{\Gamma_{E}} u_{y}^{2} d y \geq 0 \\
-\varepsilon_{k}\left(u_{x x}, \phi u_{x}\right) & =-\frac{\varepsilon_{k}}{2}\left\|u_{x}\right\|_{-\phi_{x}}^{2}+\frac{\varepsilon_{k}}{2} \phi(0) \int_{\Gamma_{W}} u_{x}^{2} d y \geq-\frac{1}{2}\left\|u_{x}\right\|_{\phi}^{2}+\frac{\varepsilon_{k}}{2} \phi(0) \int_{\Gamma_{W}} u_{x}^{2} d y \\
\left(u_{x}, \phi u_{x}\right) & =\left\|u_{x}\right\|_{\phi}^{2} \\
\left(f, \phi u_{x}\right) & \leq\|f\|_{\phi}\left\|u_{x}\right\|_{\phi} \leq\|f\|_{\phi}^{2}+\frac{1}{4}\left\|u_{x}\right\|_{\phi}^{2}
\end{aligned}
$$

Now (5.1) and (5.2) immediately follow. To obtain the estimate (5.3) we multiply (4.7) with ϕu and integrate by parts. We get the following terms:

$$
\begin{aligned}
-\varepsilon\left(u_{y y}, \phi u\right) & =\varepsilon\left\|u_{y}\right\|_{\phi}^{2} \\
-\varepsilon_{k}\left(u_{x x}, \phi u\right) & =\varepsilon_{k}\left\|u_{x}\right\|_{\phi}^{2}+\varepsilon_{k}\left(u_{x}, \phi_{x} u\right) \\
& \geq \varepsilon_{k}\left\|u_{x}\right\|_{\phi}^{2}-\varepsilon_{k}^{2}\left\|u_{x}\right\|_{-\phi_{x}}^{2}-\frac{1}{4}\|u\|_{-\phi_{x}}^{2} \geq-\frac{1}{4}\|u\|_{-\phi_{x}}^{2} \\
\left(u_{x}, \phi u\right) & =\frac{1}{2}\|u\|_{-\phi_{x}}^{2}+\frac{\phi(1)}{2} \int_{\Gamma_{E}} u^{2} d y
\end{aligned}
$$

Thus (5.3) follows. \quad]
For arbitrary $\xi \in[0,1]$ consider the function

$$
\phi_{\xi}(x)= \begin{cases}1 & \text { for } x \in[0, \xi] \\ \exp \left(-\frac{x-\xi}{\varepsilon_{k}}\right) & \text { for } x \in(\xi, 1]\end{cases}
$$

For any ξ the function $\phi_{\xi}(x)$ satisfies the assumptions of Lemma 5.1. For $0<\xi<$ $\eta<1$ we define the domains

$$
\Omega_{\xi}=\{(x, y) \in \Omega: x<\xi\}, \quad \Omega_{\eta}=\{(x, y) \in \Omega: x>\eta\}
$$

Direct application of Lemma 5.1 with $\phi=\phi_{\xi}$ gives the following corollary.
Corollary 5.2. Consider $f \in L_{2}(\Omega)$ such that $\operatorname{supp}(f) \in \Omega_{\eta}$ and let u be the corresponding solution of problem (2.7). Assume $\eta-\xi \geq 2 \varepsilon_{k} p\left|\ln h_{k}\right|$, $p>0$. Then we have

$$
\begin{align*}
\left\|u_{x}\right\|_{L_{2}\left(\Omega_{\xi}\right)} & \leq h_{k}^{p}\|f\| \tag{5.4}\\
\varepsilon_{k} \int_{\Gamma_{W}} u_{x}^{2} d y & \leq h_{k}^{2 p}\|f\|^{2} \tag{5.5}\\
\sqrt{\varepsilon}\left\|u_{y}\right\|_{L_{2}\left(\Omega_{\xi}\right)} & \leq \sqrt{\varepsilon_{k}} h_{k}^{p}\|f\| \tag{5.6}
\end{align*}
$$

Proof. The estimate $\|f\|_{\phi}^{2}=(\phi f, f)_{\Omega_{\eta}} \leq \phi(\eta)\|f\|_{\Omega_{\eta}}^{2}=h_{k}^{2 p}\|f\|^{2}$ and (5.1), (5.2) imply the results (5.4) and (5.5). We also have

$$
\begin{aligned}
(\phi f, u) & =(\phi f, u)_{\Omega_{\eta}} \leq \varepsilon_{k}\|f\|_{\phi}^{2}+\frac{1}{4 \varepsilon_{k}}(\phi u, u)_{\Omega_{\eta}}=\varepsilon_{k}\|f\|_{\phi}^{2}+\frac{1}{4}\left(-\phi_{x} u, u\right)_{\Omega_{\eta}} \\
& \leq \varepsilon_{k}\|f\|_{\phi}^{2}+\frac{1}{4}\|u\|_{-\phi_{x}}^{2}
\end{aligned}
$$

Together with (5.3) this yields (5.6). \quad.
We need an analogue of estimate (5.1) for the finite element solution u_{k} of (2.8). To this end consider a vector $\phi=\left(\phi_{0}, \ldots, \phi_{n_{k}}\right)$, such that $\phi_{i}>0$ for all i and

$$
\begin{equation*}
0 \leq-\varepsilon_{k} \frac{\phi_{i}-\phi_{i-1}}{h_{k}} \leq c_{0} \phi_{i}, \quad i=1, \ldots, n_{k} \tag{5.7}
\end{equation*}
$$

with a constant $c_{0} \in\left(0, \frac{4}{9}\right)$ and $\varepsilon_{k}=\varepsilon+\bar{\delta} h_{k}$.
Define $\hat{\Phi}_{k}:=\operatorname{diag}\left(\phi_{i}\right)_{1 \leq i \leq n_{k}}, \Phi_{k}:=I_{n_{k}-1} \otimes \hat{\Phi}_{k}$ with ϕ_{i} satisfying (5.7). Let $\langle\cdot, \cdot\rangle_{\Phi}=\left\langle\Phi_{k} \cdot, \cdot\right\rangle_{k}$.

Lemma 5.3. There exists a constant $c>0$ independent of k and ε such that

$$
\left\langle A_{k} x, D_{x} x\right\rangle_{\Phi} \geq c\left\|D_{x} x\right\|_{\Phi}^{2} \quad \text { for all } x \in X_{k}
$$

Proof. We use similar arguments as in the proof of (3.10). We use the representation (3.4) of the stiffness matrix: $A_{k}=\bar{\varepsilon}_{k} A_{x}+\varepsilon A_{y}+\frac{1}{6} B D_{x}$. Note that

$$
D_{x}^{T} \Phi_{k} A_{y}=\left(I_{n_{k}-1} \otimes \hat{D}_{x}^{T}\right)\left(I_{n_{k}-1} \otimes \hat{\Phi}_{k}\right)\left(\hat{A}_{y} \otimes \hat{J}\right)=\hat{A}_{y} \otimes \hat{D}_{x}^{T} \hat{\Phi}_{k} \hat{J}
$$

The matrix \hat{A}_{y} is symmetric positive definite. Using $\phi_{i} \leq \phi_{i-1}$ and a Gershgorin theorem it follows that $\hat{D}_{x}^{T} \hat{\Phi}_{k} \hat{J}+\hat{J} \hat{\Phi}_{k} \hat{D}_{x}$ is symmetric positive definite, too. Hence, $D_{x}^{T} \Phi_{k} A_{y} \geq 0$ holds, i.e.,

$$
\begin{equation*}
\left\langle A_{y} x, D_{x} x\right\rangle_{\Phi} \geq 0 \quad \text { for all } \quad x \in X_{k} \tag{5.8}
\end{equation*}
$$

From the assumption on ϕ it follows that $\phi_{i-1} \leq\left(1+\frac{c_{0} h_{k}}{\varepsilon_{k}}\right) \phi_{i}$ for all i. Using this and the relation

$$
\frac{1}{2}\left(\hat{\Phi}_{k}^{\frac{1}{2}} \hat{D}_{x}^{T} \hat{\Phi}_{k}^{-\frac{1}{2}}+\hat{\Phi}_{k}^{-\frac{1}{2}} \hat{D}_{x} \hat{\Phi}_{k}^{\frac{1}{2}}\right)=\frac{1}{2 h_{k}} \operatorname{tridiag}\left(\sqrt{\frac{\phi_{i-1}}{\phi_{i}}}, 2, \sqrt{\frac{\phi_{i}}{\phi_{i+1}}}\right)
$$

it follows that

$$
\Phi_{k}^{\frac{1}{2}} D_{x}^{T} \Phi_{k}^{-\frac{1}{2}} \geq \frac{1}{2 h_{k}}\left(2-2 \sqrt{1+\frac{c_{0} h_{k}}{\varepsilon_{k}}}\right) I \geq-\frac{c_{0}}{2 \varepsilon_{k}} I \geq-\frac{c_{0}}{2 \bar{\varepsilon}_{k}} I
$$

holds. And thus

$$
\begin{equation*}
\bar{\varepsilon}_{k}\left\langle A_{x} x, D_{x} x\right\rangle_{\Phi}=\bar{\varepsilon}_{k}\left\langle\Phi_{k} D_{x}^{T} D_{x} x, D_{x} x\right\rangle \geq-\frac{1}{2} c_{0}\left\langle D_{x} x, D_{x} x\right\rangle_{\Phi} \quad \text { for all } x \in X_{k} \tag{5.9}
\end{equation*}
$$

We decompose B as $B=4 I-R$. A simple computation yields

$$
\left\|\Phi_{k}^{\frac{1}{2}} R \Phi_{k}^{-\frac{1}{2}}\right\|_{1} \leq 1+\sqrt{1+\frac{c_{0} h_{k}}{\varepsilon_{k}}} \leq 1+\sqrt{1+3 c_{0}} \leq 2+\frac{3}{2} c_{0}
$$

Similarly we get $\left\|\Phi_{k}^{\frac{1}{2}} R \Phi_{k}^{-\frac{1}{2}}\right\|_{\infty} \leq 2+\frac{3}{2} c_{0}$ and thus $\left\|\Phi_{k}^{\frac{1}{2}} R \Phi_{k}^{-\frac{1}{2}}\right\| \leq 2+\frac{3}{2} c_{0}$. Hence

$$
\Phi_{k}^{\frac{1}{2}} B \Phi_{k}^{-\frac{1}{2}} \geq\left(4-\left(2+\frac{3}{2} c_{0}\right)\right) I=\left(2-\frac{3}{2} c_{0}\right) I
$$

and thus

$$
\begin{equation*}
\frac{1}{6}\left\langle B D_{x} x, D_{x} x\right\rangle_{\Phi} \geq\left(\frac{1}{3}-\frac{1}{4} c_{0}\right)\left\langle D_{x} x, D_{x} x\right\rangle_{\Phi} \quad \text { for all } \quad x \in X_{k} \tag{5.10}
\end{equation*}
$$

Combination of the results in (5.8), (5.9), and (5.10) yields

$$
\left\langle A_{k} x, D_{x} x\right\rangle_{\Phi} \geq\left(\frac{1}{3}-\frac{3}{4} c_{0}\right)\left\langle D_{x} x, D_{x} x\right\rangle_{\Phi} \geq c\left\langle D_{x} x, D_{x} x\right\rangle_{\Phi} \quad \text { for all } x \in X_{k}
$$

with a constant $c>0$ (use that $c_{0} \in\left(0, \frac{4}{9}\right)$).
Lemma 5.4. For $f=f_{k} \in \mathbb{V}_{k}$ let u_{k} be the solution of the problem (2.8). Then

$$
\begin{equation*}
\sum_{i=1}^{n_{k}} \sum_{j=1}^{n_{k}-1} h_{k}^{2} \phi_{i}\left(\frac{u_{i, j}-u_{i-1, j}}{h_{k}}\right)^{2} \leq C \sum_{i=1}^{n_{k}} \sum_{j=1}^{n_{k}-1} h_{k}^{2} \phi_{i}\left(M_{k} \hat{f}\right)_{i, j}^{2} \tag{5.11}
\end{equation*}
$$

holds. Here $u_{i j}$ is the nodal value of u_{k} at the grid point $x_{i, j}, \hat{f}$ is the vector of nodal values of f_{k}, M_{k} is the mass matrix, and ϕ_{i} satisfies (5.7).

Proof. Let $\hat{u}_{k}=P_{k}^{-1} u_{k} \in X_{k}$ be the vector of nodal values of u_{k}; then

$$
\begin{equation*}
A_{k} \hat{u}_{k}=M_{k} \hat{f}=: \hat{b}_{k} . \tag{5.12}
\end{equation*}
$$

The diagonal matrices Φ_{k} and $\hat{\Phi}_{k}$ are as in Lemma 5.3. The statement of the lemma is equivalent to $\left\langle\Phi_{k} D_{x} \hat{u}_{k}, D_{x} \hat{u}_{k}\right\rangle_{k} \leq c\left\langle\Phi_{k} \hat{b}_{k}, \hat{b}_{k}\right\rangle_{k}$, with a constant c that is independent of \hat{b}_{k}. This is the same as

$$
\begin{equation*}
\left\|D_{x} A_{k}^{-1}\right\|_{\Phi} \leq c \tag{5.13}
\end{equation*}
$$

Note that (5.13) is a generalization of the result in (3.10). From Lemma 5.3 we obtain

$$
\left\|D_{x} x\right\|_{\hat{\Phi}}^{2}<\frac{1}{c}\left\langle A_{k} x, D_{x} x\right\rangle_{\hat{\Phi}} \leq \frac{1}{c}\left\|A_{k} x\right\|_{\Phi}\left\|D_{x} x\right\|_{\Phi} \quad \text { for all } \quad x \in X_{k}
$$

thus $\left\|D_{x} x\right\|_{\Phi} \leq \tilde{c}\left\|A_{k} x\right\|_{\Phi}$ for all x. Hence we have proved the result in (5.13).

For the discrete case we consider

$$
\phi_{i}^{\xi}= \begin{cases}1 & \text { for } i h_{k} \in[0, \xi] \tag{5.14}\\ \exp \left(-\frac{i h_{k}-\xi}{4 h_{k}}\right) & \text { for } i h_{k}>\xi\end{cases}
$$

It is straightforward to check that $-\left(\phi_{i}^{\xi}-\phi_{i-1}^{\xi}\right)=\left(\exp \left(\frac{1}{4}\right)-1\right) \phi_{i}^{\xi}$ if $i h_{k}>\xi$. Therefore, using $\varepsilon_{k} \leq \frac{3}{2} h_{k}$,

$$
\begin{equation*}
0 \leq-\varepsilon_{k} \frac{\phi_{i}^{\xi}-\phi_{i-1}^{\xi}}{h_{k}} \leq \frac{3}{2}\left(\exp \left(\frac{1}{4}\right)-1\right) \phi_{i}^{\xi}, \quad i=1,2, \ldots \tag{5.15}
\end{equation*}
$$

For any ξ the vector $\phi_{i}^{\xi}, 1 \leq i \leq n_{k}$, satisfies the condition (5.7) with $c_{0}=\frac{3}{2}\left(\exp \left(\frac{1}{4}\right)-\right.$ 1). This constant is less than $\frac{4}{9}$. As a consequence of Lemma 5.4 we obtain discrete versions of the results in Corollary 5.2.

Corollary 5.5. Consider $f_{k} \in \mathbb{V}_{k}$ such that $\operatorname{supp}\left(f_{k}\right) \in \Omega_{\eta}$ and let u_{k} be a the corresponding solution of problem (2.8). Assume $\eta-\xi \geq 8 h_{k} p\left|\ln h_{k}\right|, p>0$; then

$$
\begin{align*}
\left\|\left(u_{k}\right)_{x}\right\|_{L_{2}\left(\Omega_{\xi}\right)} & \leq c h_{k}^{p}\left\|f_{k}\right\| \tag{5.16}\\
\left\|\left(u_{k}\right)_{y}\right\|_{L_{2}\left(\Omega_{\xi}\right)} & \leq c \xi h_{k}^{p-1}\left\|f_{k}\right\| \tag{5.17}
\end{align*}
$$

Proof. Estimate (5.16) is a consequence of (5.11). Indeed, observe the following inequalities:

$$
\begin{aligned}
\left\|\left(u_{k}\right)_{x}\right\|_{L_{2}\left(\Omega_{\xi}\right)} & \leq c \sum_{i: i h \leq \xi} \sum_{j=1}^{n_{k}-1} h_{k}^{2}\left(\frac{u_{i, j}-u_{i-1, j}}{h_{k}}\right)^{2} \\
& =c \sum_{i: i h \leq \xi} \sum_{j=1}^{n_{k}-1} h_{k}^{2} \phi_{i}\left(\frac{u_{i, j}-u_{i-1, j}}{h_{k}}\right)^{2} \leq c \sum_{i=1}^{n_{k}} \sum_{j=1}^{n_{k}-1} h_{k}^{2} \phi_{i}\left(M_{k} \hat{f}\right)_{i, j}^{2} \\
& \leq c\left(\max _{i h \geq \eta} \phi_{i}\right) \sum_{i=1}^{n_{k}} \sum_{j=1}^{n_{k}-1} h_{k}^{2}\left(M_{h} \hat{f}\right)_{i, j}^{2} \leq c\left(\max _{i h \geq \eta} \phi_{i}\right)\left\|f_{k}\right\|^{2} \leq c h_{k}^{2 p}\left\|f_{k}\right\|^{2}
\end{aligned}
$$

Estimate (5.17) follows from an inverse inequality, the Friedrichs inequality, and (5.16):

$$
\left\|\left(u_{k}\right)_{y}\right\|_{L_{2}\left(\Omega_{\xi}\right)} \leq c h_{k}^{-1}\left\|u_{k}\right\|_{L_{2}\left(\Omega_{\xi}\right)} \leq c \xi h_{k}^{-1}\left\|\left(u_{k}\right)_{x}\right\|_{L_{2}\left(\Omega_{\xi}\right)} \leq c \xi h_{k}^{p-1}\|f\|
$$

Corollary 5.6. Consider $f_{k} \in \mathbb{V}_{k}$ such that $\operatorname{supp}\left(f_{k}\right) \in \Omega_{\eta}$. Let u and u_{k} be the solutions (2.7) and (2.8), respectively. Assume $\eta-\xi \geq 8 h_{k} p\left|\ln h_{k}\right|, p>0$. Then for $e_{k}=u-u_{k}$ we have

$$
\begin{aligned}
& \left\|\left(e_{k}\right)_{x}\right\|_{L_{2}\left(\Omega_{\xi}\right)} \leq c h_{k}^{p}\left\|f_{k}\right\| \\
& \left\|\left(e_{k}\right)_{y}\right\|_{L_{2}\left(\Omega_{\xi}\right)} \leq c \max \left\{\sqrt{\frac{\varepsilon_{k}}{\varepsilon}} ; \frac{\xi}{h_{k}}\right\} h_{k}^{p}\left\|f_{k}\right\| .
\end{aligned}
$$

Proof. The proof is made by direct superposition of estimates in Corollaries 5.2 and 5.5.

The result in Corollary 5.6 shows that the H^{1}-norm of errors close to the inflow boundary can be made arbitrarily small if the right-hand side is zero on a sufficiently
large subdomain ($\Omega \backslash \Omega_{\eta}$) that is adjacent to this inflow boundary. In the proof of the approximation property in section 10 we will need these estimates for the case $\xi=h_{k}$ and $p=\frac{1}{2}$. Hence we take $\eta=4 h_{k}\left|\ln h_{k}\right|+h_{k}$. Note that for the results in the previous corollaries to be applicable we need right-hand side functions f_{k} which are zero in $\Omega \backslash \Omega_{\eta}$. For technical reasons we take Ω_{η} such that the right boundary of the domain $\Omega \backslash \Omega_{\eta}$ coincides with a grid line. We use $\left|\ln h_{k}\right|=k \ln 2$ and thus $4 h_{k}\left|\ln h_{k}\right|+h_{k} \leq(3 k+1) h_{k}$ and introduce the following auxiliary domains for each grid level:

$$
\begin{equation*}
\Omega_{k}^{i n}:=\left\{(x, y) \in \Omega \mid x<(3 k+1) h_{k}\right\} \tag{5.18}
\end{equation*}
$$

As a direct consequence of the previous corollary we then obtain the following.
Corollary 5.7. Consider $f_{k} \in \mathbb{V}_{k}$ such that f_{k} is zero on the subdomain $\Omega_{k}^{i n}$. Let u and u_{k} be the solutions of (2.7) and (2.8), respectively. Then for $e_{k}=u-u_{k}$ we have

$$
\begin{align*}
&\left\|\left(e_{k}\right)_{x}\right\|_{L_{2}\left(\Omega_{h_{k}}\right)} \leq c h_{k}^{\frac{1}{2}}\left\|f_{k}\right\| \tag{5.19}\\
&\left\|\left(e_{k}\right)_{y}\right\|_{L_{2}\left(\Omega_{h_{k}}\right)} \leq c \frac{h_{k}}{\sqrt{\varepsilon}}\left\|f_{k}\right\| \tag{5.20}
\end{align*}
$$

6. Multigrid method and convergence analysis. In this section we describe the multigrid method for solving a problem of the form $A_{k} x=\hat{b}$ with the stiffness matrix A_{k} from section 2 and present a convergence analysis.

For the prolongation and restriction in the multigrid algorithm we use the canonical choice:

$$
\begin{equation*}
p_{k}: \mathrm{X}_{k-1} \rightarrow \mathrm{X}_{k}, \quad p_{k}=P_{k}^{-1} P_{k-1}, \quad r_{k}=\frac{1}{4} p_{k}^{T} \tag{6.1}
\end{equation*}
$$

Let $W_{k}: \mathrm{X}_{k} \rightarrow \mathrm{X}_{k}$ be a nonsingular matrix. We consider a smoother of the form

$$
\begin{equation*}
x^{\text {new }}=\mathcal{S}_{k}\left(x^{\text {old }}, \hat{b}\right)=x^{\text {old }}-\omega_{k} W_{k}^{-1}\left(A_{k} x^{\text {old }}-\hat{b}\right) \quad \text { for } x^{\text {old }}, \hat{b} \in \mathrm{X}_{k} \tag{6.2}
\end{equation*}
$$

with corresponding iteration matrix denoted by

$$
\begin{equation*}
S_{k}=I-\omega_{k} W_{k}^{-1} A_{k} \tag{6.3}
\end{equation*}
$$

The preconditioner W_{k} we use is of line-Jacobi type:

$$
\begin{equation*}
W_{k}=\frac{4 \varepsilon}{h_{k}^{2}} I+D_{x} \tag{6.4}
\end{equation*}
$$

Note that W_{k} is a blockdiagonal matrix with diagonal blocks that are $n_{k} \times n_{k}$ bidiagonal matrices. A suitable choice for the parameter ω_{k} follows from the analysis below.

Remark 6.1. In the literature it is often recommended to apply a so-called robust smoother for solving singularly perturbed elliptic problem using multigrid. Such a smoother should have the property that it becomes a direct solver if the singular perturbation parameter tends to zero (cf. [9], chapter 10). In the formulation (6.2) one then must have a splitting such that $A_{k}-W_{k}=\mathcal{O}(\varepsilon)$ (the constant in \mathcal{O} may depend on k). Such robust smoothers are well known for some anisotropic problems. For anisotropic problems in which the anisotropy is aligned with the gridlines one
can use a line (Jacobi or Gauss-Seidel) method or an ILU factorization as a robust smoother. Theoretical analyses of these methods can be found in [29, 30, 34].

If the convection-diffusion problem (1.2) is discretized using standard finite differences it is easy to see that an appropriate line solver yields a robust smoother. However, in the finite element setting such line methods do not yield a robust smoother. This is clear from the stencil in (3.3). For $\varepsilon \rightarrow 0$ the diffusion part yields an x-line difference operator which can be represented exactly by an x-line smoother, but in the convection stencil the $\left[\begin{array}{lll}0 & -\frac{1}{6} & \frac{1}{6}\end{array}\right]$ and $\left[\begin{array}{ccc}-\frac{1}{6} & \frac{1}{6} & 0\end{array}\right]$ parts of the difference operator are not captured by such a smoother. It is not clear to us how for the finite element discretization, with a stencil as in (3.3), a robust smoother can be constructed.

In multigrid analyses for reaction-diffusion or anisotropic diffusion problems one usually observes a ε^{-1} dependence in the standard approximation property that is then compensated by an ε factor from the smoothing property (cf. [21, 22, 29, 30, 34]). However, we cannot apply a similar technique, due to the fact that for our problem class a robust smoother is not available. Instead, we use another splitting of the iteration matrix of the two-grid method, leading to modified (ε-independent) smoothing and approximation properties.

We consider a standard multigrid method with pre- and postsmoothers of the form as in (6.2), (6.4). In the analysis we will need different damping parameters for the pre- and postsmoother. Thus we introduce

$$
S_{k, p r}:=I-\omega_{k, p r} W_{k}^{-1} A_{k}, \quad S_{k, p o}:=I-\omega_{k, p o} W_{k}^{-1} A_{k} .
$$

We also define the transformed iteration matrices

$$
\tilde{S}_{k, p r}:=A_{k} S_{k, p r} A_{k}^{-1}, \quad \tilde{S}_{k, p o}:=A_{k} S_{k, p o} A_{k}^{-1}
$$

We will analyze a standard two-grid method with iteration matrix

$$
\begin{equation*}
T_{k}=S_{k, p o}^{\nu_{k}}\left(I-p_{k} A_{k-1}^{-1} r_{k} A_{k}\right) S_{k, p r}^{\mu_{k}} \tag{6.5}
\end{equation*}
$$

For the corresponding multigrid W-cycle the iteration matrix (cf. [10]) is given by

$$
\begin{equation*}
M_{0}^{\mathrm{mgm}}:=0, \quad M_{k}^{\mathrm{mgm}}=T_{k}+S_{k, p o}^{\nu_{k}} p_{k}\left(M_{k-1}^{\mathrm{mgm}}\right)^{2} A_{k-1}^{-1} r_{k} A_{k} S_{k, p r}^{\mu_{k}}, \quad k>1 . \tag{6.6}
\end{equation*}
$$

In the convergence analysis of this method the auxiliary inflow domain $\Omega_{k}^{i n}$ defined in (5.18) plays a crucial role. As in the analysis of the upstream influence in section 5 we will use a cut-off function in the x-direction. We define diagonal matrices $\hat{\Phi}_{k}, \Phi_{k}$ as follows:

$$
\begin{equation*}
\xi:=(3 k+1) h_{k}, \quad \hat{\Phi}_{k}:=\operatorname{diag}\left(\phi_{1}^{\xi}, \ldots, \phi_{n_{k}}^{\xi}\right), \quad \Phi_{k}:=I_{n_{k}-1} \otimes \hat{\Phi}_{k} \tag{6.7}
\end{equation*}
$$

here ϕ_{i}^{ξ} is the cut-off function defined in (5.14) with $\xi=(3 k+1) h_{k}$. For notational simplicity we drop the superscript ξ in ϕ_{i}^{ξ} in the remainder. Note that the diagonal matrix Φ_{k} is positive definite.

For any symmetric positive definite matrix $C \in \mathbb{R}^{m \times m}$ we define

$$
\langle x, y\rangle_{C}:=x^{T} C y, \quad\|x\|_{C}^{2}:=\langle x, x\rangle_{C}, \quad\|B\|_{C}:=\left\|C^{\frac{1}{2}} B C^{-\frac{1}{2}}\right\|
$$

with $x, y \in \mathbb{R}^{m}, B \in \mathbb{R}^{m \times m}$. Note that if $C=E^{T} E$ for some nonsingular matrix E then $\|B\|_{C}=\left\|E B E^{-1}\right\|$.

The convergence analysis is based on the following splitting, with $A:=A_{k}$:

$$
\begin{align*}
\left\|T_{k}\right\|_{A^{T} A}= & \left\|S_{k, p o}^{\nu_{k}}\left(I-p_{k} A_{k-1}^{-1} r_{k} A_{k}\right) S_{k, p r}^{\mu_{k}}\right\|_{A^{T} A} \\
= & \left\|S_{k, p o}^{\nu_{k}}\left(A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right)\left(\left(I-\Phi_{k}^{\frac{1}{2}}\right)+\Phi_{k}^{\frac{1}{2}}\right) A_{k} S_{k, p r}^{\mu_{k}}\right\|_{A^{T} A} \\
\leq & \left\|S_{k, p o}^{\nu_{k}}\left(A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right)\left(I-\Phi_{k}^{\frac{1}{2}}\right) A_{k} S_{k, p r}^{\mu_{k}}\right\|_{A^{T} A} \\
& +\left\|S_{k, p o}^{\nu_{k}}\left(A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right) \Phi_{k}^{\frac{1}{2}} A_{k} S_{k, p r}^{\mu_{k}}\right\|_{A^{T} A} \\
\leq & \left\|\tilde{S}_{k, p o}^{\nu_{k}} A_{k} W_{k}^{-1}\right\|\left\|W_{k}\left(A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right)\left(I-\Phi_{k}^{\frac{1}{2}}\right)\right\|\left\|\tilde{S}_{k, p r}^{\mu_{k}}\right\| \tag{6.8}\\
& +\left\|\tilde{S}_{k, p o}^{\nu_{k}}\right\|\left\|I-A_{k} p_{k} A_{k-1}^{-1} r_{k}\right\|\left\|\Phi_{k}^{\frac{1}{2}} \tilde{S}_{k, p r}^{\mu_{k}}\right\| .
\end{align*}
$$

Remark 6.2. Note that the splitting in (6.8) differs from the usual splitting that is used in the theory based on the smoothing and approximation property introduced by Hackbusch (cf. [10]). In this theory the approximation property of the form $\left\|A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right\| \leq C_{A} g\left(h_{k}, \varepsilon\right)$ is combined with a smoothing property of the form $\left\|A_{k} S_{k, p o}^{\mu_{k}}\right\| \leq \eta\left(\mu_{k}\right) g\left(h_{k}, \varepsilon\right)^{-1}$ with some $\eta\left(\mu_{k}\right)$ such that $\eta\left(\mu_{k}\right) \rightarrow 0, \mu_{k} \rightarrow \infty$ uniformly with respect to h_{k} and ε. In numerical experiments we observed that bounds of this type are not likely to be valid. Due to the fact that the smoother is not an exact solver for $\varepsilon \downarrow 0$ (cf. Remark 6.1), it is essential to have the preconditioner W_{k} as part of the approximation property. Furthermore, it turns out that for obtaining an appropriate bound for $\left\|W_{k}\left(A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right) f_{k}\right\|$ the right-hand side function f_{k} must vanish near the inflow boundary. We illustrate this by numerical experiments in section 11. This motivates the introduction of the "cut-off" matrix Φ_{k} in the decomposition.

We now formulate the main results on which the convergence analysis will be based. The proofs of these results will be given further on.

Theorem 6.1. The following holds:

$$
\begin{equation*}
W_{k} A_{k}^{-1} \geq \frac{1}{8} I \quad \text { for } \quad k=1,2, \ldots \tag{6.9}
\end{equation*}
$$

Proof. The proof is given in section 7 .
Lemma 6.2. From (6.9) it follows that

$$
\left\|I-\omega A_{k} W_{k}^{-1}\right\| \leq 1 \quad \text { for all } \omega \in\left[0, \frac{1}{4}\right]
$$

Proof. The proof is elementary.
Assumption 6.1. In the postsmoother $S_{k, p o}$ we take $\omega_{k, p o}:=\frac{1}{8}$.
We note that the analysis below applies for any fixed $\omega_{k, p o} \in\left(0, \frac{1}{8}\right]$. We obtain the following smoothing property.

Corollary 6.1. There exists a constant c_{1} independent of k and ε such that

$$
\begin{equation*}
\left\|\tilde{S}_{k, p o}^{\nu_{k}} A_{k} W_{k}^{-1}\right\| \leq \frac{c_{1}}{\sqrt{\nu_{k}}} \tag{6.10}
\end{equation*}
$$

Proof. Follows from Lemma 6.2 and Theorem 10.6.8 in [10] (or results in [12, 24]). The result holds with $c_{1}=\frac{32}{\sqrt{2 \pi}}$.

We now turn to the presmoother.

Theorem 6.3. There exist constants $d_{1}>0, d_{2}>0$ independent of k and ε such that

$$
\begin{equation*}
\left\|\Phi_{k}^{\frac{1}{2}}\left(I-\frac{d_{1}}{k^{2}} A_{k} W_{k}^{-1}\right) \Phi_{k}^{-\frac{1}{2}}\right\| \leq 1-\frac{d_{2}}{k^{4}} \tag{6.11}
\end{equation*}
$$

Proof. The proof is given in section 8.
Assumption 6.2. In the presmoother $S_{k, p r}$ we take $\omega_{k, p r}:=\min \left\{\frac{1}{4}, \frac{d_{1}}{k^{2}}\right\}$.
Remark 6.3. The result in (6.11) can be written as $\left\|I-\frac{d_{1}}{k^{2}} A_{k} W_{k}^{-1}\right\|_{\Phi_{k}} \leq 1-\frac{d_{2}}{k^{4}}$. Hence, we have a contraction result in the almost degenerated norm $\|\cdot\|_{\Phi_{k}}$. This norm, however, coincides with the Euclidean one for the vectors that have a support only in $\Omega_{k}^{i n}$. Hence the result in (6.11) indicates that the presmoother is a fast solver near the inflow boundary (cf. section 11).

Concerning the approximation property the following result holds.
Theorem 6.4. There exists a constant c_{2} independent of k and ε such that

$$
\begin{equation*}
\left\|W_{k}\left(A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right)\left(I-\Phi_{k}^{\frac{1}{2}}\right)\right\| \leq c_{2} \quad \text { for } \quad k=2,3, \ldots \tag{6.12}
\end{equation*}
$$

Proof. The proof is given in section 10.
Finally, we present two results related to stability of the coarse-grid correction. It is well known that for the canonical restriction operator the inequality

$$
\left\|r_{k}\right\| \leq c_{r}
$$

holds with a constant c_{r} independent of k. The second stability result is the following.
Theorem 6.5. There exists a constant c_{3} independent of k and ε such that

$$
\begin{equation*}
\left\|A_{k} p_{k} A_{k-1}^{-1}\right\| \leq c_{3} \quad \text { for } \quad k=2,3, \ldots \tag{6.13}
\end{equation*}
$$

Proof. The proof is given in section 9.
We now obtain a two-grid convergence result.
Theorem 6.6. For the two-grid method we then have

$$
\left\|T_{k}\right\|_{A^{T} A} \leq \frac{c_{1} c_{2}}{\sqrt{\nu_{k}}}+\left(1+c_{r} c_{3}\right)\left(1-\frac{d_{2}}{k^{4}}\right)^{\mu_{k}}
$$

Proof. The proof is based on results from (6.9), (6.11), (6.12), and (6.13). We use the splitting in (6.8). From the Assumptions 6.1 and 6.2 and Lemma 6.2 it follows that $\left\|\tilde{S}_{k, p r}\right\| \leq 1$ and $\left\|\tilde{S}_{k, p o}\right\| \leq 1$. From Assumption 6.2, Theorem 6.3, and $\left\|\Phi_{k}\right\| \leq 1$ we obtain

$$
\left\|\Phi_{k}^{\frac{1}{2}} \tilde{S}_{k, p r}^{\mu_{k}}\right\| \leq\left\|\left(\Phi_{k}^{\frac{1}{2}} \tilde{S}_{k, p r} \Phi_{k}^{-\frac{1}{2}}\right)^{\mu_{k}}\right\|\left\|\Phi_{k}^{\frac{1}{2}}\right\| \leq\left(1-\frac{d_{2}}{k^{4}}\right)^{\mu_{k}}
$$

Combine these bounds with the results in Corollary 6.1 and Theorems 6.4 and 6.5.

Using the two-grid result of Theorem 6.6 we derive a multigrid W-cycle convergence result based on standard arguments.

THEOREM 6.7. In addition to the assumptions of Theorem 6.6 we assume that the number of smoothing steps on every grid level is sufficiently large:

$$
\nu_{k} \geq c_{p o}, \quad \mu_{k} \geq c_{p r} k^{4}
$$

with suitable constants $c_{p o}, c_{p r}$. Then for the contraction number of the multigrid W-cycle the inequality

$$
\begin{equation*}
\left\|M_{k}^{\mathrm{mgm}}\right\|_{A^{T} A} \leq \xi^{*} \tag{6.14}
\end{equation*}
$$

holds, with a constant $\xi^{*}<1$ independent of k and ε.
Proof. Define $\xi_{k}:=\left\|M_{k}^{\mathrm{mgm}}\right\|_{A_{k}^{T} A_{k}}$. Using the recursion relation (6.6) for M_{k}^{mgm} it follows that

$$
\begin{aligned}
\xi_{k} & \leq\left\|T_{k}\right\|_{A_{k}^{T} A_{k}}+\left\|\tilde{S}_{k, p o}\right\|^{\nu_{k}}\left\|A_{k} p_{k} A_{k-1}^{-1}\right\| \xi_{k-1}^{2}\left\|r_{k}\right\|\left\|\tilde{S}_{k, p r}\right\|^{\mu_{k}} \\
& \leq\left\|T_{k}\right\|_{A_{k}^{T} A_{k}}+c_{3} c_{r} \xi_{k-1}^{2}
\end{aligned}
$$

Now use the two-grid bound given in Theorem 6.6 and a fixed point argument.
Remark 6.4. We briefly discuss the arithmetic work needed in one W-cycle iteration. The arithmetic work for a matrix vector multiplication on level k is of order $\mathcal{O}\left(N_{k}\right)=\mathcal{O}\left(n_{k}^{2}\right)$. The work needed in one smoothing iteration is of order $\mathcal{O}\left(N_{k}\right)$. The number of smoothings behaves like $\nu_{k}+\mu_{k} \sim k^{4}$. Using a standard recursive argument it follows that for a multigrid W -cycle iteration the arithmetic complexity is of the order $N_{k}\left(\ln N_{k}\right)^{4}$. Hence this multigrid method has suboptimal complexity.
7. Proof of Theorem 6.1. We recall the representation of the stiffness matrix in (3.4)

$$
A_{k}=\left(\varepsilon+\left(\bar{\delta}-\frac{1}{3}\right) h_{k}\right) A_{x}+\varepsilon A_{y}+\frac{1}{6} B D_{x}
$$

We will need the following lemma:
Lemma 7.1. The inequality $B D_{x} \geq 0$ holds.
Proof. The matrix $\frac{1}{6} B D_{x}-\frac{1}{3} h_{k} A_{x}$ is the stiffness matrix corresponding to the bilinear form $(u, v) \rightarrow \int_{\Omega} u_{x} v d x d y$. For any $x \in X_{k}$ we get

$$
\frac{1}{6}\left\langle B D_{x} x, x\right\rangle_{k}-\frac{1}{3}\left\langle h_{k} A_{x} x, x\right\rangle_{k}=\int_{\Omega}\left(P_{k} x\right)_{x}\left(P_{k} x\right) d x d y=\frac{1}{2} \int_{\Gamma_{E}}\left(P_{k} x\right)^{2} d x d y \geq 0
$$

Since the matrix A_{x} is symmetric positive definite the result now follows.
We now consider the preconditioner $W_{k}=\frac{4 \varepsilon}{h_{k}^{2}} I+D_{x}$, as in (6.4).
Theorem 7.2 (=Theorem 6.1). The inequality $W_{k} A_{k}^{-1} \geq \frac{1}{8} I$ holds.
Proof. First note that

$$
h_{k} \hat{D}_{x} \hat{D}_{x}^{T}=\hat{D}_{x}+\hat{D}_{x}^{T}-\frac{1}{h_{k}}(1,0, \ldots, 0)^{T}(1,0, \ldots, 0) \leq \hat{D}_{x}+\hat{D}_{x}^{T}
$$

and thus $h_{k} \hat{D}_{x}^{T} \hat{D}_{x} \hat{D}_{x}^{T} \hat{D}_{x} \leq \hat{D}_{x}^{T}\left(\hat{D}_{x}+\hat{D}_{x}^{T}\right) \hat{D}_{x}$ holds. Using $\hat{A}_{x}=\hat{D}_{x}^{T} \hat{D}_{x}$ this results in $h_{k} \hat{A}_{x}^{2} \leq 2 \hat{D}_{x}^{T} \hat{A}_{x}$ and thus

$$
\begin{equation*}
\frac{1}{2} h_{k} A_{x}^{2} \leq D_{x}^{T} A_{x} \tag{7.1}
\end{equation*}
$$

Note that the following inequality holds for any $a, b, c \in \mathbb{R}$ and $\sigma_{1}, \sigma_{2}, \sigma_{3}>0$:

$$
(a+b+c)^{2} \leq\left(1+\sigma_{2}+\sigma_{3}^{-1}\right) a^{2}+\left(1+\sigma_{3}+\sigma_{1}^{-1}\right) b^{2}+\left(1+\sigma_{1}+\sigma_{2}^{-1}\right) c^{2}
$$

We apply this inequality with $\sigma_{2}=2, \sigma_{1}=\sigma_{3}=1$. Also using $\left\|A_{y}\right\| \leq 4 h_{k}^{-2}$ and $\|B\| \leq 6$ we get for any $x \in \mathrm{X}_{k}$

$$
\begin{align*}
\left\|A_{k} x\right\|^{2} & \leq 4 \varepsilon^{2}\left\|A_{y} x\right\|^{2}+3 \bar{\varepsilon}_{k}^{2}\left\|A_{x} x\right\|^{2}+\frac{5}{2}\left\|\frac{1}{6} B D_{x} x\right\|^{2} \\
& \leq 16\left(\frac{\varepsilon}{h_{k}}\right)^{2}\left\langle A_{y} x, x\right\rangle_{k}+3 \bar{\varepsilon}_{k}^{2}\left\|A_{x} x\right\|^{2}+\frac{5}{2}\left\|D_{x} x\right\|^{2} . \tag{7.2}
\end{align*}
$$

We recall that $\bar{\varepsilon}_{k}=\varepsilon_{k}-\bar{\delta} h_{k} \leq \frac{7}{6} h_{k}$. Now apply the result (7.1) and the estimates in Lemmas 3.1 and Lemma 7.1 to obtain

$$
\begin{aligned}
\left\langle W_{k} x, A_{k} x\right\rangle_{k} & =\left\langle\frac{4 \varepsilon}{h_{k}^{2}} x+D_{x} x, \varepsilon A_{y} x+\bar{\varepsilon}_{k} A_{x} x+\frac{1}{6} B D_{x} x\right\rangle_{k} \\
& \geq 4\left(\frac{\varepsilon}{h_{k}}\right)^{2}\left\langle A_{y} x, x\right\rangle_{k}+\bar{\varepsilon}_{k}\left\langle D_{x} x, A_{x} x\right\rangle_{k}+\left\langle D_{x} x, \frac{1}{6} B D_{x} x\right\rangle_{k} \\
& \geq 4\left(\frac{\varepsilon}{h_{k}}\right)^{2}\left\langle A_{y} x, x\right\rangle_{k}+\frac{3}{7} \bar{\varepsilon}_{k}^{2}\left\|A_{x} x\right\|^{2}+\frac{1}{3}\left\|D_{x} x\right\|^{2} \\
& =\frac{1}{8}\left(32\left(\frac{\varepsilon}{h_{k}}\right)^{2}\left\langle A_{y} x, x\right\rangle_{k}+\frac{24}{7} \bar{\varepsilon}_{k}^{2}\left\|A_{x} x\right\|^{2}+\frac{8}{3}\left\|D_{x} x\right\|^{2}\right) \\
& \geq \frac{1}{8}\left(16\left(\frac{\varepsilon}{h_{k}}\right)^{2}\left\langle A_{y} x, x\right\rangle_{k}+3 \bar{\varepsilon}_{k}^{2}\left\|A_{x} x\right\|^{2}+\frac{5}{2}\left\|D_{x} x\right\|^{2}\right) .
\end{aligned}
$$

Combination of this with the inequality in (7.2) proves the theorem.
8. Proof of Theorem 6.3. We start with an elementary known result on the convergence of basic iterative methods.

Lemma 8.1. Assume $C, A, W \in \mathbb{R}^{n \times n}$ with C symmetric positive definite. If there are constants $c_{0}>0, c_{1}$ such that

$$
\begin{equation*}
c_{0}\langle A y, A y\rangle_{C} \leq\langle W y, W y\rangle_{C} \leq c_{1}\langle W y, A y\rangle_{C} \quad \text { for all } y \in \mathbb{R}^{n} \tag{8.1}
\end{equation*}
$$

then for arbitrary $d \in[0,1]$ we have

$$
\left\|I-\alpha \frac{c_{0}}{c_{1}} A W^{-1}\right\|_{C} \leq \sqrt{1-d \frac{c_{0}}{c_{1}^{2}}} \quad \text { if } \quad 1-\sqrt{1-d} \leq \alpha \leq 1+\sqrt{1-d} .
$$

Proof. Let $D:=A W^{-1}$. From (8.1) we get

$$
\langle D y, y\rangle_{C} \geq c_{1}^{-1}\langle y, y\rangle_{C}, \quad\langle D y, D y\rangle_{C} \leq c_{0}^{-1}\langle y, y\rangle_{C} \quad \text { for all } y .
$$

Note that

$$
\begin{aligned}
\left\|\left(I-\alpha \frac{c_{0}}{c_{1}} A W^{-1}\right) y\right\|_{C}^{2} & =\langle y, y\rangle_{C}-2 \alpha \frac{c_{0}}{c_{1}}\langle D y, y\rangle_{C}+\alpha^{2} \frac{c_{0}^{2}}{c_{1}^{2}}\langle D y, D y\rangle_{C} \\
& \leq\left(1-2 \alpha \frac{c_{0}}{c_{1}^{2}}+\alpha^{2} \frac{c_{0}}{c_{1}^{2}}\right)\|y\|_{C}^{2}=\left(1-\left(2 \alpha-\alpha^{2}\right) \frac{c_{0}}{c_{1}^{2}}\right)\|y\|_{C}^{2}
\end{aligned}
$$

and $2 \alpha-\alpha^{2} \geq d$ if $1-\sqrt{1-d} \leq \alpha \leq 1+\sqrt{1-d}$.

Below we use the scalar product $\langle\cdot, \cdot\rangle_{\Phi}:=\left\langle\Phi_{k} \cdot, \cdot\right\rangle_{k}$ with Φ_{k} defined in (6.7). We recall the result proved in Lemma 5.3,

$$
\begin{equation*}
\left\langle A_{k} x, D_{x} x\right\rangle_{\Phi} \geq c\left\|D_{x} x\right\|_{\Phi}^{2} \quad \text { for all } x \in X_{k} \tag{8.2}
\end{equation*}
$$

with $c>0$ independent of k and of ε.
We introduce the diagonal projection matrix $J_{k}:=I_{n_{k}-1} \otimes \hat{J}_{k}$ with \hat{J}_{k} the $n_{k} \times n_{k}$ diagonal matrix with $\left(\hat{J}_{k}\right)_{i, i}=1$ if $\left(\hat{\Phi}_{k}\right)_{i, i}=1$ and $\left(\hat{J}_{k}\right)_{i, i}=0$ otherwise.

Lemma 8.2. There exists a constant $c>0$ independent of k and ε such that

$$
\left\|W_{k} x\right\|_{\Phi}^{2} \leq c k^{2}\left(\frac{\varepsilon}{h_{k}^{3}}\left\|\left(I-J_{k}\right) x\right\|_{\Phi}^{2}+\left\|D_{x} x\right\|_{\Phi}^{2}\right) \quad \text { for all } x \in X_{k}
$$

Proof. Note that

$$
\begin{aligned}
\left\|J_{k} x\right\|_{\Phi} & =\left\|J_{k} D_{x}^{-1} J_{k} D_{x} x\right\|_{\Phi} \leq\left\|J_{k} D_{x}^{-1} J_{k}\right\|_{\Phi}\left\|D_{x} x\right\|_{\Phi} \\
& =\left\|J_{k} D_{x}^{-1} J_{k}\right\|\left\|D_{x} x\right\|_{\Phi} \leq(3 k+1) h_{k}\left\|D_{x} x\right\|_{\Phi}
\end{aligned}
$$

And thus, using $\varepsilon \leq \frac{1}{2} h_{k}$ we get

$$
\begin{aligned}
\left\|W_{k} x\right\|_{\Phi} & =\left\|\frac{4 \varepsilon}{h_{k}^{2}} x+D_{x} x\right\|_{\Phi} \leq \frac{4 \varepsilon}{h_{k}^{2}}\left\|\left(I-J_{k}\right) x\right\|_{\Phi}+\frac{4 \varepsilon}{h_{k}^{2}}\left\|J_{k} x\right\|_{\Phi}+\left\|D_{x} x\right\|_{\Phi} \\
& \leq \frac{4 \varepsilon}{h_{k}^{2}}\left\|\left(I-J_{k}\right) x\right\|_{\Phi}+c k\left\|D_{x} x\right\|_{\Phi} \leq c k\left(\frac{4 \varepsilon}{h_{k}^{2}}\left\|\left(I-J_{k}\right) x\right\|_{\Phi}+\left\|D_{x} x\right\|_{\Phi}\right)
\end{aligned}
$$

Squaring this result and using $\left(\frac{\varepsilon}{h_{k}^{2}}\right)^{2} \leq \frac{1}{2} \frac{\varepsilon}{h_{k}^{3}}$ completes the proof.
We define $\hat{\Phi}_{x}:=\frac{1}{h_{k}} \operatorname{diag}\left(\phi_{i}-\phi_{i+1}\right)_{1 \leq i \leq n_{k}}$ with $\phi_{i}=\phi_{i}^{\xi}$ as in (6.7). Consider the diagonal matrix $\Phi_{x}:=I_{n_{k}-1} \otimes \hat{\Phi}_{x}$. Note that $\Phi_{x} \geq 0$.

Lemma 8.3. The following estimate holds:

$$
\left\langle A_{k} x, x\right\rangle_{\Phi} \geq \frac{1}{30}\left\|\Phi_{x}^{\frac{1}{2}} x\right\|^{2} \quad \text { for all } \quad x \in X_{k}
$$

Proof. Recall

$$
\begin{equation*}
A_{k}=\bar{\varepsilon}_{k} A_{x}+\varepsilon A_{y}+\frac{1}{6} B D_{x} \tag{8.3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\Phi_{k} A_{y}=\left(I_{n_{k}-1} \otimes \hat{\Phi}_{k}\right)\left(\hat{A}_{y} \otimes \hat{J}\right)=\hat{A}_{y} \otimes \hat{\Phi}_{k} \hat{J} \geq 0 \tag{8.4}
\end{equation*}
$$

We consider the term $\bar{\varepsilon}_{k} \Phi_{k} A_{x}=\bar{\varepsilon}_{k}\left(I_{n_{k}-1} \otimes \hat{\Phi}_{k} \hat{A}_{x}\right)$. Note that $\hat{\Phi}_{k} \hat{A}_{x}=\hat{\Phi}_{k} \hat{D}_{x}^{T} \hat{D}_{x} . \mathrm{A}$ simple computation yields $\hat{\Phi}_{k} \hat{D}_{x}^{T}-\hat{D}_{x}^{T} \hat{\Phi}_{k}=-\hat{\Phi}_{x} \hat{T}$, with $\hat{T}:=\operatorname{tridiag}(0,0,1)$, and thus

$$
\begin{equation*}
\bar{\varepsilon}_{k} \hat{\Phi}_{k} \hat{A}_{x}=\bar{\varepsilon}_{k} \hat{D}_{x}^{T} \hat{\Phi}_{k} \hat{D}_{x}-\bar{\varepsilon}_{k} \hat{\Phi} \hat{x} \hat{T} \hat{D}_{x} \tag{8.5}
\end{equation*}
$$

From the Cauchy-Schwarz inequality it follows that

$$
\begin{equation*}
\bar{\varepsilon}_{k}\left\langle\hat{\Phi}_{x} \hat{T} \hat{D}_{x} y, y\right\rangle \leq \bar{\varepsilon}_{k}^{2} \frac{9}{4}\left\|\hat{\Phi}_{x}^{\frac{1}{2}} \hat{T} \hat{D}_{x} y\right\|^{2}+\frac{1}{9}\left\|\hat{\Phi}_{x}^{\frac{1}{2}} y\right\|^{2} \quad \text { for all } y \in \mathbb{R}^{n_{k}} \tag{8.6}
\end{equation*}
$$

Using the property (5.15) we get

$$
\begin{equation*}
\hat{T}^{T} \hat{\Phi}_{x} \hat{T} \leq \bar{\varepsilon}_{k}^{-1} c_{0} \hat{\Phi}_{k} \tag{8.7}
\end{equation*}
$$

Combination of the results in (8.5), (8.6), (8.7) and using $c_{0} \leq \frac{4}{9}$ yields

$$
\begin{aligned}
\bar{\varepsilon}_{k}\left\langle\hat{\Phi}_{k} \hat{A}_{x} y, y\right\rangle & \geq \bar{\varepsilon}_{k}\left\|\hat{D}_{x} y\right\|_{\hat{\Phi}_{k}}^{2}-\bar{\varepsilon}_{k} \frac{9}{4} c_{0}\left\|\hat{D}_{x} y\right\|_{\hat{\Phi}_{k}}^{2}-\frac{1}{9}\left\|\hat{\Phi}_{x}^{\frac{1}{2}} y\right\|^{2} \\
& \geq-\frac{1}{9}\left\|\hat{\Phi}_{x}^{\frac{1}{2}} y\right\|^{2} \quad \text { for all } y \in \mathbb{R}^{n_{k}} .
\end{aligned}
$$

And thus

$$
\begin{equation*}
\bar{\varepsilon}_{k} \Phi_{k} A_{x} \geq-\frac{1}{9} \Phi_{x} \tag{8.8}
\end{equation*}
$$

holds. Finally we consider the term $\frac{1}{6}\left\langle B D_{x} x, x\right\rangle_{\Phi}$. First we note

$$
B D_{x}=\operatorname{blocktridiag}\left(\hat{D}_{x}, 4 \hat{D}_{x}, \hat{S}_{x}\right), \quad \hat{S}_{x}:=\frac{1}{h_{k}}\left(\begin{array}{cccc}
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1 \\
& & & 0
\end{array}\right) \in \mathbb{R}^{n_{k} \times n_{k}}
$$

and thus $K:=\frac{1}{6} \Phi_{k} B D_{x}=\frac{1}{6}$ blocktridiag $\left(\hat{\Phi}_{k} \hat{D}_{x}, 4 \hat{\Phi}_{k} \hat{D}_{x}, \hat{\Phi}_{k} \hat{S}_{x}\right)$. Hence

$$
\frac{1}{2}\left(K+K^{T}\right)=\frac{1}{12} \text { blocktridiag }\left(\hat{\Phi}_{k} \hat{D}_{x}+\hat{S}_{x}^{T} \hat{\Phi}_{k}, 4\left(\hat{\Phi}_{k} \hat{D}_{x}+\hat{D}_{x}^{T} \hat{\Phi}_{k}\right), \hat{\Phi}_{k} \hat{S}_{x}+\hat{D}_{x}^{T} \hat{\Phi}_{k}\right)
$$

A simple computation yields

$$
\begin{equation*}
\hat{\Phi}_{k} \hat{D}_{x}+\hat{D}_{x}^{T} \hat{\Phi}_{k}=\hat{\Phi}_{x}+\frac{1}{h_{k}} \operatorname{tridiag}\left(-\phi_{i}, \phi_{i}+\phi_{i+1},-\phi_{i+1}\right)_{1 \leq i \leq n_{k}}=: \hat{\Phi}_{x}+R \tag{8.9}
\end{equation*}
$$

and $\hat{\Phi}_{k} \hat{S}_{x}+\hat{D}_{x}^{T} \hat{\Phi}_{k}=\hat{\Phi}_{x} \hat{T}+\frac{1}{h_{k}} \phi_{n} e_{n} e_{n}^{T}$, with $n:=n_{k}$ and e_{n} the nth basis vector in \mathbb{R}^{n}. Thus we obtain

$$
\begin{aligned}
\frac{1}{2}\left(K+K^{T}\right)= & \frac{1}{12} \operatorname{blocktridiag}\left(\hat{T}^{T} \hat{\Phi}_{x}, 4 \hat{\Phi}_{x}, \hat{\Phi}_{x} \hat{T}\right) \\
& +\frac{1}{12} \operatorname{blocktridiag}\left(\frac{1}{h_{k}} \phi_{n} e_{n} e_{n}^{T}, 4 R, \frac{1}{h_{k}} \phi_{n} e_{n} e_{n}^{T}\right) \\
\geq & \frac{1}{12} \operatorname{blocktridiag}\left(\hat{T}^{T} \hat{\Phi}_{x}, 4 \hat{\Phi}_{x}, \hat{\Phi}_{x} \hat{T}\right)
\end{aligned}
$$

By $\hat{\Phi}_{x}^{-1}\left(\Phi_{x}^{-1}\right)$ we denote the pseudoinverse of $\hat{\Phi}_{x}\left(\Phi_{x}\right)$. We then have

$$
\frac{1}{2} \Phi_{x}^{-\frac{1}{2}}\left(K+K^{T}\right) \Phi_{x}^{-\frac{1}{2}} \geq \frac{1}{12} \text { blocktridiag }\left(\hat{\Phi}_{x}^{-\frac{1}{2}} \hat{T}^{T} \hat{\Phi}_{x}^{\frac{1}{2}}, 4 I, \hat{\Phi}_{x}^{\frac{1}{2}} \hat{T} \hat{\Phi}_{x}^{-\frac{1}{2}}\right)
$$

Note that

$$
\left\|\hat{\Phi}_{x}^{-\frac{1}{2}} \hat{T}^{T} \hat{\Phi}_{x}^{\frac{1}{2}}\right\|_{\infty}=\left\|\hat{\Phi}_{x}^{\frac{1}{2}} \hat{T} \hat{\Phi}_{x}^{-\frac{1}{2}}\right\|_{\infty}=\max _{i \geq 3 k+2}\left(\frac{\phi_{i-1}-\phi_{i}}{\phi_{i}-\phi_{i+1}}\right)^{\frac{1}{2}}=e^{\frac{1}{8}}
$$

And thus we get $\frac{1}{2} \Phi_{x}^{-\frac{1}{2}}\left(K+K^{T}\right) \Phi_{x}^{-\frac{1}{2}} \geq \frac{1}{12}\left(4-2 e^{\frac{1}{8}}\right) I$. Hence

$$
\begin{equation*}
\frac{1}{6} \Phi_{k} B D_{x}=K \geq \frac{1}{6}\left(2-e^{\frac{1}{8}}\right) \Phi_{x} \tag{8.10}
\end{equation*}
$$

Combination of the results in (8.3), (8.4), (8.8), and (8.10) yields

$$
\Phi_{k} A_{k} \geq\left(-\frac{1}{9}+\frac{1}{6}\left(2-e^{\frac{1}{8}}\right)\right) \Phi_{x}>\frac{1}{30} \Phi_{x}
$$

Using the previous two lemmas we can show a result as in the second inequality in (8.1).

Theorem 8.4. There exists a constant c_{1} independent of k and ε such that

$$
\left\langle W_{k} x, W_{k} x\right\rangle_{\Phi} \leq c_{1} k^{2}\left\langle W_{k} x, A_{k} x\right\rangle_{\Phi} \quad \text { for all } \quad x \in X_{k}
$$

Proof. From Lemma 8.3 and (8.2) we get

$$
\begin{align*}
\left\langle W_{k} x, A_{k} x\right\rangle_{\Phi} & =\frac{4 \varepsilon}{h_{k}^{2}}\left\langle x, A_{k} x\right\rangle_{\Phi}+\left\langle D_{x} x, A_{k} x\right\rangle_{\Phi} \\
& \geq c\left(\frac{\varepsilon}{h_{k}^{2}}\left\langle\Phi_{x} x, x\right\rangle_{k}+\left\|D_{x} x\right\|_{\Phi}^{2}\right) \tag{8.11}
\end{align*}
$$

with $c>0$ independent of k and ε. Using $\phi_{i}-\phi_{i+1}=\left(1-e^{-\frac{1}{4}}\right) \phi_{i} \geq \frac{1}{5} \phi_{i}$ for $i \geq 3 k+1$ we get

$$
\begin{equation*}
\left\langle\Phi_{x} x, x\right\rangle_{k} \geq \frac{1}{5} h_{k}^{-1}\left\langle\left(I-J_{k}\right) \Phi_{k} x, x\right\rangle_{k}=\frac{1}{5} h_{k}^{-1}\left\|\left(I-J_{k}\right) x\right\|_{\Phi}^{2} \tag{8.12}
\end{equation*}
$$

From (8.11) and (8.12) we obtain

$$
\left\langle W_{k} x, A_{k} x\right\rangle_{\Phi} \geq c\left(\frac{\varepsilon}{h_{k}^{3}}\left\|\left(I-J_{k}\right) x\right\|_{\Phi}^{2}+\left\|D_{x} x\right\|_{\Phi}^{2}\right)
$$

Now combine this with the result in Lemma 8.2.
We now consider the first inequality in (8.1).
THEOREM 8.5. There exists a constant $c_{0}>0$ independent of k and ε such that

$$
c_{0}\left\langle A_{k} x, A_{k} x\right\rangle_{\Phi} \leq\left\langle W_{k} x, W_{k} x\right\rangle_{\Phi} \quad \text { for all } x \in X_{k}
$$

Proof. The constants c that appear in the proof are all strictly positive and independent of k and ε. First note that $\left\|A_{k} x\right\|_{\Phi} \leq \bar{\varepsilon}_{k}\left\|A_{x} x\right\|_{\Phi}+\varepsilon\left\|A_{y} x\right\|_{\Phi}+\frac{1}{6}\left\|B D_{x} x\right\|_{\Phi}$. We have

$$
\left\|A_{y}\right\|_{\Phi}=\left\|\left(I_{n_{k}-1} \otimes \hat{\Phi}_{k}^{\frac{1}{2}}\right)\left(\hat{A}_{y} \otimes \hat{J}\right)\left(I_{n_{k}-1} \otimes \hat{\Phi}_{k}^{-\frac{1}{2}}\right)\right\|=\left\|\hat{A}_{y} \otimes \hat{J}\right\| \leq \frac{4}{h_{k}^{2}}
$$

Note that $\left|\phi_{i} \phi_{i+1}^{-1}\right| \leq e^{\frac{1}{4}}$ and thus $\left\|\hat{\Phi}_{k}^{\frac{1}{2}} \hat{D}_{x}^{T} \hat{\Phi}_{k}^{-\frac{1}{2}}\right\| \leq c h_{k}^{-1}$ holds. From this it follows that $\left\|D_{x}^{T}\right\|_{\Phi} \leq c h_{k}^{-1}$ holds. With a similar argument we get $\|B\|_{\Phi} \leq c$. Thus we obtain, using $\bar{\varepsilon}_{k} \leq \frac{3}{2} h_{k}$,

$$
\begin{align*}
\left\|A_{k} x\right\|_{\Phi} & \leq \bar{\varepsilon}_{k}\left\|D_{x}^{T}\right\|_{\Phi}\left\|D_{x} x\right\|_{\Phi}+\frac{4 \varepsilon}{h_{k}^{2}}\|x\|_{\Phi}+c\left\|D_{x} x\right\|_{\Phi} \\
& \leq c\left(\frac{\varepsilon}{h_{k}^{2}}\|x\|_{\Phi}+\left\|D_{x} x\right\|_{\Phi}\right) \tag{8.13}
\end{align*}
$$

From (8.9) it follows that $\left\langle D_{x} x, x\right\rangle_{\Phi} \geq 0$ holds. Using this we get

$$
\begin{align*}
\left\|W_{k} x\right\|_{\Phi}^{2} & =\frac{16 \varepsilon^{2}}{h_{k}^{4}}\|x\|_{\Phi}^{2}+\frac{16 \varepsilon}{h_{k}^{2}}\left\langle D_{x} x, x\right\rangle_{\Phi}+\left\|D_{x} x\right\|_{\Phi}^{2} \tag{8.14}\\
& \geq c\left(\frac{\varepsilon^{2}}{h_{k}^{4}}\|x\|_{\Phi}^{2}+\left\|D_{x} x\right\|_{\Phi}^{2}\right)
\end{align*}
$$

Now combine (8.13) with (8.14).
Combination of the results of Theorems 8.4 and 8.5 with the second result in Lemma 8.1 shows that Theorem 6.3 holds.
9. Proof of Theorem 6.5. Let $\mathrm{g}_{k-1} \in X_{k-1}$ be given and define $g_{k-1}:=$ $\left(P_{k-1}^{*}\right)^{-1} \mathrm{~g}_{k-1} \in \mathbb{V}_{k-1}$. Let $u_{k-1} \in \mathbb{V}_{k-1}$ be such that

$$
a_{k-1}\left(u_{k-1}, v_{k-1}\right)=\left(g_{k-1}, v_{k-1}\right) \quad \text { for all } v_{k-1} \in \mathbb{V}_{k-1}
$$

Then $A_{k-1}^{-1} \mathrm{~g}_{k-1}=P_{k-1}^{-1} u_{k-1}$ holds. The corresponding continuous solution $u \in \mathbf{V}$ satisfies $a_{k-1}(u, v)=\left(g_{k-1}, v\right)$ for all $v \in \mathbf{V}$. Now note that

$$
\begin{align*}
& \left\|A_{k} p_{k} A_{k-1}^{-1} \mathrm{~g}_{k-1}\right\|
\end{align*}=\max _{y \in X_{k}} \frac{\left\langle A_{k} p_{k} P_{k-1}^{-1} u_{k-1}, y\right\rangle_{k}}{\|y\|} \leq c \max _{v_{k} \in \mathbb{V}_{k}} \frac{a_{k}\left(u_{k-1}, v_{k}\right)}{\left\|v_{k}\right\|} .
$$

Define $e_{k-1}:=u-u_{k-1}$. For the first term in (9.1) we get, using the results of Lemma 4.3,
$a_{k-1}\left(u_{k-1}, v_{k}\right) \leq\left|a_{k-1}\left(e_{k-1}, v_{k}\right)\right|+\left|a_{k-1}\left(u, v_{k}\right)\right|$

$$
\leq c h_{k}\left\|\left(e_{k-1}\right)_{x}\right\|\left\|\left(v_{k}\right)_{x}\right\|+\varepsilon\left\|\left(e_{k-1}\right)_{y}\right\|\left\|\left(v_{k}\right)_{y}\right\|+\left\|\left(e_{k-1}\right)_{x}\right\|\left\|v_{k}\right\|+\left|\left(g_{k-1}, v_{k}\right)\right|
$$

$$
\leq c\left(\left\|\left(e_{k-1}\right)_{x}\right\|+\frac{\varepsilon}{h_{k}}\left\|\left(e_{k-1}\right)_{y}\right\|\right)\left\|v_{k}\right\|+\left\|g_{k-1}\right\|\left\|v_{k}\right\|
$$

$$
\begin{equation*}
\leq c\left\|g_{k-1}\right\|\left\|v_{k}\right\| \leq c\left\|g_{k-1}\right\|\left\|v_{k}\right\| \tag{9.2}
\end{equation*}
$$

For the second term in (9.1) we have, using Lemma 4.2,

$$
\begin{align*}
\left|a_{k}\left(u_{k-1}, v_{k}\right)-a_{k-1}\left(u_{k-1}, v_{k}\right)\right| & =\bar{\delta} h_{k}\left|\left(\left(u_{k-1}\right)_{x},\left(v_{k}\right)_{x}\right)\right| \\
& \leq c\left\|\left(u_{k-1}\right)_{x}\right\|\left\|v_{k}\right\| \tag{9.3}\\
& \leq c\left\|g_{k-1}\right\|\left\|v_{k}\right\| \leq c\left\|g_{k-1}\right\|\left\|v_{k}\right\|
\end{align*}
$$

Combination of the results in (9.1), (9.2), and (9.3) yields $\left\|A_{k} p_{k} A_{k-1}^{-1} \mathrm{~g}_{k-1}\right\| \leq c\left\|\mathrm{~g}_{k-1}\right\|$ and thus the result in Theorem 6.5 holds.
10. Proof of Theorem 6.4. We briefly comment on the idea of the proof. As usual to prove an estimate for the error in the L^{2}-norm we use a duality argument. However, the formal dual problem has poor regularity properties, since in this dual problem Γ_{E} is the "inflow" boundary and Γ_{W} is the "outflow" boundary. Thus Dirichlet outflow boundary conditions would appear and we obtain poor estimates due to the poor regularity. To avoid this, we consider a dual problem with Neumann outflow and Dirichlet inflow conditions. To be able to deal with the inconsistency caused by these "wrong" boundary conditions we assume the right-hand side is zero
near the boundary Γ_{W}. In order to satisfy this assumption we use the cut-off operator with matrix Φ_{k}.

A further problem we have to deal with is the fact that due to the level dependent stabilization term we have to treat k-dependent bilinear forms.

We introduce the space

$$
\mathbb{V}_{k}^{0}:=\left\{v_{k} \in \mathbb{V}_{k} \mid v_{k}(x)=0 \quad \text { for all } x \in \Omega_{k}^{i n}\right\}
$$

Let $\hat{b}_{k} \in X_{k}$ be given. In view of Theorem 6.4 we must prove an estimate $\| W_{k}\left(A_{k}^{-1}-\right.$ $\left.p_{k} A_{k-1}^{-1} r_{k}\right)\left(I-\Phi_{k}\right) \hat{b}_{k}\|\leq c\| \hat{b}_{k} \|$ with a constant c that is independent of k, ε, and \hat{b}_{k}. Note that $\left(P_{k}^{*}\right)^{-1}\left(I-\Phi_{k}^{\frac{1}{2}}\right) \hat{b}_{k}=: f_{k} \in \mathbb{V}_{k}^{0}$ holds. For this $f_{k} \in \mathbb{V}_{k}^{0}$ we define corresponding discrete solutions and continuous solutions as follows:

$$
\begin{array}{rll}
u_{k} \in \mathbb{V}_{k}: & a_{k}\left(u_{k}, v_{k}\right)=\left(f_{k}, v_{k}\right) & \text { for all } v_{k} \in \mathbb{V}_{k}, \\
u \in \mathbf{V}: & a_{k}(u, v)=\left(f_{k}, v\right) & \text { for all } v \in \mathbf{V} \tag{10.1}\\
u_{k-1} \in \mathbb{V}_{k-1}: & a_{k-1}\left(u_{k-1}, v_{k-1}\right)=\left(f_{k}, v_{k-1}\right) & \text { for all } v_{k-1} \in \mathbb{V}_{k-1}, \\
\tilde{u} \in \mathbf{V}: & a_{k-1}(\tilde{u}, v)=\left(f_{k}, v\right) & \text { for all } v \in \mathbf{V}
\end{array}
$$

In the proof of Lemma 4.2 we showed that $\left\|v_{x}\right\|=\left\|D_{x} P_{k}^{-1} v\right\|$ holds for all $v \in \mathbb{V}_{k}$. We use that $W_{k}=\frac{4 \varepsilon}{h_{k}^{2}} I+D_{x}$ and obtain

$$
\begin{align*}
& \left\|W_{k}\left(A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right)\left(I-\Phi_{k}^{\frac{1}{2}}\right) \hat{b}_{k}\right\| \leq \frac{4 \varepsilon}{h_{k}^{2}}\left\|\left(A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right)\left(I-\Phi_{k}^{\frac{1}{2}}\right) \hat{b}_{k}\right\| \\
& \quad+\left\|D_{x} A_{k}^{-1}\left(I-\Phi_{k}^{\frac{1}{2}}\right) \hat{b}_{k}\right\|+\left\|D_{x} p_{k} A_{k-1}^{-1} r_{k}\left(I-\Phi_{k}^{\frac{1}{2}}\right) \hat{b}_{k}\right\| \\
& \quad \leq c\left(\frac{\varepsilon}{h_{k}^{2}}\left\|u_{k}-u_{k-1}\right\|+\left\|\left(u_{k}\right)_{x}\right\|+\left\|\left(u_{k-1}\right)_{x}\right\|\right) \\
& \quad \leq c\left(\frac{\varepsilon}{h_{k}^{2}}\left(\left\|u-u_{k}\right\|+\left\|\tilde{u}-u_{k-1}\right\|+\|u-\tilde{u}\|\right)+\left\|\left(u_{k}\right)_{x}\right\|+\left\|\left(u_{k-1}\right)_{x}\right\|\right) \tag{10.2}
\end{align*}
$$

From Lemma 4.2 we get

$$
\begin{equation*}
\left\|\left(u_{k}\right)_{x}\right\|+\left\|\left(u_{k-1}\right)_{x}\right\| \leq c\left\|f_{k}\right\| \tag{10.3}
\end{equation*}
$$

From the result in Theorem 10.1 below it follows that

$$
\begin{equation*}
\left\|u_{k}-u\right\|+\left\|u_{k-1}-\tilde{u}\right\| \leq c \frac{h_{k}^{2}}{\varepsilon}\left\|f_{k}\right\| \tag{10.4}
\end{equation*}
$$

Finally, from Theorem 10.4 we have

$$
\begin{equation*}
\|u-\tilde{u}\| \leq c h_{k}\left\|f_{k}\right\| \tag{10.5}
\end{equation*}
$$

If we insert the results $(10.3),(10.4)$, and (10.5) in (10.2) we get

$$
\left\|W_{k}\left(A_{k}^{-1}-p_{k} A_{k-1}^{-1} r_{k}\right)\left(I-\Phi_{k}^{\frac{1}{2}}\right) \hat{b}_{k}\right\| \leq c\left\|f_{k}\right\| \leq c\left\|\left(P_{k}^{*}\right)^{-1}\right\|\left\|I-\Phi_{k}^{\frac{1}{2}}\right\|\left\|\hat{b}_{k}\right\| \leq c\left\|\hat{b}_{k}\right\|
$$

and thus the result of Theorem 6.4 is proved. It remains to prove the results in Theorems 10.1 and 10.4.

Theorem 10.1. For $f_{k} \in \mathbb{V}_{k}^{0}$ let u and u_{k} be as defined in (10.1). Then

$$
\begin{equation*}
\left\|u-u_{k}\right\| \leq c \frac{h_{k}^{2}}{\varepsilon}\left\|f_{k}\right\| \tag{10.6}
\end{equation*}
$$

holds.

Proof. Define $e_{k}:=u-u_{k}$. Let $w \in H^{2}(\Omega)$ be such that

$$
\begin{equation*}
-\varepsilon w_{y y}-\varepsilon_{k} w_{x x}-w_{x}=e_{k} \tag{10.7}
\end{equation*}
$$

with

$$
\begin{equation*}
w_{x}=0 \text { on } \Gamma_{W}, \quad w=0 \text { on } \Gamma \backslash \Gamma_{W} \tag{10.8}
\end{equation*}
$$

Note that for this problem Γ_{E} is the "inflow" boundary and Γ_{W} is the "outflow" boundary. We multiply (10.7) with e_{k} and integrate by parts to get

$$
\begin{aligned}
\left\|e_{k}\right\|^{2} & =\varepsilon\left(\left(e_{k}\right)_{y}, w_{y}\right)+\varepsilon_{k}\left(\left(e_{k}\right)_{x}, w_{x}\right)-\varepsilon_{k} \int_{\Gamma_{E}} w_{x} e_{k} d y+\left(\left(e_{k}\right)_{x}, w\right) \\
& =a_{k}\left(e_{k}, w\right)-\varepsilon_{k} \int_{\Gamma_{E}} w_{x} e_{k} d y
\end{aligned}
$$

We use (4.6) with w and e_{k} instead of u and f, respectively, and (4.12) to estimate

$$
\begin{equation*}
\left|\varepsilon_{k} \int_{\Gamma_{E}} w_{x} e_{k} d y\right| \leq \varepsilon_{k}^{\frac{1}{2}}\left(\varepsilon_{k} \int_{\Gamma_{E}} w_{x}^{2} d y\right)^{\frac{1}{2}}\left(\int_{\Gamma_{E}} e_{k}^{2} d y\right)^{\frac{1}{2}} \leq c h_{k}^{\frac{1}{2}}\left\|e_{k}\right\| \frac{h_{k}}{\sqrt{\varepsilon}}\left\|f_{k}\right\| \tag{10.9}
\end{equation*}
$$

From this estimate and the Galerkin orthogonality for the error it follows that for any $v_{k} \in \mathbb{V}_{k}$

$$
\begin{align*}
\left\|e_{k}\right\|^{2} & \leq \varepsilon\left(\left(e_{k}\right)_{y},\left(w-v_{k}\right)_{y}\right)+\varepsilon_{k}\left(\left(e_{k}\right)_{x},\left(w-v_{k}\right)_{x}\right) \\
& +\left(\left(e_{k}\right)_{x}, w-v_{k}\right)+c\left\|e_{k}\right\| \frac{h_{k}^{\frac{3}{2}}}{\sqrt{\varepsilon}}\left\|f_{k}\right\| \tag{10.10}
\end{align*}
$$

Let $\Omega_{h}:=\Omega_{h_{k}}$ be as defined in (5), i.e., Ω_{h} is the set of triangles with at least one vertex on Γ_{W}. In the remainder of the domain, $\omega=\Omega \backslash \Omega_{h}$, we take v_{k} as a nodal interpolant to w and we put $v_{k}=0$ on Γ_{W} to ensure $v_{k} \in \mathbb{V}_{k}$. Note that v_{k} is a proper interpolant of w everywhere in Ω except in Ω_{h}. Therefore we will estimate scalar products in (10.10) over ω and Ω_{h}, separately. We continue (10.10) with

$$
\begin{align*}
\left\|e_{k}\right\|^{2} \leq & c \varepsilon h_{k}\left\|\left(e_{k}\right)_{y}\right\|_{\omega}\|w\|_{H^{2}(\omega)}+c \varepsilon_{k} h_{k}\left\|\left(e_{k}\right)_{x}\right\|_{\omega}\|w\|_{H^{2}(\omega)} \\
& +c h_{k}^{2}\left\|\left(e_{k}\right)_{x}\right\|_{\omega}\|w\|_{H^{2}(\omega)}+c\left\|e_{k}\right\| \frac{h_{k}^{\frac{3}{2}}}{\sqrt{\varepsilon}}\left\|f_{k}\right\|+\mathrm{I}_{\Omega_{h}} \\
\leq & c h_{k}^{2}\left\|f_{k}\right\| \frac{1}{\varepsilon}\left\|e_{k}\right\|+\mathrm{I}_{\Omega_{h}} . \tag{10.11}
\end{align*}
$$

The term $\mathrm{I}_{\Omega_{h}}$ collects integrals over Ω_{h} :

$$
\mathrm{I}_{\Omega_{h}}=\varepsilon\left(\left(e_{k}\right)_{y},\left(w-v_{k}\right)_{y}\right)_{\Omega_{h}}+\varepsilon_{k}\left(\left(e_{k}\right)_{x},\left(w-v_{k}\right)_{x}\right)_{\Omega_{h}}+\left(\left(e_{k}\right)_{x}, w-v_{k}\right)_{\Omega_{h}} .
$$

To estimate $\mathrm{I}_{\Omega_{h}}$ we use Corollary 5.7 and the following auxiliary estimate for the interpolant $v_{k} \in \mathbb{V}_{k}$ of w, with $\omega_{h}=\left\{(x, y) \in \Omega: x \in\left(h_{k}, 2 h_{k}\right)\right\}$:

$$
\begin{aligned}
\left\|v_{k}\right\|_{\Omega_{h}} & \leq c\left\|v_{k}\right\|_{\omega_{h}} \leq c\left(\|w\|_{\omega_{h}}+\left\|v_{k}-w\right\|_{\omega}\right) \\
& =c\left(\left(\int_{0}^{1} \int_{h_{k}}^{2 h_{k}}\left[w(0, y)+\int_{0}^{x} w_{\eta}(\eta, y) d \eta\right]^{2} d x d y\right)^{\frac{1}{2}}+\left\|v_{k}-w\right\|_{\omega}\right) \\
& \leq c\left(h_{k}^{\frac{1}{2}}\left(\int_{\Gamma_{W}} w^{2} d y\right)^{\frac{1}{2}}+h_{k}\left\|w_{x}\right\|+h_{k}^{2}\|w\|_{H^{2}(\omega)}\right) \leq c\left(h_{k}^{\frac{1}{2}}+\frac{h_{k}^{2}}{\varepsilon}\right)\left\|e_{k}\right\|
\end{aligned}
$$

We proceed estimating terms from $\mathrm{I}_{\Omega_{h}}$, where we use the previous result:

$$
\begin{aligned}
\varepsilon\left(\left(e_{k}\right)_{y},\left(w-v_{k}\right)_{y}\right)_{\Omega_{h}} & \leq \varepsilon\left\|\left(e_{k}\right)_{y}\right\|_{\Omega_{h}}\left(\left\|w_{y}\right\|+\left\|\left(v_{k}\right)_{y}\right\| \Omega_{\Omega_{h}}\right) \\
& \leq c \varepsilon^{\frac{1}{2}} h_{k}\left\|f_{k}\right\|\left(\varepsilon^{-\frac{1}{2}}\left\|e_{k}\right\|+h_{k}^{-1}\left\|v_{k}\right\| \|_{\Omega_{h}}\right) \\
& \leq c \varepsilon^{\frac{1}{2}} h_{k}\left\|f_{k}\right\|\left(\varepsilon^{-\frac{1}{2}}+h_{k}^{-\frac{1}{2}}+\frac{h_{k}}{\varepsilon}\right)\left\|e_{k}\right\| \leq c\left(h_{k}+\frac{h_{k}^{2}}{\sqrt{\varepsilon}}\right)\left\|f_{k}\right\|\left\|e_{k}\right\|, \\
\varepsilon_{k}\left(\left(e_{k}\right)_{x},\left(w-v_{k}\right)_{x}\right)_{\Omega_{h}} & \leq \varepsilon_{k}\left\|\left(e_{k}\right)_{x}\right\| \Omega_{\Omega_{h}}\left(\left\|w_{x}\right\|+\left\|\left(v_{k}\right)_{x}\right\| \|_{\Omega_{h}}\right) \\
& \leq c h_{k}^{\frac{1}{2}} \varepsilon_{k}\left\|f_{k}\right\|\left(\left\|e_{k}\right\|+h_{k}^{-1}\left\|v_{k}\right\| \|_{\Omega_{h}}\right) \leq c\left(h_{k}+\frac{h_{k}^{\frac{5}{2}}}{\varepsilon}\right)\left\|f_{k}\right\|\left\|e_{k}\right\|, \\
\left(\left(e_{k}\right)_{x}, w-v_{k}\right)_{\Omega_{h}} & \leq\left\|\left(e_{k}\right)_{x}\right\| \Omega_{\Omega_{h}}\left(\|w\|_{\Omega_{h}}+\left\|v_{k}\right\| \Omega_{\Omega_{h}}\right) \\
& \leq c h_{k}^{\frac{1}{2}}\left\|f_{k}\right\|\left(h_{k}^{\frac{1}{2}}\left(\int_{\Gamma_{W}} w^{2} d y\right)^{\frac{1}{2}}+h_{k}\left\|w_{x}\right\| \Omega_{h}+\left\|v_{k}\right\| \|_{\Omega_{h}}\right) \\
& \leq c\left(h_{k}+\frac{h_{k}^{\frac{5}{2}}}{\varepsilon}\right)\left\|f_{k}\right\|\left\|e_{k}\right\| .
\end{aligned}
$$

Inserting these estimates into (10.11) and using $\varepsilon \leq \frac{1}{2} h_{k}$ we obtain

$$
\left\|e_{k}\right\|^{2} \leq c \frac{h_{k}^{2}}{\varepsilon}\left\|f_{k}\right\|\left\|e_{k}\right\|+c\left(h_{k}+\frac{h_{k}^{2}}{\sqrt{\varepsilon}}+\frac{h_{k}^{\frac{5}{2}}}{\varepsilon}\right)\left\|f_{k}\right\|\left\|e_{k}\right\| \leq c \frac{h_{k}^{2}}{\varepsilon}\left\|f_{k}\right\|\left\|e_{k}\right\| .
$$

and thus the theorem is proved.
For the proof of Theorem 10.4 we first formulate two lemmas.
Lemma 10.2. Consider a function $g \in \mathrm{H}^{1}(\Omega)$. The solution of

$$
\begin{equation*}
-\varepsilon_{k} u_{x x}-\varepsilon u_{y y}+u_{x}=g_{x} \tag{10.12}
\end{equation*}
$$

with boundary conditions as in (1.2) satisfies

$$
\begin{equation*}
\int_{\Gamma_{E}} u^{2} d y \leq c\left(h_{k}^{-1}\|g\|^{2}+\int_{\Gamma_{E}} g^{2} d y+h_{k}\left\|g_{x}\right\|^{2}\right) . \tag{10.13}
\end{equation*}
$$

Proof. We multiply (10.12) with u and integrate by parts to get

$$
\begin{equation*}
\varepsilon_{k}\left\|u_{x}\right\|^{2}+\varepsilon\left\|u_{y}\right\|^{2}+\frac{1}{2} \int_{\Gamma_{E}} u^{2} d y=-\left(g, u_{x}\right)+\int_{\Gamma_{E}} g u d y . \tag{10.14}
\end{equation*}
$$

For the right-hand side in (10.14) we have

$$
\left|\left(g, u_{x}\right)\right| \leq\|g\|\left\|u_{x}\right\| \leq c\|g\|\left\|g_{x}\right\| \leq c\left(h_{k}^{-1}\|g\|^{2}+h_{k}\left\|g_{x}\right\|^{2}\right)
$$

and

$$
\int_{\Gamma_{E}} g u d y \leq \int_{\Gamma_{E}} g^{2} d y+\frac{1}{4} \int_{\Gamma_{E}} u^{2} d y .
$$

Combining these estimates and (10.14) the lemma is proved.

Lemma 10.3. Assume $g \in H^{1}$ and $\left.g\right|_{\Gamma_{E}}=0$, let u be the corresponding solution of (10.12). Then the following holds:

$$
\begin{equation*}
\|u\| \leq c\left(\|g\|+h_{k}\left\|g_{x}\right\|+\left(\int_{\Gamma_{W}} g^{2} d y\right)^{\frac{1}{2}}+h_{k}\left(\int_{\Gamma_{W}} u_{x}^{2} d y\right)^{\frac{1}{2}}\right) \tag{10.15}
\end{equation*}
$$

(Note that the standard a priori estimates would give only $\|u\| \leq c\left\|g_{x}\right\|$.)
Proof. Consider the auxiliary function $v(x, y):=\int_{0}^{x} u(\xi, y) d \xi$. It satisfies

$$
\begin{equation*}
-\varepsilon_{k} v_{x x}-\varepsilon v_{y y}+v_{x}=g+\varepsilon_{k} u_{i n}+g_{i n} \tag{10.16}
\end{equation*}
$$

with $u_{i n}(x, y)=u_{x}(0, y)$ and $g_{i n}=g(0, y)$. The corresponding boundary conditions are

$$
\begin{equation*}
v_{x}=u(1, y) \text { on } \Gamma_{E}, \quad v=0 \text { on } \partial \Omega \backslash \Gamma_{E} \tag{10.17}
\end{equation*}
$$

Then the estimate (10.15) is equivalent to

$$
\begin{equation*}
\left\|v_{x}\right\| \leq c\left(\|g\|+h_{k}\left\|g_{x}\right\|+\left(\int_{\Gamma_{W}} g^{2} d y\right)^{\frac{1}{2}}+h_{k}\left(\int_{\Gamma_{W}} u_{x}^{2} d y\right)^{\frac{1}{2}}\right) \tag{10.18}
\end{equation*}
$$

The estimate (10.18) is proved by the following arguments. We multiply (10.16) with v_{x} and integrate by parts to obtain

$$
\begin{align*}
\left\|v_{x}\right\|^{2} & +\frac{\varepsilon}{2} \int_{\Gamma_{E}}\left(v_{y}\right)^{2} d y+\frac{\varepsilon_{k}}{2} \int_{\Gamma_{W}}\left(v_{x}\right)^{2} d y \\
& =\left(g, v_{x}\right)+\varepsilon_{k}\left(u_{i n}, v_{x}\right)+\left(g_{i n}, v_{x}\right)+\frac{\varepsilon_{k}}{2} \int_{\Gamma_{E}}\left(v_{x}\right)^{2} d y \tag{10.19}
\end{align*}
$$

Since $\left.g\right|_{\Gamma_{E}}=0$ the estimate (10.13) yields

$$
\begin{equation*}
\int_{\Gamma_{E}}\left(v_{x}\right)^{2} d y=\int_{\Gamma_{E}} u^{2} d y \leq c\left(h_{k}^{-1}\|g\|^{2}+h_{k}\left\|g_{x}\right\|^{2}\right) \tag{10.20}
\end{equation*}
$$

Now (10.18) follows from (10.19) by applying the Cauchy inequality and estimate (10.20).

Using these lemmas we can prove the final result we need.
Theorem 10.4. For $f \in \mathbb{V}_{k}^{0}$ let u and \tilde{u} be the continuous solutions defined in (10.1). Then the following holds:

$$
\begin{equation*}
\|u-\tilde{u}\| \leq c h_{k}\left\|f_{k}\right\| \tag{10.21}
\end{equation*}
$$

Proof. The difference $e:=u-\tilde{u}$ solves the equation

$$
\begin{equation*}
-\varepsilon_{k} e_{x x}-\varepsilon e_{y y}+e_{x}=g_{x} \tag{10.22}
\end{equation*}
$$

with $g=-\bar{\delta} h_{k} \tilde{u}_{x}$ and boundary conditions as in (1.2). Now the result of Lemma 10.3 can be applied. We obtain

$$
\begin{aligned}
\|e\| & \leq c\left(\|g\|+h_{k}\left\|g_{x}\right\|+\left(\int_{\Gamma_{W}} g^{2} d y\right)^{\frac{1}{2}}+h_{k}\left(\int_{\Gamma_{W}} e_{x}^{2} d y\right)^{\frac{1}{2}}\right) \\
& \leq c h_{k}\left(\left\|\tilde{u}_{x}\right\|+h_{k}\left\|\tilde{u}_{x x}\right\|+\left(\int_{\Gamma_{W}} u_{x}^{2} d y\right)^{\frac{1}{2}}+\left(\int_{\Gamma_{W}} \tilde{u}_{x}^{2} d y\right)^{\frac{1}{2}}\right)
\end{aligned}
$$

To estimate the norms $\left\|\tilde{u}_{x}\right\|$ and $\left\|\tilde{u}_{x x}\right\|$ we use a priori bounds from Theorem 4.1. Further we use the fact that $f_{k}=0$ in $\Omega_{k}^{i n}$. Due to the choice of $\Omega_{k}^{i n}$ (cf. (5.18)) we can apply Corollary 5.2 with $\xi=h_{k}, \eta=\varepsilon_{k}\left|\ln h_{k}\right|+h_{k}$, and $p=\frac{1}{2}$. Using (5.5) and $\varepsilon_{k} \geq \frac{1}{3} h_{k}$ we get $\int_{\Gamma_{W}} u_{x}^{2} d y \leq c\left\|f_{k}\right\|^{2}$. The same estimate holds for $\int_{\Gamma_{W}} \tilde{u}_{x}^{2} d y$. Thus we obtain $\|e\| \leq c h_{k}\left\|f_{k}\right\|$.
11. Numerical experiments. In this section we present results of a few numerical experiments to illustrate that in a certain sense our analysis is sharp. In particular it will be shown that the nonstandard splitting in (6.8) which forms the basis of our convergence analysis reflects some important phenomena.

In the experiments we use the following parameters. For $\bar{\delta}$ in (2.4) we take $\bar{\delta}=\frac{1}{2}$. The pre- and postsmoother are as in (6.2), (6.4) with $\omega_{k}=1$. We take a random right-hand side vector and a starting vector equal to zero. For the stopping criterion we take a reduction of the relative residual by a factor 10^{9}. Thus in the tables below convergence is measured in the norm $\|\cdot\|_{A^{T} A}$. We use the notation $P e_{h}:=\frac{h}{2 \varepsilon}$.

First we present results for a standard V-cycle with $\mu_{k}=\nu_{k}=2$. In Table 11.1 we give the number of iterations needed to satisfy the stopping criterion and (between brackets) the average residual reduction per iteration. These results clearly show robustness of the multigrid solver. For a W-cycle we also observed robust results.

Table 11.1
Multigrid convergence: V-cycle with $\nu_{k}=\nu_{k}=2$.

	h			
$P e_{h}$	$1 / 8$	$1 / 32$	$1 / 128$	$1 / 512$
1	$\mathbf{8}(0.06)$	$\mathbf{1 0}(0.12)$	$\mathbf{1 1}(0.13)$	$\mathbf{1 1}(0.13)$
10	$\mathbf{7}(0.04)$	$\mathbf{8}(0.07)$	$\mathbf{8}(0.07)$	$\mathbf{8}(0.07)$
$1 \mathrm{e}+3$	$\mathbf{8}(0.05)$	$\mathbf{1 1}(0.14)$	$\mathbf{1 1}(0.14)$	$\mathbf{1 1}(0.14)$
$1 \mathrm{e}+5$	$\mathbf{7}(0.04)$	$\mathbf{1 1}(0.14)$	$\mathbf{1 1}(0.14)$	$\mathbf{1 1}(0.14)$
Number of iterations and average reduction factor				

If we consider only the smoother and do not use a coarse grid correction, then for $\varepsilon \approx h$ this method has an h-dependent convergence rate. This is illustrated in Table 11.2.

We consider the standard splitting in the convergence analysis based on the smoothing and approximation property. For $\varepsilon=h^{2}$ some results are presented in Table 11.3. The estimates that are given in this table result from the computation of

$$
\frac{\left\|\left(A_{h}^{-1}-p A_{2 h}^{-1} r\right) \hat{f}\right\|}{\|\hat{f}\|} \text { and } \frac{\left\|\left(A_{h} S_{h}^{2}\right) \hat{f}\right\|}{\|\hat{f}\|}
$$

TABLE 11.2
h-dependence of convergence of the smoothing iterations.

	h			
$P e_{h}$	$1 / 8$	$1 / 32$	$1 / 128$	$1 / 512$
1	$\mathbf{1 1 9}(0.83)$	$\mathbf{2 4 4}(0.91)$	$\mathbf{5 3 3}(0.94)$	$\mathbf{1 4 9 5}(0.986)$
10	$\mathbf{2 6}(0.44)$	$\mathbf{5 1}(0.61)$	$\mathbf{6 6}(0.72)$	$\mathbf{1 7 3}(0.88)$

Number of iterations and average reduction factor.
with $\hat{f} \in \mathbb{V}_{h}$ a discrete point source in the grid point $\left(\frac{1}{2}, \frac{1}{2}\right)$. These results indicate $\mathcal{O}\left(h^{-1}\right)$ behavior for the smoothing property (as expected) and $\mathcal{O}(\sqrt{h})$ behavior for the approximation property. Hence this splitting is not satisfactory for proving a robustness result.

Table 11.3
Standard splitting for approximation and smoothing properties.

	h					
	$1 / 8$					
Estimates for	$1 / 32$	$1 / 128$	$1 / 512$			
$\left\\|A_{h}^{-1}-p A_{2 h}^{-1} r\right\\|$	$8.4 \mathrm{e}-2$	$5.0 \mathrm{e}-2$	$2.7 \mathrm{e}-2$	$1.4 \mathrm{e}-2$		
$\left\\|A_{h} S_{h}^{2}\right\\|$	1.25	4.48	17.7	70.8		

The proof of the modified approximation property is based on the result in Theorem 10.1. In that theorem a $\frac{h_{k}^{2}}{\varepsilon}$ bound is proved provided the right-hand side function f_{k} is zero close to the inflow boundary. We performed an experiment with a function f_{k} which has values equal to one in all grid points $\left(h_{k}, j h_{k}\right), j=1, \ldots, n_{k}$, and zero elsewhere. Results are given in Table 11.4. We observe an $h_{k}^{-\frac{1}{2}}$ effect. This justifies the splitting using the cut-off operator Φ_{k}.

Table 11.4
Approximation property if f_{k} has support near inflow.

	h							
$P e_{h}$	$1 / 8$	$1 / 32$	$1 / 128$	$1 / 512$				
1	0.31	0.60	1.23	2.53				
10	0.07	0.17	0.23	0.46				
Values of $\frac{\varepsilon}{h^{2}}\left\\|\left(A_{h}^{-1}-p A_{2 h}^{-1} r\right) f\right\\| /\\|f\\|$								

Finally we performed a numerical experiment related to the result in Theorem 6.3. For the smoother we computed residual reduction factors in the almost degenerated $\operatorname{norm}\left\|\Phi_{k}^{\frac{1}{2}} \cdot\right\|$ with $\Phi_{k}:=I_{n_{k-1}} \otimes \operatorname{diag}(\phi)$ and

$$
\phi_{i}= \begin{cases}1 & \text { for } 1 \leq i<5 \\ \exp (4-i) & \text { for } 5 \leq i \leq n_{k}\end{cases}
$$

For the relaxation parameter ω in the smoother we take the value $\omega=1.2$. The results in Table 11.5 show h-independent and "fast" convergence of the smoother in this norm.

Table 11.5
Residual reduction of the smoother in the $\left\|\Phi^{\frac{1}{2}} \cdot\right\|$-norm.

	h			
$P e_{h}$	$1 / 8$	$1 / 32$	$1 / 128$	$1 / 512$
1	$\mathbf{9 3}(0.8)$	$\mathbf{1 3 1}(0.85)$	$\mathbf{1 3 3}(0.85)$	$\mathbf{1 3 3}(0.85)$
10	$\mathbf{2 3}(0.40)$	$\mathbf{2 8}(0.47)$	$\mathbf{2 8}(0.47)$	$\mathbf{2 8}(0.47)$

Number of iterations and average reduction factor.

Acknowledgment. The authors thank the referees for valuable comments which lead to a significant improvement of the paper.

REFERENCES

[1] O. AXELSSON AND W. LAYTON, Defect-correction methods for convection-dominated convection-diffusion problems, RAIRO Model. Math. Anal. Numer., 24 (1990), pp. 423455.
[2] O. Axelsson and M. Nikolova, Adaptive refinement for convection-diffusion problems based on a defect-correction technique and finite difference method, Computing, 58 (1997), pp. $1-30$.
[3] R. E. Bank and M. Benbourenane, The hierarchical basis multigrid method for convectiondiffusion equations, Numer. Math., 61 (1992), pp. 7-37.
[4] J. Bey and G. Wittum, Downwind numbering: Robust multigrid for convection-diffusion problems, Appl. Numer. Math., 23 (1997), pp. 177-192.
[5] J. H. Bramble, Multigrid Methods, Longman, Harlow, UK, 1993.
[6] J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems, Math. Comp., 51 (1988), pp. 389-414.
[7] K. Eriksson and C. Johnson, Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. Comp., 60 (1993), pp. 167-188, S1-S2.
[8] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
[9] W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.
[10] W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer-Verlag, New York, 1994.
[11] W. Hackbusch, Multigrid convergence for a singular perturbation problem, Linear Algebra Appl., 58 (1984), pp. 125-145.
[12] W. Hackbusch, A note on Reusken's Lemma, Computing, 55 (1995), pp. 181-189.
[13] W. Hackbusch and T. Probst, Downwind Gauss-Seidel smoothing for convection dominated problems, Numer. Linear Algebra Appl., 4 (1997), pp. 85-102.
[14] K. Johannsen, Robust Smoothers for Convection-Diffusion Problems, Preprint IWR, University of Heidelberg, Heidelberg, Germany, 1999.
[15] C. Johnson, A. H. Schatz, and L. B. Wahlbin, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49 (1987), pp. 25-38.
[16] C. Johnson, U. NÄvert, and J. PitkÄranta, Finite element methods for linear hyperbolic problems, Comp. Methods Appl. Mech. Engrg., 45 (1984), pp. 285-312.
[17] J. Mandel, Multigrid convergence for nonsymmetric, indefinite variational problems and one smoothing step, Appl. Math. Comput., 19 (1986), pp. 201-216.
[18] W. Mulder, A new multigrid approach to convection problems, J. Comput. Phys., 83 (1989), pp. 303-323.
[19] N. H. Naik and J. van Rosedale, The improved robustness of multigrid elliptic solvers based on multiple semicoarsened grids, SIAM J. Numer. Anal., 30 (1993), pp. 215-229.
[20] K. Niijima, Pointwise error estimates for a streamline diffusion finite element scheme, Numer. Math., 56 (1990), pp. 707-719.
[21] M. A. Olshanskii and A. Reusken, On the convergence of a multigrid method for linear reaction-diffusion problem, Computing, 65 (2000), pp. 193-202.
[22] M. A. Olshanskii and A. Reusken, Navier-Stokes equations in rotation form: A robust multigrid solver for the velocity problem, SIAM J. Sci. Comput., 23 (2002), pp. 1683-1706.
[23] I. Persson, K. Samuelsson, and A. Szepessy, On the convergence of multigrid methods for flow problems, Electron. Trans. Numer. Anal., 8 (1999), pp. 46-87.
[24] A. Reusken, On maximum norm convergence of multigrid methods for two-point boundary value problems, SIAM J. Numer. Anal., 29 (1992), pp. 1569-1578.
[25] A. Reusken, Multigrid with matrix-dependent transfer operators for a singular perturbation problem, Computing, 50 (1994), pp. 199-211.
[26] A. Reusken, Fourier analysis of a robust multigrid method for convection-diffusion equations, Numer. Math., 71 (1995), pp. 365-397.
[27] A. Reusken, Convergence analysis of a multigrid method for convection-diffusion equations, Numer. Math., 91 (2002), pp. 323-349.
[28] H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, 1996.
[29] R. P. Stevenson, New estimates of the contraction number of V-cycle multi-grid with applications to anisotropic equations, in Incomplete Decompositions, Proceedings of the Eighth GAMM Seminar, W. Hackbusch and G. Wittum, eds., Notes Numer. Fluid Mech., 41 Vieweg, Braunschweig, Germany, (1993), pp. 159-167.
[30] R. P. Stevenson, Robustness of multi-grid applied to anisotropic equations on convex domains and on domains with re-entrant corners, Numer. Math., 66 (1993), pp. 373-398.
[31] L. B. Wahlbin, Local behavior in finite element methods, in Handbook of Numerical Analysis, Vol. II, Finite Element Methods, P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam, 1991, pp. 353-522.
[32] J. WANG, Convergence analysis of multigrid algorithms for nonselfadjoint and indefinite elliptic problems, SIAM J. Numer. Anal., 30 (1993), pp. 275-285.
[33] P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, UK, 1992.
[34] G. Wittum, On the robustness of ILU smoothing, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 699-717.
[35] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), pp. 581-613.
[36] H. Yserentant, Old and new convergence proofs for multigrid methods, Acta Numer., (1993), pp. 285-326.
[37] P. M. De Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid solver, J. Comput. Appl. Math., 33 (1990), pp. 1-27.
[38] G. Zhou, How accurate is the streamline diffusion finite element method, Math. Comp., 66 (1997), pp. 31-44.

[^0]: *Received by the editors November 26, 2002; accepted for publication (in revised form) October 28, 2003; published electronically October 28, 2004.
 http://www.siam.org/journals/sinum/42-3/41867.html
 ${ }^{\dagger}$ Department of Mechanics and Mathematics, Moscow M. V. Lomonosov University, Moscow 119899, Russia (Maxim.Olshanskii@mtu-net.ru). The research of this author was partially supported by Russian Foundation for Basic Research grants 02-01-06715 and 03-01-06460 linked to project 02-01-00592.
 ${ }^{\ddagger}$ Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany (reusken@igpm.rwth-aachen.de).

