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Abstract. The paper presents a convergence analysis of a multigrid solver for a system of
linear algebraic equations resulting from the discretization of a convection-diffusion problem using a
finite element method. We consider piecewise linear finite elements in combination with a streamline
diffusion stabilization. We analyze a multigrid method that is based on canonical intergrid transfer
operators, a “direct discretization” approach for the coarse-grid operators and a smoother of line-
Jacobi type. A robust (diffusion and h-independent) bound for the contraction number of the two-grid
method and the multigrid W-cycle are proved for a special class of convection-diffusion problems,
namely with Neumann conditions on the outflow boundary, Dirichlet conditions on the rest of the
boundary, and a flow direction that is constant and aligned with gridlines. Our convergence analysis
is based on modified smoothing and approximation properties. The arithmetic complexity of one
multigrid iteration is optimal up to a logarithmic term.
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1. Introduction. Concerning the theoretical analysis of multigrid methods, dif-
ferent fields of application have to be distinguished. For linear self-adjoint elliptic
boundary value problems the convergence theory is well developed (cf. [5, 9, 35, 36]).
In other areas the state of the art is (far) less advanced. For example, for convection-
diffusion problems the development of a multigrid convergence analysis is still in its
infancy. In this paper we present a convergence analysis of a multilevel method for a
special class of two-dimensional convection-diffusion problems.

An interesting class of problems for the analysis of multigrid convergence is given
by {

−ε∆u + b · ∇u = f in Ω = (0, 1)2,
u = g on ∂Ω,

(1.1)

with ε > 0 and b = (cosφ, sinφ), φ ∈ [0, 2π). The application of a discretization
method results in a large sparse linear system which depends on a mesh size parameter
hk. For a discussion of discretization methods for this problem we refer to [28, 1, 2]
and the references therein. Note that in the discrete problem we have three interesting
parameters: hk (mesh size), ε (convection-diffusion ratio), and φ (flow direction). For
the approximate solution of this type of problems robust multigrid methods have
been developed which are efficient solvers for a large range of relevant values for
the parameters hk, ε, φ. To obtain good robustness properties the components in
the multigrid method have to be chosen in a special way because, in general, the
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“standard” multigrid approach used for a diffusion problem does not yield satisfactory
results when applied to a convection-dominated problem. To improve robustness
several modifications have been proposed in the literature, such as “robust” smoothers,
matrix-dependent prolongations, and restrictions and semicoarsening techniques. For
an explanation of these methods we refer to [9, 33, 4, 13, 14, 18, 19, 37]. These
modifications are based on heuristic arguments and empirical studies and rigorous
convergence analysis proving robustness is still missing for most of these modifications.

Related to the theoretical analysis of multigrid applied to convection-diffusion
problems we note the following. In the literature one finds convergence analyses
of multigrid methods for nonsymmetric elliptic boundary value problems which are
based on perturbation arguments [6, 9, 17, 32]. If these analyses are applied to the
problem in (1.1) the constants in the estimates depend on ε and the results are not
satisfactory for the case ε � 1. In [11, 25] multigrid convergence for a one-dimensional
convection-diffusion problem is analyzed. These analyses, however, are restricted to
the one-dimensional case. In [23, 26] convection-diffusion equations as in (1.1) with
periodic boundary conditions are considered. A Fourier analysis is applied to analyze
the convergence of two- or multigrid methods. In [23] the problem (1.1) with periodic
boundary conditions and φ = 0 is studied. For the discretization the streamline dif-
fusion finite element method on a uniform grid is used. A bound for the contraction
number of a multigrid V-cycle with point Jacobi smoother is proved which is uniform
in ε and hk provided ε ∼ hk is satisfied. Note that due to the fact that a point Jacobi
smoother is used one can not expect robustness of this method for hk � ε ↓ 0. In [26]
a two-grid method for solving a first order upwinding finite difference discretization of
the problem (1.1) with periodic boundary conditions is analyzed, and it is proved that
the two-grid contraction number is bounded by a constant smaller than one which does
not depend on any of the parameters ε, hk, φ. In [3] the application of the hierarchical
basis multigrid method to a finite element discretization of problems as in (1.1) is stud-
ied. The analysis there shows how the convergence rate depends on ε and on the flow
direction, but the estimates are not uniform with respect to the mesh size parameter
hk. In [27] the convergence of a multigrid method applied to a standard finite differ-
ence discretization of the problem (1.1) with φ = 0 is analyzed. This method is based
on semicoarsening and a matrix-dependent prolongation and restriction. It is proved
that the multigrid W-cycle has a contraction number smaller than one independent
of hk and ε. The analysis in [27] is based on linear algebra arguments only and is not
applicable in a finite element setting. Moreover, the case with standard coarsening,
which will be treated in the present paper, is not covered by the analysis in [27].

In the present paper we consider the convection-diffusion problem

−ε∆u + ux = f in Ω := (0, 1)2,

∂u

∂x
= 0 on ΓE := { (x, y) ∈ Ω | x = 1 },

u = 0 on ∂Ω \ ΓE .

(1.2)

In this problem we have Neumann boundary conditions on the outflow boundary and
Dirichlet boundary conditions on the remaining part of the boundary. Hence, the
solution may have parabolic layers but exponential boundary layers at the outflow
boundary do not occur. For this case an a priori regularity estimate of the form
‖u‖H2 ≤ c ε−1‖f‖L2 holds, whereas for the case with an exponential boundary layer

one only has ‖u‖H2 ≤ c ε−
3
2 ‖f‖L2 . Due to the Dirichlet boundary conditions a Fourier

analysis is not applicable.
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For the discretization we use conforming linear finite elements. As far as we know
there is no multigrid convergence analysis for convection-dominated problems known
in the literature that can be applied in a finite element setting with nonperiodic
boundary conditions and yields robustness for the parameter range 0 ≤ ε ≤ hk ≤ 1.
In this paper we present an analysis which partly fills this gap. We use the streamline
diffusion finite element method (SDFEM). The SDFEM ensures a higher order of
accuracy than a first order upwind finite difference method (cf. [28, 38]). In SDFEM
a mesh-dependent anisotropic diffusion, which acts only in the streamline direction,
is added to the discrete problem. Such anisotropy is important for the high order of
convergence of this method and also plays a crucial role in our convergence analysis of
the multigrid method. In this paper we only treat the case of a uniform triangulation
which is taken such that the streamlines are aligned with gridlines. Whether our
analysis can be generalized to the situation of an unstructured triangulation is an
open question.

We briefly discuss the different components of the multigrid solver.
• For the prolongation and restriction we use the canonical intergrid transfer

operators that are induced by the nesting of the finite element spaces.
• The hierarchy of coarse grid discretization operators is constructed by ap-

plying the SDFEM on each grid level. Note that due to the level-dependent
stabilization term we have level-dependent bilinear forms and the Galerkin
property Ak−1 = rkAkpk does not hold.

• Related to the smoother we note the following. First we emphasize that due
to a certain crosswind smearing effect in the finite element discretization the
x-line Jacobi or Gauss–Seidel methods do not yield robust smoothers (i.e.,
they do not result in a direct solver in the limit case ε = 0; cf. [9]). This is
explained in more detail in Remark 6.1 in section 6. In the present paper we
use a smoother of x-line-Jacobi type.

These components are combined in a standard W-cycle algorithm.
The convergence analysis of the multigrid method is based on the framework

of the smoothing- and approximation property as introduced by Hackbusch [9, 10].
However, the splitting of the two-grid iteration matrix that we use in our analysis is
not the standard one. This splitting is given in (6.8). It turns out to be essential to
keep the preconditioner corresponding to the smoother (Wk in (6.8)) as part of the
approximation property. Moreover, in the analysis we have to distinguish between
residuals which after presmoothing are zero close to the inflow boundary and those
that are nonzero. This is done by using a cut-off operator (Φk in (6.8)). The main
reason for this distinction is the following. As is usually done in the analysis of the
approximation property we use finite element error bounds combined with regularity
results. In the derivation of a L2 bound for the finite element discretization error
we use a duality argument. However, the formal dual problem has poor regularity
properties, since the inflow boundary of the original problem is the outflow boundary
of the dual problem. Thus Dirichlet outflow boundary conditions would appear and
we obtain poor estimates due to the poor regularity. To avoid this, we consider a
dual problem with Neumann outflow and Dirichlet inflow conditions. To be able to
deal with the inconsistency caused by these “wrong” boundary conditions we assume
the input residuals for the coarse grid correction to be zero near the inflow boundary.
Numerical experiments from section 11 related to the approximation property show
that such analysis is sharp.

In our estimates there are terms that grow logarithmically if the mesh size pa-
rameter hk tends to zero. To compensate this the number of presmoothings has to
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be taken level dependent. This then results in a two-grid method with a contraction
number ‖Tk‖ATA ≤ c < 1 and a complexity O(Nk(lnNk)

4), with Nk = h−2
k . Using

standard arguments we obtain a similar convergence result for the multigrid W-cycle.
The remainder of this paper is organized as follows. In section 2 we give the weak

formulation of the problem (1.2) and describe the SDFEM. In section 3 some useful
properties of the stiffness matrix are derived. In section 4 we prove some a priori esti-
mates for the continuous and the discrete solution. In section 5 we derive quantitative
results concerning the upstream influence of a right-hand side on the solution. These
results are needed in the proof of the modified approximation property. Section 6
contains the main results of this paper . In this section we describe the multigrid algo-
rithm and present the convergence analysis. In sections 7–10 we give proofs of some
important results that are used in the analysis in section 6. In section 11 we present
results of a few numerical experiments.

2. The continuous problem and its discretization. For the weak formu-
lation of the problem (1.2) we use the L2(Ω) scalar product which is denoted by
(·, ·). For the corresponding norm we use the notation ‖ · ‖. With the Sobolev space
V := { v ∈ H1(Ω) | v = 0 on ∂Ω \ ΓE } the weak formulation is as follows: find
u ∈ V such that

a(u, v) := ε(ux, vx) + ε(uy, vy) + (ux, v) = (f, v) for all v ∈ V.(2.1)

From the Lax–Milgram lemma it follows that a unique solution of this problem exists.
For the discretization we use linear finite elements on a uniform triangulation. For
this we use a mesh size hk := 2−k and grid points xi,j = (ihk, jhk), 0 ≤ i, j ≤ h−1

k .
A uniform triangulation is obtained by inserting diagonals that are oriented from
southwest to northeast. Let Vk ⊂ V be the space of continuous functions that are
piecewise linear on this triangulation and have zero values on ∂Ω \ ΓE . For the
discretization of (2.1) we consider the SDFEM: find uk ∈ Vk satisfying

(ε + δkhk)((uk)x, vx) + ε((uk)y, vy) + ((uk)x, v) = (f, v + δkhkvx) for all v ∈ Vk

(2.2)

with

δk =

{
δ̄ if hk

2 ε ≥ 1,
0 otherwise.

(2.3)

The stabilization parameter δ̄ is a given constant of order 1. For an analysis of the
SDFEM we refer to [28, 15]. In this paper we assume

δ̄ ∈
[
1

3
, 1

]
.(2.4)

The value 1
3 for the lower bound is important for our analysis. The choice of 1 for

the upper bound is made for technical reasons and this value is rather arbitrary. The
finite element formulation (2.2) gives rise to the (stabilized) bilinear form

ak(u, v) := (ε + δkhk)(ux, vx) + ε(uy, vy) + (ux, v), u, v ∈ V.(2.5)

Note the following relation for the bilinear form ak(·, ·):

ak(v, v) = ε‖vy‖2 + (ε + δkhk)‖vx‖2 +
1

2

∫
ΓE

v2 dy for v ∈ V.(2.6)



MULTIGRID FOR A CONVECTION-DOMINATED PROBLEM 1265

The main topic of this paper is a convergence analysis of a multigrid solver for the
algebraic system of equations that corresponds to (2.2). In this convergence analysis
the particular form of the right-hand side in (2.2), which is essential for consistency
in the SDFEM, does not play a role. Therefore for an arbitrary f ∈ L2(Ω) we will
consider the problems

u ∈ V such that ak(u, v) = (f, v) for all v ∈ V,(2.7)

uk ∈ Vk such that ak(uk, vk) = (f, vk) for all vk ∈ Vk.(2.8)

Note that u and uk depend on the stabilization term in the bilinear form and that
these solutions differ from those in (2.1) and (2.2).

3. Representation of the stiffness matrix. We now derive a representation
of the stiffness matrix corresponding to the bilinear form ak(·, ·) that will be used
in the analysis below. The standard nodal basis in Vk is denoted by {φ�}1≤�≤Nk

with Nk the dimension of the finite element space, Nk := h−1
k (h−1

k − 1). Define the
isomorphism:

Pk : Xk := R
Nk → Vk, Pkx =

Nk∑
i=1

xiφi.

On Xk we use a scaled Euclidean scalar product 〈x, y〉k = h2
k

∑Nk

i=1 xiyi and corre-
sponding norm denoted by ‖ · ‖ (note that this notation is also used to denote the
L2(Ω) norm). The adjoint P ∗

k : Vk → Xk satisfies (Pkx, v) = 〈x, P ∗
k v〉k for all

x ∈ Xk, v ∈ Vk. The following norm equivalence holds:

C−1‖x‖ ≤ ‖Pkx‖ ≤ C‖x‖ for all x ∈ Xk,(3.1)

with a constant C independent of k. The stiffness matrix Ak on level k is defined by

〈Akx, y〉k = ak(Pkx, Pky) for all x, y ∈ Xk.(3.2)

In an interior grid point the discrete problem has the stencil

1

h2
k

⎡
⎣ 0 −ε 0

−εk 2(εk + ε) −εk
0 −ε 0

⎤
⎦+

1

hk

⎡
⎢⎣

0 − 1
6

1
6

− 1
3 0 1

3

− 1
6

1
6 0

⎤
⎥⎦ , εk := ε + δkhk .(3.3)

For a matrix representation of the discrete operator we first introduce some notation
and auxiliary matrices. Let nk := h−1

k and

D̂x :=
1

hk
tridiag(−1, 1, 0) ∈ R

nk×nk ,

Âx := D̂T
x D̂x =

1

h2
k

⎛
⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎞
⎟⎟⎠ ∈ R

nk×nk ,

Ây :=
1

h2
k

tridiag(−1, 2,−1) ∈ R
(nk−1)×(nk−1) ,

Ĵ :=

⎛
⎜⎝

1

. . .

1
1
2

⎞
⎟⎠ ∈ R

nk×nk , T̂ := tridiag(0, 0, 1) ∈ R
nk×nk .
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Furthermore, let Im be the m×m identity matrix. We finally introduce the following
Nk ×Nk matrices

Dx := Ink−1 ⊗ D̂x , Ax := Ink−1 ⊗ Âx = DT
xDx , Ay := Ây ⊗ Ĵ

and the Nk ×Nk blocktridiagonal matrix

B := blocktridiag(Ink
, 4Ink

, T̂ ) .

Using all this notation we consider the following representation for the stiffness matrix
Ak in (3.2):

Ak =

(
ε +

(
δk − 1

3

)
hk

)
Ax + εAy +

1

6
BDx.(3.4)

The latter decomposition can be written in stencil notation as

ε̄k
h2
k

⎡
⎣ 0 0 0

−1 2 −1
0 0 0

⎤
⎦+

ε

h2
k

⎡
⎣ 0 −1 0

0 2 0
0 −1 0

⎤
⎦+

1

6hk

⎡
⎣ 0 −1 1

−4 4 0
−1 1 0

⎤
⎦(3.5)

with ε̄k = ε + (δk − 1
3 )hk > 0.

Some properties of the matrices used in the decomposition (3.4) are collected in
the following lemma.

For B,C ∈ R
n×n we write B ≥ C iff xTBx ≥ xTCx for all x ∈ R

n.
Lemma 3.1. The following inequalities hold:

AxD
−1
x ≥ 0,(3.6)

AyD
−1
x ≥ 0,(3.7)

B ≥ 2I,(3.8)

AkD
−1
x ≥ 1

3
I,(3.9)

‖DxA
−1
k ‖ ≤ 3.(3.10)

Proof. To check (3.6) observe AxD
−1
x = DT

xDxD
−1
x = DT

x . Now note that
DT

x + Dx is symmetric positive definite.
To prove (3.7) it suffices to show that DT

xAy ≥ 0 holds. We have

K := DT
xAy = (Ink−1 ⊗ D̂T

x )(Ây ⊗ Ĵ) = Ây ⊗ D̃T
x ,

with the matrix

D̃T
x =

1

hk

⎛
⎜⎝

1 −1

. . .
. . .

1 − 1
2

1
2

⎞
⎟⎠.

Hence in the matrix K + KT = Ây ⊗ (D̃T
x + D̃x) both factors Ây and D̃T

x + D̃x are
symmetric positive definite. From this the result follows.
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To prove (3.8) we define R := B − 4I and note that ‖R‖2 ≤ ‖R‖∞‖R‖1 ≤ 4.
Using this we get

〈Bx, x〉k = 4‖x‖2 + 〈Rx, x〉k ≥ 4‖x‖2 − ‖R‖‖x‖2 ≥ 2‖x‖2

which proves the desired result. Inequality (3.9) follows immediately from the repre-
sentation of Ak in (3.4) and inequalities (3.6)–(3.8). From the result in (3.9) it follows
that DT

xAk ≥ 1
3D

T
xDx. This implies ‖Dxx‖2 ≤ 3〈Akx,Dxx〉k ≤ 3‖Akx‖‖Dxx‖ for all

x ∈ Xk and thus estimate (3.10) is also proved.

4. A priori estimates. In this paper we study the convergence of a multigrid
method for solving the system of equations

Akxk = b,(4.1)

with Ak the stiffness matrix from the previous section. As already noted in the
introduction, our analysis relies on smoothing and approximation properties. For
establishing a suitable approximation property we will use regularity results and a
priori estimates for solutions of the continuous and the discrete problems. Such results
are collected in this section. In the remainder of the paper we restrict ourselves to
the convection-dominated case.

Assumption 4.1. We consider only values of k and ε such that ε ≤ 1
2 hk.

If instead of the factor 1
2 in this assumption we take another constant C, our anal-

ysis can still be applied but some technical modifications are needed (to distinguish
between δk = δ̄ and δk = 0) which make the presentation less transparent.

We consider this convection-dominated case to be the most interesting one. Many
results that will be presented also hold for the case of an arbitrary positive ε but the
proofs for the diffusion-dominated case often differ from those for the convection-
dominated case. In view of the presentation we decided to treat only the convection-
dominated case. Note that then

δk = δ̄ ∈
[
1

3
, 1

]
and

1

3
hk ≤ εk = ε + δ̄hk ≤ 3

2
hk.(4.2)

For the inflow boundary we use the notation ΓW := {(x, y) ∈ Ω | x = 0}. For the
continuous solution u the following a priori estimates hold.

Theorem 4.1. For f ∈ L2(Ω) let u be the solution of (2.7). There is a constant
c independent of k and ε such that

‖u‖ + ‖ux‖ ≤ c‖f‖,(4.3)
√
ε‖uy‖ ≤ c‖f‖,(4.4)

hk‖uxx‖ +
√

εhk‖uxy‖ + ε‖uyy‖ ≤ c‖f‖,(4.5) ∫
ΓE

u2 dy + hk

∫
ΓW

u2
x dy + ε

∫
ΓE

u2
y dy ≤ c‖f‖2.(4.6)

Proof. Since f ∈ L2(Ω), the regularity theory from [8] ensures that the solution
u of (2.7) belongs to H2(Ω). Hence we can consider the strong formulation of (2.7),

−εuyy − εkuxx + ux = f,(4.7)
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with boundary conditions as in (1.2). Now we multiply (4.7) with ux and integrate
by parts. Taking boundary conditions into account, we get the following terms:

−ε(uyy, ux) =
ε

2
((u2

y)x, 1) =
ε

2

∫
ΓE

u2
y dy,

−εk(uxx, ux) = −εk
2

((u2
x)x, 1) =

εk
2

∫
ΓW

u2
x dy ≥ c hk

∫
ΓW

u2
x dy (we use (4.2)),

(ux, ux) = ‖ux‖2 ≥ ‖u‖2,

(f, ux) ≤ 1

2
‖f‖2 +

1

2
‖ux‖2.

From these relations the results (4.3) and (4.6), except the bound for
∫
ΓE

u2 dy, easily

follow. Next we multiply (4.7) with u and integrate by parts to obtain

ε‖uy‖2 + εk‖ux‖2 +
1

2

∫
ΓE

u2 dy = (f, u) ≤ ‖f‖‖u‖ ≤ c ‖f‖2 (we use (4.3)).

Estimate (4.4) and the remainder of (4.6) now follow. To prove (4.5) we introduce
F = f − ux. Due to (4.3) we have ‖F‖ ≤ c ‖f‖. Moreover −εuyy − εkuxx = F holds.
If we square both sides of this equality and integrate over Ω we obtain

ε2‖uyy‖2 + 2εεk(uyy, uxx) + ε2
k‖uxx‖2 = ‖F‖2 ≤ c ‖f‖2.(4.8)

Further note that for any sufficiently smooth function v, satisfying the boundary
conditions in (1.2), the relations

vxx(x, 0) = vxx(x, 1) = 0, x ∈ (0, 1), vy(0, y) = vxy(1, y) = 0, y ∈ (0, 1),

hold, and thus

(vyy, vxx) = −(vy, vxxy) = (vxy, vxy).

Using a standard density argument we conclude that for the solution u ∈ H2(Ω) of
(2.7) the relation (uyy, uxx) = (uxy, uxy) holds. Now (4.8) gives

ε2‖uyy‖2 + 2εεk‖uxy‖2 + ε2
k‖uxx‖2 ≤ c ‖f‖2.

In combination with (4.2) this yields (4.5).
The next lemma states that the x-derivative of the discrete solution is also uni-

formly bounded if the right-hand side is from Vk.
Lemma 4.2. For fk ∈ Vk let uk ∈ Vk be a solution to (2.8); then

‖(uk)x‖ ≤ c ‖fk‖.(4.9)

Proof. The result in (4.9) follows from the estimate (3.10) in Lemma 3.1. To
show this we need some technical considerations.

First we show how the size of the x-derivative of a finite element function v ∈ Vk

can be determined from its corresponding coefficient vector P−1
k v ∈ Xk. Let I be the

index set {(i, j) | 0 ≤ i ≤ nk − 1, 1 ≤ j ≤ nk − 1 }. For (i, j) ∈ I let T l
(i,j) and

Tu
(i,j) be the two triangles in the triangulation which have the line between the grid
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points xi,j and xi+1,j as a common edge. Let v ∈ Vk be given. For 1 ≤ j ≤ nk − 1
we introduce the vector vj = (v(x1,j), . . . , v(xnk,j))

T . We then obtain

‖vx‖2 =
∑

(i,j)∈I

(∫
T l

(i,j)

v2
x dxdy +

∫
Tu

(i,j)

v2
x dxdy

)

=
∑

(i,j)∈I

(
v(xi+1,j) − v(xi,j)

hk

)2

h2
k = h2

k

∑
1≤j≤nk−1

(
Dxvj)

T (Dxvj)

= h2
k

(
DxP

−1
k v

)T (
DxP

−1
k v

)
= ‖DxP

−1
k v‖2.

Therefore

‖vx‖ = ‖DxP
−1
k v‖ for any v ∈ Vk.(4.10)

For the discrete solution of (2.8) with f = fk we have the representation uk =
PkA

−1
k P ∗

k fk. Now from (3.10) and (4.10) it follows that

‖(uk)x‖ = ‖DxA
−1
k P ∗

k fk‖ ≤ 3 ‖P ∗
k fk‖ ≤ c ‖fk‖

with a constant c independent of k and ε.
The next lemma gives some bounds on the difference between discrete and con-

tinuous solutions
Lemma 4.3. Define the error ek = u − uk, where u and uk are solutions of

the problems (2.7) and (2.8) with right-hand side f = fk ∈ Vk. Then the following
estimates hold:

‖(ek)x‖ ≤ c‖fk‖(4.11)

ε‖(ek)y‖2 +
1

2

∫
ΓE

e2
k dy ≤ c

h2
k

ε
‖fk‖2.(4.12)

Proof. Estimate (4.11) directly follows from (4.3) and (4.9) by a triangle inequal-
ity. The proof of (4.12) is based on standard arguments: the Galerkin orthogonality,
approximation properties of Vk, and a priori estimates from (4.5). Indeed

ε‖(ek)y‖2 + (ε + δ̄hk)‖(ek)x‖2 +
1

2

∫
ΓE

e2
k dy = ak(ek, ek) = inf

vk∈Vk

ak(ek, u− vk)

≤ inf
vk∈Vk

(
ε‖(ek)y‖‖(u− vk)y‖ + (ε + δ̄hk)‖(ek)x‖‖(u− vk)x‖ + ‖(ek)x‖‖u− vk‖

)
≤ c (ε hk‖(ek)y‖‖u‖H2 + h2

k‖(ek)x‖‖u‖H2)

≤ c

(
hk‖(ek)y‖‖fk‖ +

h2
k

ε
‖fk‖2

)
≤ ε

2
‖(ek)y‖2 + c

h2
k

ε
‖fk‖2.

The estimate (4.12) follows.

5. Upstream influence of the streamline diffusion method. Consider the
continuous problem (2.7). The goal of this section is to estimate the upstream in-
fluence of the right-hand side function f on the solution u. The same will be done
for the corresponding discrete problem. In the literature, results of such type are
known for the problem with Dirichlet boundary conditions and typically formulated
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in the form of estimates on the (discrete) Greens function (see, e.g., [31, 20, 16]). A
typical result is that the value of the solution at a point x is essentially determined
by the values of the right-hand side in a “small” strip that contains x. This strip has
a crosswind width of size O(ε∗| lnh|), where ε∗ = max{ε, h 3

2 }, and in the streamline
direction it ranges from the inflow boundary to a O(h| lnh|) upstream distance from
x. In our analysis we need precise quantitative results for the case with Neumann
outflow boundary conditions. In the literature we did not find such results. Hence we
present proofs of the results that are needed for the multigrid convergence analysis
further on. Our analysis uses the known technique of cut-off functions (e.g., [7, 16]),
it avoids the use of an adjoint problem and is based on the following lemma.

Lemma 5.1. For εk = ε + δ̄hk assume a function φ ∈ H1
∞(0, 1), such that

0 ≤ −εkφx ≤ φ. Denote by ‖ · ‖φ a semi-norm induced by the scalar product (φ·, ·).
Then the solution u of (2.7) satisfies

‖ux‖φ ≤ 2‖f‖φ,(5.1)

εk φ(0)

∫
ΓW

u2
x dy ≤ ‖f‖2

φ,(5.2)

1

4
‖u‖2

−φx
+ ε‖uy‖2

φ ≤ (φ f, u).(5.3)

Proof. We consider the strong formulation (4.7) and multiply it with φux and
integrate by parts. We then get the following terms:

−ε(uyy, φux) =
ε

2
‖uy‖2

−φx
+

ε

2
φ(1)

∫
ΓE

u2
y dy ≥ 0,

−εk(uxx, φux) = −εk
2
‖ux‖2

−φx
+

εk
2
φ(0)

∫
ΓW

u2
x dy ≥ −1

2
‖ux‖2

φ +
εk
2
φ(0)

∫
ΓW

u2
x dy,

(ux, φux) = ‖ux‖2
φ,

(f, φux) ≤ ‖f‖φ‖ux‖φ ≤ ‖f‖2
φ +

1

4
‖ux‖2

φ.

Now (5.1) and (5.2) immediately follow. To obtain the estimate (5.3) we multiply
(4.7) with φu and integrate by parts. We get the following terms:

−ε(uyy, φ u) = ε‖uy‖2
φ,

−εk(uxx, φ u) = εk‖ux‖2
φ + εk(ux, φx u)

≥ εk‖ux‖2
φ − ε2

k‖ux‖2
−φx

− 1

4
‖u‖2

−φx
≥ −1

4
‖u‖2

−φx
,

(ux, φ u) =
1

2
‖u‖2

−φx
+

φ(1)

2

∫
ΓE

u2 dy.

Thus (5.3) follows.
For arbitrary ξ ∈ [0, 1] consider the function

φξ(x) =

{
1 for x ∈ [0, ξ],

exp
(
−x−ξ

εk

)
for x ∈ (ξ, 1].

For any ξ the function φξ(x) satisfies the assumptions of Lemma 5.1. For 0 < ξ <
η < 1 we define the domains

Ωξ = {(x, y) ∈ Ω : x < ξ} , Ωη = {(x, y) ∈ Ω : x > η} .
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Direct application of Lemma 5.1 with φ = φξ gives the following corollary.
Corollary 5.2. Consider f ∈ L2(Ω) such that supp(f) ∈ Ωη and let u be the

corresponding solution of problem (2.7). Assume η − ξ ≥ 2 εk p | lnhk|, p > 0. Then
we have

‖ux‖L2(Ωξ) ≤ hp
k‖f‖,(5.4)

εk

∫
ΓW

u2
x dy ≤ h2p

k ‖f‖2,(5.5)

√
ε‖uy‖L2(Ωξ) ≤

√
εk h

p
k‖f‖.(5.6)

Proof. The estimate ‖f‖2
φ = (φf, f)Ωη

≤ φ(η)‖f‖2
Ωη

= h2p
k ‖f‖2 and (5.1), (5.2)

imply the results (5.4) and (5.5). We also have

(φf, u) = (φf, u)Ωη ≤ εk‖f‖2
φ +

1

4εk
(φu, u)Ωη = εk‖f‖2

φ +
1

4
(−φxu, u)Ωη

≤ εk‖f‖2
φ +

1

4
‖u‖2

−φx
.

Together with (5.3) this yields (5.6).
We need an analogue of estimate (5.1) for the finite element solution uk of (2.8).

To this end consider a vector φ = (φ0, . . . , φnk
), such that φi > 0 for all i and

0 ≤ −εk
φi − φi−1

hk
≤ c0φi, i = 1, . . . , nk,(5.7)

with a constant c0 ∈ (0, 4
9 ) and εk = ε + δ̄hk.

Define Φ̂k := diag(φi)1≤i≤nk
, Φk := Ink−1 ⊗ Φ̂k with φi satisfying (5.7). Let

〈·, ·〉Φ = 〈Φk·, ·〉k.
Lemma 5.3. There exists a constant c > 0 independent of k and ε such that

〈Akx,Dxx〉Φ ≥ c ‖Dxx‖2
Φ for all x ∈ Xk.

Proof. We use similar arguments as in the proof of (3.10). We use the represen-
tation (3.4) of the stiffness matrix: Ak = ε̄kAx + εAy + 1

6BDx . Note that

DT
x ΦkAy = (Ink−1 ⊗ D̂T

x )(Ink−1 ⊗ Φ̂k)(Ây ⊗ Ĵ) = Ây ⊗ D̂T
x Φ̂kĴ .

The matrix Ây is symmetric positive definite. Using φi ≤ φi−1 and a Gershgorin

theorem it follows that D̂T
x Φ̂kĴ + ĴΦ̂kD̂x is symmetric positive definite, too. Hence,

DT
x ΦkAy ≥ 0 holds, i.e.,

〈Ayx,Dxx〉Φ ≥ 0 for all x ∈ Xk.(5.8)

From the assumption on φ it follows that φi−1 ≤ (1+ c0hk

εk
)φi for all i. Using this and

the relation

1

2
(Φ̂

1
2

k D̂
T
x Φ̂

− 1
2

k + Φ̂
− 1

2

k D̂xΦ̂
1
2

k ) =
1

2hk
tridiag

(√
φi−1

φi
, 2 ,

√
φi

φi+1

)

it follows that
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Φ
1
2

kD
T
x Φ

− 1
2

k ≥ 1

2hk

(
2 − 2

√
1 +

c0hk

εk

)
I ≥ − c0

2εk
I ≥ − c0

2ε̄k
I

holds. And thus

ε̄k〈Axx,Dxx〉Φ = ε̄k〈ΦkD
T
xDxx,Dxx〉 ≥ −1

2
c0〈Dxx,Dxx〉Φ for all x ∈ Xk.(5.9)

We decompose B as B = 4I −R. A simple computation yields

‖Φ
1
2

kRΦ
− 1

2

k ‖1 ≤ 1 +

√
1 +

c0hk

εk
≤ 1 +

√
1 + 3c0 ≤ 2 +

3

2
c0.

Similarly we get ‖Φ
1
2

kRΦ
− 1

2

k ‖∞ ≤ 2 + 3
2c0 and thus ‖Φ

1
2

kRΦ
− 1

2

k ‖ ≤ 2 + 3
2c0. Hence

Φ
1
2

kBΦ
− 1

2

k ≥
(

4 −
(

2 +
3

2
c0

))
I =

(
2 − 3

2
c0

)
I

and thus

1

6
〈BDxx,Dxx〉Φ ≥

(
1

3
− 1

4
c0

)
〈Dxx,Dxx〉Φ for all x ∈ Xk.(5.10)

Combination of the results in (5.8), (5.9), and (5.10) yields

〈Akx,Dxx〉Φ ≥
(

1

3
− 3

4
c0

)
〈Dxx,Dxx〉Φ ≥ c〈Dxx,Dxx〉Φ for all x ∈ Xk

with a constant c > 0 (use that c0 ∈ (0, 4
9 )).

Lemma 5.4. For f = fk ∈ Vk let uk be the solution of the problem (2.8). Then

nk∑
i=1

nk−1∑
j=1

h2
kφi

(
ui,j − ui−1,j

hk

)2

≤ C

nk∑
i=1

nk−1∑
j=1

h2
kφi(Mkf̂)2i,j(5.11)

holds. Here uij is the nodal value of uk at the grid point xi,j, f̂ is the vector of nodal
values of fk, Mk is the mass matrix, and φi satisfies (5.7).

Proof. Let ûk = P−1
k uk ∈ Xk be the vector of nodal values of uk; then

Akûk = Mkf̂ =: b̂k.(5.12)

The diagonal matrices Φk and Φ̂k are as in Lemma 5.3. The statement of the lemma is
equivalent to 〈ΦkDxûk, Dxûk〉k ≤ c 〈Φk b̂k, b̂k〉k, with a constant c that is independent

of b̂k. This is the same as

‖DxA
−1
k ‖Φ ≤ c.(5.13)

Note that (5.13) is a generalization of the result in (3.10). From Lemma 5.3 we obtain

‖Dxx‖2
Φ̂
<

1

c
〈Akx,Dxx〉Φ̂ ≤ 1

c
‖Akx‖Φ‖Dxx‖Φ for all x ∈ Xk;

thus ‖Dxx‖Φ ≤ c̃‖Akx‖Φ for all x. Hence we have proved the result in (5.13).
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For the discrete case we consider

φξ
i =

{
1 for ihk ∈ [0, ξ],

exp
(
− ihk−ξ

4hk

)
for ihk > ξ.

(5.14)

It is straightforward to check that −(φξ
i − φξ

i−1) = (exp(1
4 ) − 1)φξ

i if ihk > ξ.

Therefore, using εk ≤ 3
2hk,

0 ≤ −εk
φξ
i − φξ

i−1

hk
≤ 3

2

(
exp

(
1

4

)
− 1

)
φξ
i , i = 1, 2, . . . .(5.15)

For any ξ the vector φξ
i , 1 ≤ i ≤ nk, satisfies the condition (5.7) with c0 = 3

2 (exp( 1
4 )−

1). This constant is less than 4
9 . As a consequence of Lemma 5.4 we obtain discrete

versions of the results in Corollary 5.2.
Corollary 5.5. Consider fk ∈ Vk such that supp(fk) ∈ Ωη and let uk be a the

corresponding solution of problem (2.8). Assume η − ξ ≥ 8hk p | lnhk|, p > 0; then

‖(uk)x‖L2(Ωξ) ≤ c hp
k‖fk‖,(5.16)

‖(uk)y‖L2(Ωξ) ≤ c ξ hp−1
k ‖fk‖.(5.17)

Proof. Estimate (5.16) is a consequence of (5.11). Indeed, observe the following
inequalities:

‖(uk)x‖L2(Ωξ) ≤ c
∑

i: ih≤ξ

nk−1∑
j=1

h2
k

(
ui,j − ui−1,j

hk

)2

= c
∑

i: ih≤ξ

nk−1∑
j=1

h2
kφi

(
ui,j − ui−1,j

hk

)2

≤ c

nk∑
i=1

nk−1∑
j=1

h2
kφi(Mkf̂)2i,j

≤ c

(
max
ih≥η

φi

) nk∑
i=1

nk−1∑
j=1

h2
k(Mhf̂)2i,j ≤ c

(
max
ih≥η

φi

)
‖fk‖2 ≤ c h2p

k ‖fk‖2.

Estimate (5.17) follows from an inverse inequality, the Friedrichs inequality, and
(5.16):

‖(uk)y‖L2(Ωξ) ≤ c h−1
k ‖uk‖L2(Ωξ) ≤ c ξ h−1

k ‖(uk)x‖L2(Ωξ) ≤ c ξhp−1
k ‖f‖.

Corollary 5.6. Consider fk ∈ Vk such that supp(fk) ∈ Ωη. Let u and uk be
the solutions (2.7) and (2.8), respectively. Assume η− ξ ≥ 8hk p | lnhk|, p > 0. Then
for ek = u− uk we have

‖(ek)x‖L2(Ωξ) ≤ c hp
k‖fk‖,

‖(ek)y‖L2(Ωξ) ≤ c max

{√
εk
ε

;
ξ

hk

}
hp
k‖fk‖.

Proof. The proof is made by direct superposition of estimates in Corollaries 5.2
and 5.5.

The result in Corollary 5.6 shows that the H1-norm of errors close to the inflow
boundary can be made arbitrarily small if the right-hand side is zero on a sufficiently
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large subdomain (Ω \ Ωη) that is adjacent to this inflow boundary. In the proof of
the approximation property in section 10 we will need these estimates for the case
ξ = hk and p = 1

2 . Hence we take η = 4hk| lnhk| + hk. Note that for the results in
the previous corollaries to be applicable we need right-hand side functions fk which
are zero in Ω \ Ωη. For technical reasons we take Ωη such that the right boundary
of the domain Ω \ Ωη coincides with a grid line. We use | lnhk| = k ln 2 and thus
4hk| lnhk| + hk ≤ (3k + 1)hk and introduce the following auxiliary domains for each
grid level:

Ωin
k := { (x, y) ∈ Ω | x < (3k + 1)hk }.(5.18)

As a direct consequence of the previous corollary we then obtain the following.
Corollary 5.7. Consider fk ∈ Vk such that fk is zero on the subdomain Ωin

k .
Let u and uk be the solutions of (2.7) and (2.8), respectively. Then for ek = u − uk

we have

‖(ek)x‖L2(Ωhk
) ≤ c h

1
2

k ‖fk‖,(5.19)

‖(ek)y‖L2(Ωhk
) ≤ c

hk√
ε
‖fk‖.(5.20)

6. Multigrid method and convergence analysis. In this section we describe
the multigrid method for solving a problem of the form Akx = b̂ with the stiffness
matrix Ak from section 2 and present a convergence analysis.

For the prolongation and restriction in the multigrid algorithm we use the canon-
ical choice:

pk : Xk−1 → Xk, pk = P−1
k Pk−1, rk =

1

4
pTk .(6.1)

Let Wk : Xk → Xk be a nonsingular matrix. We consider a smoother of the form

xnew = Sk(x
old, b̂) = xold − ωkW

−1
k (Akx

old − b̂) for xold, b̂ ∈ Xk,(6.2)

with corresponding iteration matrix denoted by

Sk = I − ωkW
−1
k Ak.(6.3)

The preconditioner Wk we use is of line-Jacobi type:

Wk =
4ε

h2
k

I + Dx .(6.4)

Note that Wk is a blockdiagonal matrix with diagonal blocks that are nk × nk bidi-
agonal matrices. A suitable choice for the parameter ωk follows from the analysis
below.

Remark 6.1. In the literature it is often recommended to apply a so-called robust
smoother for solving singularly perturbed elliptic problem using multigrid. Such a
smoother should have the property that it becomes a direct solver if the singular
perturbation parameter tends to zero (cf. [9], chapter 10). In the formulation (6.2)
one then must have a splitting such that Ak − Wk = O(ε) (the constant in O may
depend on k). Such robust smoothers are well known for some anisotropic problems.
For anisotropic problems in which the anisotropy is aligned with the gridlines one



MULTIGRID FOR A CONVECTION-DOMINATED PROBLEM 1275

can use a line (Jacobi or Gauss–Seidel) method or an ILU factorization as a robust
smoother. Theoretical analyses of these methods can be found in [29, 30, 34].

If the convection-diffusion problem (1.2) is discretized using standard finite differ-
ences it is easy to see that an appropriate line solver yields a robust smoother. How-
ever, in the finite element setting such line methods do not yield a robust smoother .
This is clear from the stencil in (3.3). For ε → 0 the diffusion part yields an x-line
difference operator which can be represented exactly by an x-line smoother, but in
the convection stencil the [0 − 1

6
1
6 ] and [− 1

6
1
6 0] parts of the difference operator

are not captured by such a smoother. It is not clear to us how for the finite element
discretization, with a stencil as in (3.3), a robust smoother can be constructed.

In multigrid analyses for reaction-diffusion or anisotropic diffusion problems one
usually observes a ε−1 dependence in the standard approximation property that is
then compensated by an ε factor from the smoothing property (cf. [21, 22, 29, 30,
34]). However, we cannot apply a similar technique, due to the fact that for our
problem class a robust smoother is not available. Instead, we use another splitting
of the iteration matrix of the two-grid method, leading to modified (ε-independent)
smoothing and approximation properties.

We consider a standard multigrid method with pre- and postsmoothers of the
form as in (6.2), (6.4). In the analysis we will need different damping parameters for
the pre- and postsmoother. Thus we introduce

Sk,pr := I − ωk,prW
−1
k Ak, Sk,po := I − ωk,poW

−1
k Ak.

We also define the transformed iteration matrices

S̃k,pr := AkSk,prA
−1
k , S̃k,po := AkSk,poA

−1
k .

We will analyze a standard two-grid method with iteration matrix

Tk = Sνk

k,po

(
I − pkA

−1
k−1rkAk

)
Sµk

k,pr.(6.5)

For the corresponding multigrid W-cycle the iteration matrix (cf. [10]) is given by

Mmgm
0 := 0, Mmgm

k = Tk + Sνk

k,popk(M
mgm
k−1 )2A−1

k−1rkAkS
µk

k,pr, k > 1.(6.6)

In the convergence analysis of this method the auxiliary inflow domain Ωin
k defined in

(5.18) plays a crucial role. As in the analysis of the upstream influence in section 5
we will use a cut-off function in the x-direction. We define diagonal matrices Φ̂k, Φk

as follows:

ξ := (3k + 1)hk, Φ̂k := diag(φξ
1, . . . , φ

ξ
nk

), Φk := Ink−1 ⊗ Φ̂k;(6.7)

here φξ
i is the cut-off function defined in (5.14) with ξ = (3k + 1)hk. For notational

simplicity we drop the superscript ξ in φξ
i in the remainder. Note that the diagonal

matrix Φk is positive definite.
For any symmetric positive definite matrix C ∈ R

m×m we define

〈x, y〉C := xTCy, ‖x‖2
C := 〈x, x〉C , ‖B‖C := ‖C 1

2BC− 1
2 ‖

with x, y ∈ R
m, B ∈ R

m×m. Note that if C = ETE for some nonsingular matrix E
then ‖B‖C = ‖EBE−1‖.
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The convergence analysis is based on the following splitting, with A := Ak:

‖Tk‖ATA = ‖Sνk

k,po(I − pkA
−1
k−1rkAk)S

µk

k,pr‖ATA

= ‖Sνk

k,po(A
−1
k − pkA

−1
k−1rk)

(
(I − Φ

1
2

k ) + Φ
1
2

k

)
AkS

µk

k,pr‖ATA

≤ ‖Sνk

k,po(A
−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )AkS
µk

k,pr‖ATA

+‖Sνk

k,po(A
−1
k − pkA

−1
k−1rk)Φ

1
2

kAkS
µk

k,pr‖ATA

≤ ‖S̃νk

k,poAkW
−1
k ‖‖Wk(A

−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )‖‖S̃µk

k,pr‖(6.8)

+‖S̃νk

k,po‖‖I −AkpkA
−1
k−1rk‖‖Φ

1
2

k S̃
µk

k,pr‖.

Remark 6.2. Note that the splitting in (6.8) differs from the usual splitting that
is used in the theory based on the smoothing and approximation property introduced
by Hackbusch (cf. [10]). In this theory the approximation property of the form
‖A−1

k − pkA
−1
k−1rk‖ ≤ CA g(hk, ε) is combined with a smoothing property of the form

‖AkS
µk

k,po‖ ≤ η(µk) g(hk, ε)
−1 with some η(µk) such that η(µk) → 0, µk → ∞ uni-

formly with respect to hk and ε. In numerical experiments we observed that bounds
of this type are not likely to be valid. Due to the fact that the smoother is not an
exact solver for ε ↓ 0 (cf. Remark 6.1), it is essential to have the preconditioner Wk

as part of the approximation property. Furthermore, it turns out that for obtaining
an appropriate bound for ‖Wk(A

−1
k − pkA

−1
k−1rk)fk‖ the right-hand side function fk

must vanish near the inflow boundary. We illustrate this by numerical experiments
in section 11. This motivates the introduction of the “cut-off” matrix Φk in the
decomposition.

We now formulate the main results on which the convergence analysis will be
based. The proofs of these results will be given further on.

Theorem 6.1. The following holds:

WkA
−1
k ≥ 1

8
I for k = 1, 2, . . . .(6.9)

Proof. The proof is given in section 7.
Lemma 6.2. From (6.9) it follows that

‖I − ωAkW
−1
k ‖ ≤ 1 for all ω ∈

[
0,

1

4

]
.

Proof. The proof is elementary.
Assumption 6.1. In the postsmoother Sk,po we take ωk,po := 1

8 .
We note that the analysis below applies for any fixed ωk,po ∈ (0, 1

8 ]. We obtain
the following smoothing property.

Corollary 6.1. There exists a constant c1 independent of k and ε such that

‖S̃νk

k,poAkW
−1
k ‖ ≤ c1√

νk
.(6.10)

Proof. Follows from Lemma 6.2 and Theorem 10.6.8 in [10] (or results in [12, 24]).
The result holds with c1 = 32√

2π
.

We now turn to the presmoother.
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Theorem 6.3. There exist constants d1 > 0, d2 > 0 independent of k and ε such
that ∥∥∥∥Φ 1

2

k

(
I − d1

k2
AkW

−1
k

)
Φ

− 1
2

k

∥∥∥∥ ≤ 1 − d2

k4
.(6.11)

Proof. The proof is given in section 8.
Assumption 6.2. In the presmoother Sk,pr we take ωk,pr := min{ 1

4 ,
d1

k2 }.
Remark 6.3. The result in (6.11) can be written as ‖I − d1

k2AkW
−1
k ‖Φk

≤ 1− d2

k4 .
Hence, we have a contraction result in the almost degenerated norm ‖ · ‖Φk

. This
norm, however, coincides with the Euclidean one for the vectors that have a support
only in Ωin

k . Hence the result in (6.11) indicates that the presmoother is a fast solver
near the inflow boundary (cf. section 11).

Concerning the approximation property the following result holds.
Theorem 6.4. There exists a constant c2 independent of k and ε such that

‖Wk(A
−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )‖ ≤ c2 for k = 2, 3, . . . .(6.12)

Proof. The proof is given in section 10.
Finally, we present two results related to stability of the coarse-grid correction.

It is well known that for the canonical restriction operator the inequality

‖rk‖ ≤ cr

holds with a constant cr independent of k. The second stability result is the following.
Theorem 6.5. There exists a constant c3 independent of k and ε such that

‖AkpkA
−1
k−1‖ ≤ c3 for k = 2, 3, . . . .(6.13)

Proof. The proof is given in section 9.
We now obtain a two-grid convergence result.
Theorem 6.6. For the two-grid method we then have

‖Tk‖ATA ≤ c1c2√
νk

+ (1 + crc3)

(
1 − d2

k4

)µk

.

Proof. The proof is based on results from (6.9), (6.11), (6.12), and (6.13). We use
the splitting in (6.8). From the Assumptions 6.1 and 6.2 and Lemma 6.2 it follows
that ‖S̃k,pr‖ ≤ 1 and ‖S̃k,po‖ ≤ 1. From Assumption 6.2, Theorem 6.3, and ‖Φk‖ ≤ 1
we obtain

‖Φ
1
2

k S̃
µk

k,pr‖ ≤ ‖(Φ
1
2

k S̃k,prΦ
− 1

2

k )µk‖‖Φ
1
2

k ‖ ≤
(

1 − d2

k4

)µk

Combine these bounds with the results in Corollary 6.1 and Theorems 6.4
and 6.5.

Using the two-grid result of Theorem 6.6 we derive a multigrid W-cycle conver-
gence result based on standard arguments.

Theorem 6.7. In addition to the assumptions of Theorem 6.6 we assume that
the number of smoothing steps on every grid level is sufficiently large:

νk ≥ cpo, µk ≥ cpr k
4
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with suitable constants cpo, cpr. Then for the contraction number of the multigrid
W-cycle the inequality

‖Mmgm
k ‖ATA ≤ ξ∗(6.14)

holds, with a constant ξ∗ < 1 independent of k and ε.
Proof. Define ξk := ‖Mmgm

k ‖AT
k
Ak

. Using the recursion relation (6.6) for Mmgm
k

it follows that

ξk ≤ ‖Tk‖AT
k
Ak

+ ‖S̃k,po‖νk‖AkpkA
−1
k−1‖ξ2

k−1‖rk‖‖S̃k,pr‖µk

≤ ‖Tk‖AT
k
Ak

+ c3crξ
2
k−1.

Now use the two-grid bound given in Theorem 6.6 and a fixed point argument.
Remark 6.4. We briefly discuss the arithmetic work needed in one W-cycle iter-

ation. The arithmetic work for a matrix vector multiplication on level k is of order
O(Nk) = O(n2

k). The work needed in one smoothing iteration is of order O(Nk).
The number of smoothings behaves like νk + µk ∼ k4. Using a standard recursive
argument it follows that for a multigrid W-cycle iteration the arithmetic complexity
is of the order Nk(lnNk)

4. Hence this multigrid method has suboptimal complexity.

7. Proof of Theorem 6.1. We recall the representation of the stiffness matrix
in (3.4)

Ak =

(
ε +

(
δ̄ − 1

3

)
hk

)
Ax + εAy +

1

6
BDx.

We will need the following lemma:
Lemma 7.1. The inequality BDx ≥ 0 holds.
Proof. The matrix 1

6BDx − 1
3hkAx is the stiffness matrix corresponding to the

bilinear form (u, v) →
∫
Ω
uxv dxdy. For any x ∈ Xk we get

1

6
〈BDxx, x〉k − 1

3
〈hkAxx, x〉k =

∫
Ω

(Pkx)x(Pkx) dxdy =
1

2

∫
ΓE

(Pkx)2 dxdy ≥ 0.

Since the matrix Ax is symmetric positive definite the result now follows.
We now consider the preconditioner Wk = 4ε

h2
k

I + Dx, as in (6.4).

Theorem 7.2 (=Theorem 6.1). The inequality WkA
−1
k ≥ 1

8I holds.
Proof. First note that

hkD̂xD̂
T
x = D̂x + D̂T

x − 1

hk
(1, 0, . . . , 0)T (1, 0, . . . , 0) ≤ D̂x + D̂T

x

and thus hkD̂
T
x D̂xD̂

T
x D̂x ≤ D̂T

x (D̂x + D̂T
x )D̂x holds. Using Âx = D̂T

x D̂x this results
in hkÂ

2
x ≤ 2D̂T

x Âx and thus

1

2
hkA

2
x ≤ DT

xAx.(7.1)

Note that the following inequality holds for any a, b, c ∈ R and σ1, σ2, σ3 > 0:

(a + b + c)2 ≤ (1 + σ2 + σ−1
3 )a2 + (1 + σ3 + σ−1

1 )b2 + (1 + σ1 + σ−1
2 )c2.
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We apply this inequality with σ2 = 2, σ1 = σ3 = 1. Also using ‖Ay‖ ≤ 4h−2
k and

‖B‖ ≤ 6 we get for any x ∈ Xk

‖Akx‖2 ≤ 4ε2‖Ayx‖2 + 3ε̄2
k‖Axx‖2 +

5

2

∥∥∥∥1

6
BDxx

∥∥∥∥
2

≤ 16

(
ε

hk

)2

〈Ayx, x〉k + 3ε̄2
k‖Axx‖2 +

5

2
‖Dxx‖2.

(7.2)

We recall that ε̄k = εk − δ̄hk ≤ 7
6hk. Now apply the result (7.1) and the estimates in

Lemmas 3.1 and Lemma 7.1 to obtain

〈Wkx,Akx〉k =

〈
4ε

h2
k

x + Dxx , εAyx + ε̄kAxx +
1

6
BDxx

〉
k

≥ 4

(
ε

hk

)2

〈Ayx, x〉k + ε̄k〈Dxx,Axx〉k +

〈
Dxx,

1

6
BDxx

〉
k

≥ 4

(
ε

hk

)2

〈Ayx, x〉k +
3

7
ε̄2
k‖Axx‖2 +

1

3
‖Dxx‖2

=
1

8

(
32

(
ε

hk

)2

〈Ayx, x〉k +
24

7
ε̄2
k‖Axx‖2 +

8

3
‖Dxx‖2

)

≥ 1

8

(
16

(
ε

hk

)2

〈Ayx, x〉k + 3ε̄2
k‖Axx‖2 +

5

2
‖Dxx‖2

)
.

Combination of this with the inequality in (7.2) proves the theorem.

8. Proof of Theorem 6.3. We start with an elementary known result on the
convergence of basic iterative methods.

Lemma 8.1. Assume C,A,W ∈ R
n×n with C symmetric positive definite. If

there are constants c0 > 0, c1 such that

c0〈Ay,Ay〉C ≤ 〈Wy,Wy〉C ≤ c1〈Wy,Ay〉C for all y ∈ R
n(8.1)

then for arbitrary d ∈ [0, 1] we have

‖I − α
c0
c1

AW−1‖C ≤
√

1 − d
c0
c21

if 1 −
√

1 − d ≤ α ≤ 1 +
√

1 − d.

Proof. Let D := AW−1. From (8.1) we get

〈Dy, y〉C ≥ c−1
1 〈y, y〉C , 〈Dy,Dy〉C ≤ c−1

0 〈y, y〉C for all y.

Note that∥∥∥∥
(
I − α

c0
c1

AW−1

)
y

∥∥∥∥
2

C

= 〈y, y〉C − 2α
c0
c1

〈Dy, y〉C + α2 c
2
0

c21
〈Dy,Dy〉C

≤
(

1 − 2α
c0
c21

+ α2 c0
c21

)
‖y‖2

C =

(
1 − (2α− α2)

c0
c21

)
‖y‖2

C

and 2α− α2 ≥ d if 1 −
√

1 − d ≤ α ≤ 1 +
√

1 − d.
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Below we use the scalar product 〈·, ·〉Φ := 〈Φk·, ·〉k with Φk defined in (6.7). We
recall the result proved in Lemma 5.3,

〈Akx,Dxx〉Φ ≥ c ‖Dxx‖2
Φ for all x ∈ Xk(8.2)

with c > 0 independent of k and of ε.
We introduce the diagonal projection matrix Jk := Ink−1⊗ Ĵk with Ĵk the nk×nk

diagonal matrix with (Ĵk)i,i = 1 if (Φ̂k)i,i = 1 and (Ĵk)i,i = 0 otherwise.
Lemma 8.2. There exists a constant c > 0 independent of k and ε such that

‖Wkx‖2
Φ ≤ ck2

(
ε

h3
k

‖(I − Jk)x‖2
Φ + ‖Dxx‖2

Φ

)
for all x ∈ Xk.

Proof. Note that

‖Jkx‖Φ = ‖JkD−1
x JkDxx‖Φ ≤ ‖JkD−1

x Jk‖Φ‖Dxx‖Φ

= ‖JkD−1
x Jk‖‖Dxx‖Φ ≤ (3k + 1)hk‖Dxx‖Φ.

And thus, using ε ≤ 1
2hk we get

‖Wkx‖Φ =

∥∥∥∥ 4ε

h2
k

x + Dxx

∥∥∥∥
Φ

≤ 4ε

h2
k

‖(I − Jk)x‖Φ +
4ε

h2
k

‖Jkx‖Φ + ‖Dxx‖Φ

≤ 4ε

h2
k

‖(I − Jk)x‖Φ + ck‖Dxx‖Φ ≤ ck

(
4ε

h2
k

‖(I − Jk)x‖Φ + ‖Dxx‖Φ

)
.

Squaring this result and using ( ε
h2
k

)2 ≤ 1
2

ε
h3
k

completes the proof.

We define Φ̂x := 1
hk

diag(φi − φi+1)1≤i≤nk
with φi = φξ

i as in (6.7). Consider the

diagonal matrix Φx := Ink−1 ⊗ Φ̂x. Note that Φx ≥ 0.
Lemma 8.3. The following estimate holds:

〈Akx, x〉Φ ≥ 1

30
‖Φ

1
2
x x‖2 for all x ∈ Xk.

Proof. Recall

Ak = ε̄kAx + εAy +
1

6
BDx.(8.3)

Note that

ΦkAy = (Ink−1 ⊗ Φ̂k)(Ây ⊗ Ĵ) = Ây ⊗ Φ̂kĴ ≥ 0.(8.4)

We consider the term ε̄kΦkAx = ε̄k(Ink−1 ⊗ Φ̂kÂx). Note that Φ̂kÂx = Φ̂kD̂
T
x D̂x. A

simple computation yields Φ̂kD̂
T
x − D̂T

x Φ̂k = −Φ̂xT̂ , with T̂ := tridiag(0, 0, 1), and
thus

ε̄kΦ̂kÂx = ε̄kD̂
T
x Φ̂kD̂x − ε̄kΦ̂xT̂ D̂x.(8.5)

From the Cauchy–Schwarz inequality it follows that

ε̄k〈Φ̂xT̂ D̂xy, y〉 ≤ ε̄2
k

9

4
‖Φ̂

1
2
x T̂ D̂xy‖2 +

1

9
‖Φ̂

1
2
x y‖2 for all y ∈ R

nk .(8.6)
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Using the property (5.15) we get

T̂T Φ̂xT̂ ≤ ε̄−1
k c0Φ̂k.(8.7)

Combination of the results in (8.5), (8.6), (8.7) and using c0 ≤ 4
9 yields

ε̄k〈Φ̂kÂxy, y〉 ≥ ε̄k‖D̂xy‖2
Φ̂k

− ε̄k
9

4
c0‖D̂xy‖2

Φ̂k
− 1

9
‖Φ̂

1
2
x y‖2

≥ −1

9
‖Φ̂

1
2
x y‖2 for all y ∈ R

nk .

And thus

ε̄kΦkAx ≥ −1

9
Φx(8.8)

holds. Finally we consider the term 1
6 〈BDxx, x〉Φ. First we note

BDx = blocktridiag(D̂x, 4D̂x, Ŝx), Ŝx :=
1

hk

⎛
⎜⎜⎜⎝
−1 1

. . .
. . .

−1 1
0

⎞
⎟⎟⎟⎠ ∈ R

nk×nk

and thus K := 1
6ΦkBDx = 1

6blocktridiag(Φ̂kD̂x, 4Φ̂kD̂x, Φ̂kŜx). Hence

1

2
(K + KT ) =

1

12
blocktridiag

(
Φ̂kD̂x + ŜT

x Φ̂k, 4(Φ̂kD̂x + D̂T
x Φ̂k), Φ̂kŜx + D̂T

x Φ̂k

)
.

A simple computation yields

Φ̂kD̂x + D̂T
x Φ̂k = Φ̂x +

1

hk
tridiag(−φi, φi + φi+1,−φi+1)1≤i≤nk

=: Φ̂x + R(8.9)

and Φ̂kŜx + D̂T
x Φ̂k = Φ̂xT̂ + 1

hk
φnene

T
n , with n := nk and en the nth basis vector in

R
n. Thus we obtain

1

2
(K + KT ) =

1

12
blocktridiag

(
T̂T Φ̂x, 4Φ̂x, Φ̂xT̂

)
+

1

12
blocktridiag

(
1

hk
φnene

T
n , 4R,

1

hk
φnene

T
n

)

≥ 1

12
blocktridiag

(
T̂T Φ̂x, 4Φ̂x, Φ̂xT̂

)
.

By Φ̂−1
x (Φ−1

x ) we denote the pseudoinverse of Φ̂x (Φx). We then have

1

2
Φ

− 1
2

x (K + KT )Φ
− 1

2
x ≥ 1

12
blocktridiag

(
Φ̂

− 1
2

x T̂T Φ̂
1
2
x , 4I, Φ̂

1
2
x T̂ Φ̂

− 1
2

x

)
.

Note that

‖Φ̂− 1
2

x T̂T Φ̂
1
2
x ‖∞ = ‖Φ̂

1
2
x T̂ Φ̂

− 1
2

x ‖∞ = max
i≥3k+2

(
φi−1 − φi

φi − φi+1

) 1
2

= e
1
8 .

And thus we get 1
2Φ

− 1
2

x (K + KT )Φ
− 1

2
x ≥ 1

12 (4 − 2e
1
8 )I. Hence

1

6
ΦkBDx = K ≥ 1

6
(2 − e

1
8 )Φx.(8.10)
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Combination of the results in (8.3), (8.4), (8.8), and (8.10) yields

ΦkAk ≥
(
−1

9
+

1

6
(2 − e

1
8 )

)
Φx >

1

30
Φx.

Using the previous two lemmas we can show a result as in the second inequality
in (8.1).

Theorem 8.4. There exists a constant c1 independent of k and ε such that

〈Wkx,Wkx〉Φ ≤ c1k
2〈Wkx,Akx〉Φ for all x ∈ Xk.

Proof. From Lemma 8.3 and (8.2) we get

〈Wkx,Akx〉Φ =
4ε

h2
k

〈x,Akx〉Φ + 〈Dxx,Akx〉Φ

≥ c

(
ε

h2
k

〈Φxx, x〉k + ‖Dxx‖2
Φ

)(8.11)

with c > 0 independent of k and ε. Using φi−φi+1 = (1−e−
1
4 )φi ≥ 1

5φi for i ≥ 3k+1
we get

〈Φxx, x〉k ≥ 1

5
h−1
k 〈(I − Jk)Φkx, x〉k =

1

5
h−1
k ‖(I − Jk)x‖2

Φ.(8.12)

From (8.11) and (8.12) we obtain

〈Wkx,Akx〉Φ ≥ c

(
ε

h3
k

‖(I − Jk)x‖2
Φ + ‖Dxx‖2

Φ

)

Now combine this with the result in Lemma 8.2.
We now consider the first inequality in (8.1).
Theorem 8.5. There exists a constant c0 > 0 independent of k and ε such that

c0〈Akx,Akx〉Φ ≤ 〈Wkx,Wkx〉Φ for all x ∈ Xk.

Proof. The constants c that appear in the proof are all strictly positive and
independent of k and ε. First note that ‖Akx‖Φ ≤ ε̄k‖Axx‖Φ+ε‖Ayx‖Φ+ 1

6‖BDxx‖Φ.
We have

‖Ay‖Φ = ‖(Ink−1 ⊗ Φ̂
1
2

k )(Ây ⊗ Ĵ)(Ink−1 ⊗ Φ̂
− 1

2

k )‖ = ‖Ây ⊗ Ĵ‖ ≤ 4

h2
k

.

Note that |φiφ
−1
i+1| ≤ e

1
4 and thus ‖Φ̂

1
2

k D̂
T
x Φ̂

− 1
2

k ‖ ≤ ch−1
k holds. From this it follows

that ‖DT
x ‖Φ ≤ ch−1

k holds. With a similar argument we get ‖B‖Φ ≤ c. Thus we
obtain, using ε̄k ≤ 3

2hk,

‖Akx‖Φ ≤ ε̄k‖DT
x ‖Φ‖Dxx‖Φ +

4ε

h2
k

‖x‖Φ + c‖Dxx‖Φ

≤ c

(
ε

h2
k

‖x‖Φ + ‖Dxx‖Φ

)
.

(8.13)
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From (8.9) it follows that 〈Dxx, x〉Φ ≥ 0 holds. Using this we get

‖Wkx‖2
Φ =

16ε2

h4
k

‖x‖2
Φ +

16ε

h2
k

〈Dxx, x〉Φ + ‖Dxx‖2
Φ

≥ c

(
ε2

h4
k

‖x‖2
Φ + ‖Dxx‖2

Φ

)
.

(8.14)

Now combine (8.13) with (8.14).
Combination of the results of Theorems 8.4 and 8.5 with the second result in

Lemma 8.1 shows that Theorem 6.3 holds.

9. Proof of Theorem 6.5. Let gk−1 ∈ Xk−1 be given and define gk−1 :=
(P ∗

k−1)
−1gk−1 ∈ Vk−1. Let uk−1 ∈ Vk−1 be such that

ak−1(uk−1, vk−1) = (gk−1, vk−1) for all vk−1 ∈ Vk−1.

Then A−1
k−1gk−1 = P−1

k−1uk−1 holds. The corresponding continuous solution u ∈ V
satisfies ak−1(u, v) = (gk−1, v) for all v ∈ V. Now note that

‖AkpkA
−1
k−1gk−1‖ = max

y∈Xk

〈AkpkP
−1
k−1uk−1, y〉k
‖y‖ ≤ c max

vk∈Vk

ak(uk−1, vk)

‖vk‖

≤ c max
vk∈Vk

ak−1(uk−1, vk)

‖vk‖
+ c max

vk∈Vk

ak(uk−1, vk) − ak−1(uk−1, vk)

‖vk‖
.(9.1)

Define ek−1 := u − uk−1. For the first term in (9.1) we get, using the results of
Lemma 4.3,

ak−1(uk−1, vk) ≤ |ak−1(ek−1, vk)| + |ak−1(u, vk)|
≤ chk‖(ek−1)x‖‖(vk)x‖ + ε‖(ek−1)y‖‖(vk)y‖ + ‖(ek−1)x‖‖vk‖ + |(gk−1, vk)|

≤ c

(
‖(ek−1)x‖ +

ε

hk
‖(ek−1)y‖

)
‖vk‖ + ‖gk−1‖‖vk‖

≤ c‖gk−1‖‖vk‖ ≤ c‖gk−1‖‖vk‖.(9.2)

For the second term in (9.1) we have, using Lemma 4.2,

|ak(uk−1, vk) − ak−1(uk−1, vk)| = δ̄hk|((uk−1)x, (vk)x)|
≤ c‖(uk−1)x‖‖vk‖
≤ c‖gk−1‖‖vk‖ ≤ c‖gk−1‖‖vk‖.

(9.3)

Combination of the results in (9.1), (9.2), and (9.3) yields ‖AkpkA
−1
k−1gk−1‖ ≤ c‖gk−1‖

and thus the result in Theorem 6.5 holds.

10. Proof of Theorem 6.4. We briefly comment on the idea of the proof. As
usual to prove an estimate for the error in the L2-norm we use a duality argument.
However, the formal dual problem has poor regularity properties, since in this dual
problem ΓE is the “inflow” boundary and ΓW is the “outflow” boundary. Thus
Dirichlet outflow boundary conditions would appear and we obtain poor estimates
due to the poor regularity. To avoid this, we consider a dual problem with Neumann
outflow and Dirichlet inflow conditions. To be able to deal with the inconsistency
caused by these “wrong” boundary conditions we assume the right-hand side is zero
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near the boundary ΓW . In order to satisfy this assumption we use the cut-off operator
with matrix Φk.

A further problem we have to deal with is the fact that due to the level dependent
stabilization term we have to treat k-dependent bilinear forms.

We introduce the space

V
0
k := {vk ∈ Vk | vk(x) = 0 for all x ∈ Ωin

k }.

Let b̂k ∈ Xk be given. In view of Theorem 6.4 we must prove an estimate ‖Wk(A
−1
k −

pkA
−1
k−1rk)(I − Φk)b̂k‖ ≤ c‖b̂k‖ with a constant c that is independent of k, ε, and

b̂k. Note that (P ∗
k )−1(I − Φ

1
2

k )b̂k =: fk ∈ V
0
k holds. For this fk ∈ V

0
k we define

corresponding discrete solutions and continuous solutions as follows:

uk ∈ Vk : ak(uk, vk) = (fk, vk) for all vk ∈ Vk,

u ∈ V : ak(u, v) = (fk, v) for all v ∈ V,

uk−1 ∈ Vk−1 : ak−1(uk−1, vk−1) = (fk, vk−1) for all vk−1 ∈ Vk−1,

ũ ∈ V : ak−1(ũ, v) = (fk, v) for all v ∈ V.

(10.1)

In the proof of Lemma 4.2 we showed that ‖vx‖ = ‖DxP
−1
k v‖ holds for all v ∈ Vk.

We use that Wk = 4ε
h2
k

I + Dx and obtain

‖Wk(A
−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )b̂k‖ ≤ 4ε

h2
k

‖(A−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )b̂k‖

+ ‖DxA
−1
k (I − Φ

1
2

k )b̂k‖ + ‖DxpkA
−1
k−1rk(I − Φ

1
2

k )b̂k‖

≤ c

(
ε

h2
k

‖uk − uk−1‖ + ‖(uk)x‖ + ‖(uk−1)x‖
)

≤ c

(
ε

h2
k

(
‖u− uk‖ + ‖ũ− uk−1‖ + ‖u− ũ‖

)
+ ‖(uk)x‖ + ‖(uk−1)x‖

)
.(10.2)

From Lemma 4.2 we get

‖(uk)x‖ + ‖(uk−1)x‖ ≤ c‖fk‖.(10.3)

From the result in Theorem 10.1 below it follows that

‖uk − u‖ + ‖uk−1 − ũ‖ ≤ c
h2
k

ε
‖fk‖.(10.4)

Finally, from Theorem 10.4 we have

‖u− ũ‖ ≤ c hk‖fk‖.(10.5)

If we insert the results (10.3),(10.4), and (10.5) in (10.2) we get

‖Wk(A
−1
k − pkA

−1
k−1rk)(I − Φ

1
2

k )b̂k‖ ≤ c‖fk‖ ≤ c‖(P ∗
k )−1‖‖I − Φ

1
2

k ‖‖b̂k‖ ≤ c‖b̂k‖

and thus the result of Theorem 6.4 is proved. It remains to prove the results in
Theorems 10.1 and 10.4.

Theorem 10.1. For fk ∈ V
0
k let u and uk be as defined in (10.1). Then

‖u− uk‖ ≤ c
h2
k

ε
‖fk‖(10.6)

holds.
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Proof. Define ek := u− uk. Let w ∈ H2(Ω) be such that

−εwyy − εkwxx − wx = ek(10.7)

with

wx = 0 on ΓW , w = 0 on Γ \ ΓW .(10.8)

Note that for this problem ΓE is the “inflow” boundary and ΓW is the “outflow”
boundary. We multiply (10.7) with ek and integrate by parts to get

‖ek‖2 = ε((ek)y, wy) + εk((ek)x, wx) − εk

∫
ΓE

wxek dy + ((ek)x, w)

= ak(ek, w) − εk

∫
ΓE

wxek dy.

We use (4.6) with w and ek instead of u and f , respectively, and (4.12) to estimate

∣∣∣∣εk
∫

ΓE

wxek dy

∣∣∣∣ ≤ ε
1
2

k

(
εk

∫
ΓE

w2
x dy

) 1
2
(∫

ΓE

e2
k dy

) 1
2

≤ c h
1
2

k ‖ek‖
hk√
ε
‖fk‖.(10.9)

From this estimate and the Galerkin orthogonality for the error it follows that for any
vk ∈ Vk

‖ek‖2 ≤ ε ((ek)y, (w − vk)y) + εk ((ek)x, (w − vk)x)

+ ((ek)x, w − vk) + c ‖ek‖
h

3
2

k√
ε
‖fk‖.

(10.10)

Let Ωh := Ωhk
be as defined in (5), i.e., Ωh is the set of triangles with at least one

vertex on ΓW . In the remainder of the domain, ω = Ω\Ωh, we take vk as a nodal
interpolant to w and we put vk = 0 on ΓW to ensure vk ∈ Vk. Note that vk is a
proper interpolant of w everywhere in Ω except in Ωh. Therefore we will estimate
scalar products in (10.10) over ω and Ωh, separately. We continue (10.10) with

‖ek‖2 ≤ c ε hk‖(ek)y‖ω‖w‖H2(ω) + c εk hk‖(ek)x‖ω‖w‖H2(ω)

+c h2
k‖(ek)x‖ω‖w‖H2(ω) + c ‖ek‖

h
3
2

k√
ε
‖fk‖ + IΩh

≤ c h2
k‖fk‖

1

ε
‖ek‖ + IΩh

.(10.11)

The term IΩh
collects integrals over Ωh:

IΩh
= ε ((ek)y, (w − vk)y)Ωh

+ εk ((ek)x, (w − vk)x)Ωh
+ ((ek)x, w − vk)Ωh

.

To estimate IΩh
we use Corollary 5.7 and the following auxiliary estimate for the

interpolant vk ∈ Vk of w, with ωh = {(x, y) ∈ Ω : x ∈ (hk, 2hk)}:

‖vk‖Ωh
≤ c‖vk‖ωh

≤ c(‖w‖ωh
+ ‖vk − w‖ω)

= c

( (∫ 1

0

∫ 2hk

hk

[
w(0, y) +

∫ x

0

wη(η, y) dη

]2

dx dy

) 1
2

+ ‖vk − w‖ω
)

≤ c

(
h

1
2

k

(∫
ΓW

w2 dy

) 1
2

+ hk‖wx‖ + h2
k‖w‖H2(ω)

)
≤ c

(
h

1
2

k +
h2
k

ε

)
‖ek‖.
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We proceed estimating terms from IΩh
, where we use the previous result:

ε ((ek)y, (w − vk)y)Ωh
≤ ε‖(ek)y‖Ωh

(‖wy‖ + ‖(vk)y‖Ωh
)

≤ c ε
1
2hk‖fk‖ (ε−

1
2 ‖ek‖ + h−1

k ‖vk‖Ωh
)

≤ c ε
1
2hk‖fk‖

(
ε−

1
2 + h

− 1
2

k +
hk

ε

)
‖ek‖≤ c

(
hk +

h2
k√
ε

)
‖fk‖‖ek‖,

εk ((ek)x, (w − vk)x)Ωh
≤ εk‖(ek)x‖Ωh

(‖wx‖ + ‖(vk)x‖Ωh
)

≤ c h
1
2

k εk‖fk‖ (‖ek‖ + h−1
k ‖vk‖Ωh

) ≤ c

(
hk +

h
5
2

k

ε

)
‖fk‖‖ek‖,

((ek)x, w − vk)Ωh
≤ ‖(ek)x‖Ωh

(‖w‖Ωh
+ ‖vk‖Ωh

)

≤ c h
1
2

k ‖fk‖
(
h

1
2

k

(∫
ΓW

w2 dy

) 1
2

+ hk‖wx‖Ωh
+ ‖vk‖Ωh

)

≤ c

(
hk +

h
5
2

k

ε

)
‖fk‖‖ek‖.

Inserting these estimates into (10.11) and using ε ≤ 1
2hk we obtain

‖ek‖2 ≤ c
h2
k

ε
‖fk‖‖ek‖ + c

(
hk +

h2
k√
ε

+
h

5
2

k

ε

)
‖fk‖‖ek‖ ≤ c

h2
k

ε
‖fk‖‖ek‖.

and thus the theorem is proved.
For the proof of Theorem 10.4 we first formulate two lemmas.
Lemma 10.2. Consider a function g ∈ H1(Ω). The solution of

−εkuxx − εuyy + ux = gx(10.12)

with boundary conditions as in (1.2) satisfies

∫
ΓE

u2 dy ≤ c

(
h−1
k ‖g‖2 +

∫
ΓE

g2 dy + hk ‖gx‖2

)
.(10.13)

Proof. We multiply (10.12) with u and integrate by parts to get

εk‖ux‖2 + ε‖uy‖2 +
1

2

∫
ΓE

u2 dy = −(g, ux) +

∫
ΓE

g u dy.(10.14)

For the right-hand side in (10.14) we have

|(g, ux)| ≤ ‖g‖‖ux‖ ≤ c ‖g‖‖gx‖ ≤ c
(
h−1
k ‖g‖2 + hk‖gx‖2

)
and ∫

ΓE

g u dy ≤
∫

ΓE

g2 dy +
1

4

∫
ΓE

u2 dy.

Combining these estimates and (10.14) the lemma is proved.
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Lemma 10.3. Assume g ∈ H1 and g|ΓE
= 0, let u be the corresponding solution

of (10.12). Then the following holds:

‖u‖ ≤ c

(
‖g‖ + hk‖gx‖ +

(∫
ΓW

g2 dy

) 1
2

+ hk

(∫
ΓW

u2
x dy

) 1
2

)
.(10.15)

(Note that the standard a priori estimates would give only ‖u‖ ≤ c ‖gx‖.)
Proof. Consider the auxiliary function v(x, y) :=

∫ x

0
u(ξ, y) dξ. It satisfies

−εkvxx − εvyy + vx = g + εk uin + gin,(10.16)

with uin(x, y) = ux(0, y) and gin = g(0, y). The corresponding boundary conditions
are

vx = u(1, y) on ΓE , v = 0 on ∂Ω \ ΓE .(10.17)

Then the estimate (10.15) is equivalent to

‖vx‖ ≤ c

(
‖g‖ + hk‖gx‖ +

(∫
ΓW

g2 dy

) 1
2

+ hk

(∫
ΓW

u2
x dy

) 1
2

)
.(10.18)

The estimate (10.18) is proved by the following arguments. We multiply (10.16) with
vx and integrate by parts to obtain

‖vx‖2 +
ε

2

∫
ΓE

(vy)
2 dy +

εk
2

∫
ΓW

(vx)
2
dy

= (g, vx) + εk(uin, vx) + (gin, vx) +
εk
2

∫
ΓE

(vx)
2
dy.(10.19)

Since g|ΓE
= 0 the estimate (10.13) yields∫

ΓE

(vx)
2
dy =

∫
ΓE

u2 dy ≤ c
(
h−1
k ‖g‖2 + hk ‖gx‖2

)
.(10.20)

Now (10.18) follows from (10.19) by applying the Cauchy inequality and estimate
(10.20).

Using these lemmas we can prove the final result we need.
Theorem 10.4. For f ∈ V

0
k let u and ũ be the continuous solutions defined in

(10.1). Then the following holds:

‖u− ũ‖ ≤ c hk‖fk‖.(10.21)

Proof. The difference e := u− ũ solves the equation

−εkexx − εeyy + ex = gx,(10.22)

with g = −δ̄hkũx and boundary conditions as in (1.2). Now the result of Lemma 10.3
can be applied. We obtain

‖e‖ ≤ c

(
‖g‖ + hk‖gx‖ +

(∫
ΓW

g2 dy

) 1
2

+ hk

(∫
ΓW

e2
x dy

) 1
2

)

≤ c hk

(
‖ũx‖ + hk‖ũxx‖ +

(∫
ΓW

u2
x dy

) 1
2

+

(∫
ΓW

ũ2
x dy

) 1
2

)
.
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To estimate the norms ‖ũx‖ and ‖ũxx‖ we use a priori bounds from Theorem 4.1.
Further we use the fact that fk = 0 in Ωin

k . Due to the choice of Ωin
k (cf. (5.18)) we

can apply Corollary 5.2 with ξ = hk, η = εk| lnhk| + hk, and p = 1
2 . Using (5.5) and

εk ≥ 1
3hk we get

∫
ΓW

u2
x dy ≤ c ‖fk‖2. The same estimate holds for

∫
ΓW

ũ2
x dy. Thus

we obtain ‖e‖ ≤ c hk‖fk‖.

11. Numerical experiments. In this section we present results of a few nu-
merical experiments to illustrate that in a certain sense our analysis is sharp. In
particular it will be shown that the nonstandard splitting in (6.8) which forms the
basis of our convergence analysis reflects some important phenomena.

In the experiments we use the following parameters. For δ̄ in (2.4) we take δ̄ = 1
2 .

The pre- and postsmoother are as in (6.2), (6.4) with ωk = 1. We take a random
right-hand side vector and a starting vector equal to zero. For the stopping criterion
we take a reduction of the relative residual by a factor 109 . Thus in the tables below
convergence is measured in the norm ‖ · ‖ATA. We use the notation Peh := h

2ε .
First we present results for a standard V-cycle with µk = νk = 2. In Table 11.1

we give the number of iterations needed to satisfy the stopping criterion and (between
brackets) the average residual reduction per iteration. These results clearly show ro-
bustness of the multigrid solver. For a W-cycle we also observed robust results.

Table 11.1

Multigrid convergence: V-cycle with νk = νk = 2.

h

Peh 1/8 1/32 1/128 1/512

1 8(0.06) 10(0.12) 11(0.13) 11(0.13)
10 7(0.04) 8(0.07) 8(0.07) 8(0.07)
1e+3 8(0.05) 11(0.14) 11(0.14) 11(0.14)
1e+5 7(0.04) 11(0.14) 11(0.14) 11(0.14)

Number of iterations and average reduction factor.

If we consider only the smoother and do not use a coarse grid correction, then for
ε ≈ h this method has an h-dependent convergence rate. This is illustrated in Ta-
ble 11.2.

We consider the standard splitting in the convergence analysis based on the
smoothing and approximation property. For ε = h2 some results are presented in
Table 11.3. The estimates that are given in this table result from the computation of

‖(A−1
h − pA−1

2h r)f̂‖
‖f̂‖

and
‖(AhS

2
h)f̂‖

‖f̂‖

Table 11.2

h-dependence of convergence of the smoothing iterations.

h

Peh 1/8 1/32 1/128 1/512

1 119(0.83) 244(0.91) 533(0.94) 1495(0.986)
10 26(0.44) 51(0.61) 66(0.72) 173(0.88)

Number of iterations and average reduction factor.
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with f̂ ∈ Vh a discrete point source in the grid point (1
2 ,

1
2 ). These results indicate

O(h−1) behavior for the smoothing property (as expected) and O(
√
h) behavior for

the approximation property. Hence this splitting is not satisfactory for proving a
robustness result.

Table 11.3

Standard splitting for approximation and smoothing properties.

h

Estimates for 1/8 1/32 1/128 1/512

‖A−1
h

− pA−1
2h

r‖ 8.4e-2 5.0e-2 2.7e-2 1.4e-2
‖AhS

2
h‖ 1.25 4.48 17.7 70.8

The proof of the modified approximation property is based on the result in Theo-

rem 10.1. In that theorem a
h2
k

ε bound is proved provided the right-hand side function
fk is zero close to the inflow boundary. We performed an experiment with a function
fk which has values equal to one in all grid points (hk, jhk), j = 1, . . . , nk, and zero

elsewhere. Results are given in Table 11.4. We observe an h
− 1

2

k effect. This justifies
the splitting using the cut-off operator Φk.

Table 11.4

Approximation property if fk has support near inflow.

h

Peh 1/8 1/32 1/128 1/512

1 0.31 0.60 1.23 2.53
10 0.07 0.17 0.23 0.46

Values of ε
h2 ‖(A−1

h
− pA−1

2h
r)f‖/‖f‖.

Finally we performed a numerical experiment related to the result in Theorem 6.3.
For the smoother we computed residual reduction factors in the almost degenerated

norm ‖Φ
1
2

k · ‖ with Φk := Ink−1
⊗ diag(φ) and

φi =

{
1 for 1 ≤ i < 5,
exp (4 − i) for 5 ≤ i ≤ nk.

For the relaxation parameter ω in the smoother we take the value ω = 1.2. The
results in Table 11.5 show h-independent and “fast” convergence of the smoother in
this norm.

Table 11.5

Residual reduction of the smoother in the ‖Φ
1
2 · ‖-norm.

h

Peh 1/8 1/32 1/128 1/512

1 93(0.8) 131(0.85) 133(0.85) 133(0.85)
10 23(0.40) 28(0.47) 28(0.47) 28(0.47)

Number of iterations and average reduction factor.
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