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a b s t r a c t

The paper presents a new discrete projection method for the numerical solution of the Navier–Stokes
equations with Coriolis force term. On an algebraic level we interpret one time step of the projection
method as an incomplete factorization of the linearized Navier–Stokes system and as the iteration of
an Uzawa type algorithm with special preconditioning for the pressure block. This enables us to modify
the well-known projection method in a way to account for possibly dominating Coriolis terms. We con-
sider a special multigrid method for solving the velocity subproblems and a modified projection (pressure
correction) step. Results of numerical tests are presented for a model problem as well as for 3D flow sim-
ulations in stirred tank reactors.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In many physical and industrial applications there is the neces-
sity of numerical simulations for CFD models with moving geome-
tries. As an example, let us consider the numerical simulation of a
Stirred Tank Reactor (STR) benchmark problem (Fig. 1.1). The fluid
motion is modeled by the nonstationary incompressible Navier–
Stokes equations

vt þ ðv � rÞv � mDv þrp ¼ f ; r � v ¼ 0 in X� ð0; T� ð1:1Þ

for given force f and kinematic viscosity m > 0. We also assume that
some boundary values and an initial condition are prescribed. For
constructing a mesh and performing numerical simulations we
make the following simplifications:

� The propeller of the stirred tank reactor rotates around the Z-
axis with constant angular velocity x ¼ ð0;0;xÞT .

� We do not have any blades attached to the outside wall, i.e. the
tank possesses a simple cylindrical geometry.

� The tank is filled with homogeneous liquid.

One way to treat the moving boundary parts of the propeller is
to apply, say, a fictitious boundary method for modeling the mov-
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ing parts [20,22]. Another approach for the simulation of the flow
in a stirred tank reactor is the following one. We change the iner-
tial frame of reference to the noninertial frame, rotating with the
blades. Performing coordinate transformation we consider a new
velocity u ¼ v þ ðx� rÞ, where x is the angular velocity vector
and r is the radius vector from the center of coordinates. The veloc-
ity u satisfies homogeneous Dirichlet boundary values on the
blades of the propeller, while on the outside wall of the tank one
obtains u ¼ x� r. Thus, in the new reference frame the system
(1.1) can be rewritten as

utþðu �rÞu�mDuþ2x�uþx�ðx�rÞþrp ¼ f
r�u ¼ 0

in X�ð0;T�;

ð1:2Þ

where 2x� u and x� ðx� rÞ are the so-called Coriolis and centrif-
ugal forces, respectively. For a more detailed derivation of (1.2) see,
e.g., [1] or [16]. Using the equality

x� ðx� rÞ ¼ �r1
2
ðx� rÞ2

and setting P ¼ p� 1
2 ðx� rÞ2 in (1.2), we get the following system of

equations which will be treated in this paper:

ut þ ðu � rÞu� mDuþ 2x� uþrP ¼ f
r � u ¼ 0

in X� ð0; T�: ð1:3Þ

As a first step let us consider the semi-implicit second order time
discretization: given un and the time step Dt ¼ tnþ1 � tn, find unþ1

and pnþ1 (for the convenience we denote p ¼ P in (1.3)) satisfying
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Fig. 1.1. STR geometry.
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unþ1 � un

Dt
þ 1

2
ððu� � rÞunþ1 � mDunþ1 þ 2x� unþ1Þ þ rpnþ1 ¼ gnþ1

r � u ¼ 0

ð1:4Þ

with the right-hand side

gnþ1 ¼ 1
2
ðf nþ1 þ f nÞ � 1

2
ððu� � rÞun � mDun þ 2x� unÞ; ð1:5Þ

u� denotes a second order extrapolation of velocity from n and n� 1
time steps. Alternatively one may consider a fully implicit scheme
by setting u� ¼ unþ1. Discretization of (1.4), (1.5) in space leads to
a saddle-point system to be solved in every time step. The system
has the form

S B

BT 0

� �
u
p

� �
¼

g
0

� �
; ð1:6Þ

where u ¼ ðu1;u2; u3ÞT is the discrete velocity, p the discrete pres-
sure; B and BT are discrete gradient and divergence operators and
S is a block matrix which is due to the discretized velocity operators
in the momentum equation. The implicit scheme (1.4) and (1.5) has
excellent stability properties, see e.g. [19], however solving the cou-
pled system (1.6) in every time step is rather expensive. To avoid
this, some splitting procedures are often used in practice such as
the Chorin–Temam projection method. It has been observed by a
number of authors, see, e.g. [12,21], that on the discrete level the
projection method can be interpreted as a particular incomplete
factorization of the matrix from (1.6), which involves precondition-
ers for S and for the pressure Schur complement matrix, see Section
2. Given this algebraic framework we design and analyze in the
present paper more effective factorizations for the system (1.6)
and, based on this, build a new discrete projection method for the
time integration of (1.3). In particular, we construct several new
preconditioners for pressure Schur complement of the system
(1.6) by building on the previous work in [8]. This development
leads to a modified pressure Poisson problem in every time step
of the projection scheme. The modified projection step takes into
account the influence of the Coriolis force and improves the perfor-
mance of the scheme. The STR problem will serve us as an example
of applying this technique. As basic software for our simulations we
use the PP3D module of the open-source CFD package Featflow [18].

2. Discrete projection method (DPM)

Let us start with a well-known second order variant of the
Chorin–Temam projection method [13,2] applied to the problem
(1.3). In its semi-discrete form it can be viewed as a two-step pro-
cedure for advancing from time step n to step nþ 1: with given
un; pn and gnþ1 defined in (1.5):

Step 1: Find intermediate velocity ~u from

~u� un

Dt
þ 1

2
ððu� � rÞ~u� mD~uþ 2x� ~uÞ ¼ gnþ1 �rpn: ð2:1Þ

Step 2: Find new velocity and pressure as the result of the orthog-
onal projection into the divergence-free subspace

unþ1�~u
Dt þ 1

2 ðrpnþ1 �rpnÞ ¼ 0
r � unþ1 ¼ 0:

(
ð2:2Þ

To motivate our modifications of the projection method, let us
consider its algebraic counterpart. To this end, denote by M the
velocity mass matrix and by Iu, Ip the identity matrices on discrete
velocity and pressure spaces, respectively. It is easy to check that in
the discrete setting the method (2.1), and (2.2) can be written in
the following algebraic form:

S 0
BT �BT 1

Dt M
� ��1B

 !
Iu

1
Dt M
� ��1B

0 Ip

 !
unþ1

q

 !
¼ ĝ

0

� �
ð2:3Þ

with ĝ ¼ gnþ1 þ 1
Dt un � Bpn and q ¼ 1

2 ðpnþ1 � pnÞ. The matrix product
on the left-hand side of (2.3) can be observed as the incomplete LU
factorization for the matrix of the coupled linearized Navier–Stokes
system (matrix from (1.6)). Indeed, it holds

S B

BT 0

� �
¼

S 0
BT �BT S�1B

� �
Iu S�1B

0 Ip

 !
: ð2:4Þ

The velocity submatrix has the form

S ¼
A �xM 0

xM A 0
0 0 A

0B@
1CA; ð2:5Þ

where A ¼ ðDtÞ�1M þ 1
2 ½Nðu�Þ þ mL� is the velocity stiffness matrix, M

is the mass matrix for a single velocity component, and the matrix
operators Nðu�Þ and L are the discrete analogues of ðu � rÞ� and
ð�DÞ�, respectively. Therefore, if the time step Dt is sufficiently
small the scaled block diagonal mass-matrix ðDtÞ�1M is a reason-
able approximation to S and the incomplete factorization in (2.3)
is close to the exact factorization (1.6). This shows that in some
sense the projection method (2.1) and (2.2) approximates the cou-
pled implicit method (1.4) for small Dt.

2.1. Modified projection method

From the above consideration one realizes that a better approx-
imation to S�1, compared to ðDtÞM�1, may lead to more effective
(possibly less restrictive w.r.t. size of Dt) projection methods. Be-
low, see (3.7) and (3.9), we consider an approximation M�1

ð�Þ to
S�1 which takes into account the Coriolis terms and to some extend
the convection terms. Thus, we consider the system (2.3) with an-
other velocity matrix approximation Mð�Þ instead of 1

Dt M. In the
algorithmic form one time step of the new discrete projection
method reads (for tn ! tnþ1):

1. Given pn ’ pðtnÞ, un ’ uðtnÞ, and ~g ¼ gnþ1 þ 1
Dt un, then solve for ~u

the equation
S~u ¼ ~g � Bpn: ð2:6Þ
2. Solve the modified discrete pressure Poisson problem
Pq ¼ BT ~u with P ¼ BT M�1
ð�Þ B: ð2:7Þ
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3. Correct pressure and velocity
pnþ1 ¼ pn þ q; ð2:8Þ
unþ1 ¼ ~u�M�1

ð�Þ B q: ð2:9Þ
Although we perform all our calculations with the discrete pro-
jection method (2.6)–(2.9), it is instructive to write down its semi-
discrete counterpart. This is easy to do for the case of Mð�Þ defined
in (3.7). Now the procedure for advancing from time step n to step
nþ 1 reads (compare to (2.1) and (2.2)): for given un; pn and gnþ1

defined in (1.5):

Step 1: Find intermediate velocity ~u from

~u� un

Dt
þ 1

2
ððu� � rÞ~u� mD~uþ 2x� ~uÞ ¼ gnþ1 �rpn: ð2:10Þ

Step 2: Find new velocity and pressure as the result of the follow-
ing projection into the divergence-free subspace

unþ1�~u
Dt þ x� ðunþ1 � ~uÞ þ 1

2 ðrpnþ1 �rpnÞ ¼ 0
r � unþ1 ¼ 0:

(
ð2:11Þ
Fig. 3.1. Nodal points of the nonconforming finite element in 3D.
Remark 2.1. For efficient calculations with the original projection
method (2.1) and (2.2) or with the modified one, we need an
efficient solver for the velocity subproblem with the matrix S as
well as for the (modified) pressure problem with matrix P. In
Section 3.3 we will show that the modified method leads to a
symmetric pressure problem of the diffusion type.

Remark 2.2. If we compare the factorizations (2.3) and (2.4), it is
easy to notice that the matrix �BTð 1

Dt MÞ�1B, corresponding to the
discrete pressure Poisson problem, can be considered as a precon-
ditioner for the Schur complement matrix�BT S�1B. Another way to
realize this is the following, see, e.g., [17]. Eliminating ~u we can
rewrite (2.6)–(2.8) as

pnþ1 ¼ pn þ P�1ðBT S�1Bpn � gÞ

with g ¼ BT S�1~g. Thus with respect to the pressure variable one step
of the projection method can be seen as one iteration of the precon-
ditioned Uzawa algorithm. This relates the efficiency of the projec-
tion methods with the issue of pressure Schur complement
preconditioning, see also [3].

Remark 2.3. One possible variation of the projection method is to
add a diffusion dependent term to the pressure correction step
(2.8):

pnþ1 ¼ pn þ qþ mM�1
p BT ~u:

In [13] (for the case x ¼ 0) it was discussed that adding such term
may reduce numerical boundary layers in projection methods.

Remark 2.4. Observing (2.11) or the choice of M�1
ð�Þ in (3.7) and

(3.9) one notes that the modified projection step essentially takes
into account the Coriolis terms and only indirectly (in (3.9)) the
convection terms. Therefore the proposed modification of the
method is especially suitable for the case of moderate Rossby num-
bers. See, however, the comments for the case of large Rossby
numbers in Section 3.4.

In the next section we mainly address the following two issues:

� Building an efficient multigrid solver for the velocity subprob-
lem (2.6).

� Finding an appropriate matrix Mð�Þ involved in steps (2.7) and
(2.9).
3. Algorithmic details of the DPM

3.1. Space discretization

For the space discretization we use the mixed finite element
method (nonconforming Rannacher–Turek elements eQ 1 for veloc-
ity vector field u and piecewise constant elements Q 0 for pressure
p, see Fig. 3.1). The analysis of these elements can be found in [14].

The spaces eQ 1 and Q0 lead to numerically stable approxima-
tions as h! 0, i.e. they satisfy the Babuska–Brezzi condition with
a mesh independent constant c:

inf
ph2Q0

sup
uh2eQ 1

ðph;r � uhÞ
kphk0krhuhk0

P c > 0:

Further in this section we describe an efficient solver for the
velocity subproblem (2.6) and we build a matrix M�1

ð�Þ that approx-
imates S�1. The latter is also related to a pressure Schur comple-
ment preconditioning or, in the terms of projection methods, to a
new ‘‘pressure Poisson” equation.

As a first step we neglect convective terms and consider the
DPM applied to the system of Stokes equations with the Coriolis
force term:

ut � mDuþ 2x� uþrp ¼ f
r � u ¼ 0

in X� ð0; T�: ð3:1Þ

Both the discretized velocity subproblem and the scalar pressure
equation will be solved by multigrid methods with special smoo-
thers and coarse grid solvers to be explained below.

3.2. Velocity subproblem

Assuming a hierarchy of grids let us consider a multigrid meth-
od for solving Eq. (2.6). For smoothing iterations we take a linear
iterative method of the form

~ulþ1 ¼ ~ul þ aC�1ð~g � Bpn � S~ulÞ; ð3:2Þ

where a is a relaxation parameter and C is a suitable preconditioner
of S. We are interested in an efficient smoother for the case of large
values of the Coriolis force term, i.e. when the off-diagonal parts in
the matrix (2.5) have values equal or larger than those of the diag-
onal part. Note that in this case the skew-symmetric part of S is
dominant. Thus standard smoothing iterations like Jacobi or
Gauss–Seidel may not lead to a robust multigrid solver.

The off diagonal values in (2.5) should be taken into account in
C, if the Coriolis terms are large enough. Following [10], we put

C :¼ Ccoriol ¼
diagðAÞ �xML 0
xML diagðAÞ 0

0 0 diagðAÞ

0B@
1CA; ð3:3Þ
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where ML is the lumped mass matrix. The lumped mass matrix is a
diagonal matrix with diagonal elements defined as mi ¼

P
jmij,

where mij are the entries of M. ML is often taken as an approxima-
tion for the consistent mass matrix. For the two-dimensional veloc-
ity problem discretized by a conforming finite element method on a
regular grid it was proved in [10] that a standard geometric multi-
grid method with such smoothing is robust with respect to all rel-
evant problem parameters. We will see that the multigrid method
stays very efficient in more practical settings, too.

Taking into account the fact that all blocks of Ccoriol are diagonal
matrices, one can explicitly find its inverse C�1

coriol [15]. In Section
4.1 we will present results of numerical experiments with the mul-
tigrid method using different smoothers. We will see that itera-
tions (3.2) with the preconditioner Ccoriol outperform such
standard smoothers as Jacobi or SOR methods.

3.3. Modified pressure equation

The choice of the matrix M�1
ð�Þ in (3.8) and (2.9) defines the dis-

crete projection method. In particular this choice defines the ma-
trix P ¼ BTM�1

ð�Þ B of the discrete pressure equation. Matrix P can
be considered as a preconditioner for the pressure Schur comple-
ment of the original system (1.6), cf. Remark 2.2. Only few results
can be found in the literature related to the preconditioning of the
pressure Schur complement operator for fluid equations with Cori-
olis terms, see for instance [7–9]. Here we follow the approaches
given in [8,9] and [19] to construct a preconditioner for the discrete
counterpart of the Schur operator:

Pcont ¼ �r �
1
Dt

I � mDþw�
� ��1

r: ð3:4Þ

To this end, let us consider the influences of mass, Coriolis and dif-
fusion parts in (3.4) separately. From A ¼ ðDtÞ�1M þ mL we get that if
the time step or the kinematic viscosity is small enough, then we
can assume that A � ðDtÞ�1M and therefore P�1 ¼
ðDtÞ�1ðBT M�1BÞ�1. If the time step or the kinematic viscosity is suf-
ficiently large, then we assume that A � mL and hence P�1 ¼ mM�1

p ,
where Mp is the pressure mass matrix. Then, as preconditioner for
the general Stokes case, we can define the matrix P�1 as linear inter-
polation of the above extreme cases, namely

P�1 ¼ ðDtÞ�1ðBTM�1BÞ�1 þ mM�1
p : ð3:5Þ

When the time step is small, the diffusion-oriented part of the pre-
conditioner mM�1

p is often neglected, leading to the standard projec-
tion step as in (2.3). In the case of the Coriolis force term involved,
we use instead of P ¼ DtðBTM�1BÞ the modified preconditioner

Pmassþcoriol ¼ BTM�1
ðmassþcoriolÞB ð3:6Þ

by choosing the ‘Coriolis-oriented’ mass matrix

MðmassþcoriolÞ ¼

1
Dt ML �xML 0
xML

1
Dt ML 0

0 0 1
Dt ML

0B@
1CA: ð3:7Þ

Here, the off-diagonal parts represent the contribution of the w�
operator. Thus, the modified pressure Poisson equation reads

Pmassþcoriol q ¼ BTM�1
ðmassþcoriolÞB q ¼ BT ~u: ð3:8Þ

We will see that (3.8) can be interpreted as the discrete counterpart
of a modified pressure Poisson problem with symmetric diffusion
tensor.

To take into account the influence of the viscous terms, the ma-
trix mM�1

p can be also included in the pressure correction step, cf.
Remark 2.3. Alternatively one can include the diagonal part of S
into the pressure diffusion operator. Namely, one can consider in
(3.8)

MðdiagþcoriolÞ ¼
diagðAÞ �xML 0
xML diagðAÞ 0

0 0 diagðAÞ

0B@
1CA: ð3:9Þ

Below we discuss some important details of the modified projection
step. First, note that the matrix Pmassþcoriol in (3.8) can be seen as a
discretization of the following differential operator (see [8] p. 365
for more details):

L ¼ �r �M�1r with M ¼ ½ðDtÞ�1I þw��; w ¼ ð0;0;xÞT:

One finds

M�1 ¼ Dt ð1þ j ~wj2Þ�1 I þ ~w	 ~w� ~w�½ �; ~w ¼ Dtw

where ð ~w	 ~wÞij ¼ ~wi ~wj. Since ~w is a constant vector one has
~w�rq ¼ r� q ~w for a scalar function q. Since r � ðr�Þ 
 0, one
gets r � ð ~w�rqÞ ¼ 0. Therefore in the differential notations Eq.
(3.8) can be written as

�ð1þ j ~wj2Þ�1r � I þ ~w	 ~w½ �rq ¼ �ðDtÞ�1r � ~u:
Note that although the operator M is non-symmetric the resulting
diffusion type problem for the pressure update q is symmetric. The
important property of symmetry-preserving on the discrete level is
verified in the following lemma.

Lemma 3.1. For the discretization with the nonconforming Stokes
finite element eQ 1=Q0 the matrix P ¼ BT M�1

ðmassþcoriolÞB is symmetric.

Proof. Let Np be the number of elements and Nu the number of
internal faces. Denote P ¼ fpijg, i; j ¼ 1; . . . ;Np,

ML ¼ fmiig; B ¼ ðB1;B2;B3ÞT with BK ¼ fbK

ij g;
i ¼ 1; . . . ;Nu; j ¼ 1; . . . ;Np: ð3:10Þ

Using (3.7) and notation (3.10) we compute

pij¼Dt
XNu

k¼1

�
b1

kib
1
kj

mkkð1þ s2Þþ
b1

kib
2
kjs

mkkð1þ s2Þ�
b2

kib
1
kjs

mkkð1þ s2Þþ
b2

kib
2
kj

mkkð1þ s2Þþ
b3

kib
3
kj

mkk

 !
with s ¼ Dtx. It is sufficient to show that

b1
kib

2
kj � b2

kib
1
kj ¼ 0; 8i; j ¼ 1; . . . ;Np; k ¼ 1; . . . ;Nu: ð3:11Þ

By the definition of B we have

bk
ij ¼

Z
Tj

r � /k
i wjdx ¼ �

Z
Tj

/k
irwjdxþ

Z
@Tj

/k
i � njwjdr

¼
Z
@Tj

/k
i � njwjdr; ð3:12Þ

where wj 2 Q0, /k
i 2 ~Q1 are basis functions for the pressure and the

kth velocity component that corresponds to the jth element and ith
face, nj is a unit outward normal for Tj. Denote by nij ¼ ðn1

ij; n
2
ij;n

3
ijÞ

T a
unit outward normal to the ith face of the jth element. Then (3.12)
implies nki ¼ �nkj. Thus (3.11) follows. h

Remark 3.2. The proposition is true for any P ¼ BTA�1B, where A
takes the form of (3.7) or (3.9). In particular it is valid for
A ¼MðdiagþcoriolÞ from (3.9).

Remark 3.3. If the angular velocity x increases, then the precondi-
tioning matrix (3.6) becomes close to the degenerate case of a tri-
diagonal matrix (see [15]). The situation is somewhat less critical



Table 4.1
Mesh characteristics of a unit cube with equidistant meshing
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for the preconditioner based on (3.9) thanks to the contribution of
the discrete stabilized convective term in the diagðAÞ entries.
Level NEL NAT NVT NEQ

1st level 8 36 27 116
2nd level 64 125 240 439
3rd level 512 1,728 729 5,696
4th level 4,096 13,056 4,913 43,264
5th level 32,768 101,376 35,973 336,896

Table 4.2
Number of multigrid iterations of the momentum equation

Preconditioner xDt Meshing level

3 4 5

CSOR 0.6 2 2 2
CSORcoriol 0.6 2 2 2
Ccoriol 0.6 2 2 2
CSOR 6 2 2 2
CSORcoriol 6 2 2 2
Ccoriol 6 2 2 2
CSOR 60 Div Div Div
CSORcoriol 60 3 3 3
Ccoriol 60 2 2 2
CSOR 600 Div Div Div
CSORcoriol 600 10 16 12
Ccoriol 600 2 2 2
3.4. Treatment of the convective term

In the previous section we considered the system of Stokes
equations with the Coriolis force term. However, performing
numerical calculations for medium and high Reynolds number
flows, one has to take into account the convective term as well.
To prevent numerical oscillations we used the algebraic flux cor-
rection scheme of TVD type [6] for the discretization of convection
terms. Moreover, adding such stabilization makes multigrid solver
for the velocity subproblem more effective. Another relevant ques-
tion is how to include the terms due to convection in the projection
step. As we have seen, cf. Remark 2.2, this issue can be related to
the question of building effective pressure Schur complement pre-
conditioners for the case of dominating convection terms. This
though question attracted a lot of considerations during the last
decade, see an overview in [4,11]. However, we are not aware of
any successful attempt to adopt these recently suggested precondi-
tioners in a projection type scheme. The presence of the Coriolis
force, makes the question even more difficult to address. Hence
the modifications proposed in this paper are expected to improve
performance of the projection scheme mostly for the case of mod-
erate Rossby numbers.

A promising approach for the case of large Rossby numbers is
the following. Using the well-known inequality

ðu � rÞu ¼ ðr � uÞ � uþr u2

2

� �
and introducing a new pressure variable (Bernoulli pressure), we
can replace the convective operator by the cross product one:

ðu � rÞuþ 2x� uþrp ¼ wðuÞ � uþrP ð3:13Þ

with wðuÞ ¼ r� uþ 2x and P ¼ pþ u2

2 . Thus, the Coriolis force
term and the convective operator can be handled on the second step
of the projection method simultaneously in the same way as de-
scribed above in this paper, see [8] for the analysis of similar ap-
proach in the context of the Schur complement preconditioners
for the linearized Navier–Stokes problem.

Thus, in the ‘rotating’ system of the Navier–Stokes equations we
can treat convection and rotating forces either as the right or the
left part of (3.13). While both treatments are equal on the contin-
uous level, they may lead to discrete systems with quite different
properties. In particular, many reliable methods for the stabiliza-
tion of convection dominated flows have been developed by the
CFD community. Among them are streamline-diffusion and
upwinding schemes, edge-oriented stabilization, algebraic flux
correction, etc. At the same time, not so much is known about sta-
bilization techniques available for the term ðr � uÞ � u. The ap-
proach based on the rotation form of convection term from
(3.13) is a topic of our current research and will be addressed in
more detail elsewhere.

4. Numerical experiments

In this chapter we analyze the numerical properties of the sug-
gested algorithms for the system of the Stokes and Navier–Stokes
equations with the Coriolis force term. We will compare the pre-
conditioners, evaluate convergence rates, examine stabilization
techniques and present numerical results for a model problem
posed in the unit cube. In every case we assume that the Coriolis
term corresponds to a rotation around the Z-axis. The unit cube
geometry ½�1;1� � ½�1;1� � ½�1;1� was taken as the simplest con-
figuration to test the algorithm. In all experiments we set m ¼ 1,
Dt ¼ 10�3, the value of x may vary. For a discretization we con-
sider a uniform Cartesian mesh. In the geometric multigrid solver
we use several grid levels. In Table 4.1 we adopt the following
notation: NEL is the number of elements, NAT is the number of
faces, NVT and NEQ are the number of vertices and the total num-
ber of unknowns on different grid levels.

4.1. Multigrid method for velocity problems

Step 1 of the projection method involves a solution of the veloc-
ity subproblem with matrix S given in (2.5). Here we test a geomet-
ric multigrid method (V-cycle) with smoothing iterations defined
in Section 3.2. We compare it with the multigrid involving more
standard pointwise SOR type smoothing iterations. This smoothing
iterations can be defined as (3.2) with

C :¼ CSOR ¼
lower partðAÞ 0 0

0 lower partðAÞ 0
0 0 lower partðAÞ

0B@
1CA or

C :¼ CSORcoriol ¼
lower partðAÞ 0 0

xML lower partðAÞ 0
0 0 lower partðAÞ

0B@
1CA

Both CSORcoriol and Ccoriol matrices take into account convective and
Coriolis force terms. However, only Ccoriol from (3.3) uses the full
Coriolis force terms and, at the same time, we can explicitly con-
struct its inverse matrix. In Table 4.2 we present the number of
multigrid iterations to gain 3 digits of defect improvement for sev-
eral problem parameters and various smoothers.

For larger values of xDt the multigrid method with Ccoriol-based
smoother outperforms the SOR-type smoothers. Moreover, the
block diagonal structure of Ccoriol makes it possible to find the in-
verse matrix explicitly. This makes the calculation of C�1

coriol for a gi-
ven vector q very fast and easily done in parallel.

4.2. Multigrid solver for the modified pressure Poisson problem

We solve both the velocity problem in step 1 of the DPM and the
modified pressure equation in step 2 by multigrid methods.
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Numerical results of Section 4.1 show that the geometric multigrid
method with special smoothings is very effective for solving the
velocity problem. However the overall efficiency of the DPM also
depends on whether a fast solver is available for (3.8). Lemma
3.1 and the analysis of Section 3.3 ensure that the matrix
P ¼ BTM�1

ð�Þ B with M�1
ð�Þ from (3.7) to (3.9) is sparse, symmetric, po-

sitive definite and corresponds to a mixed discretization of an
elliptic problem with symmetric diffusion tensor. Thus one expects
that standard multigrid techniques work well in this case. Numer-
ical tests however show that the standard geometric multigrid
method with SOR smoother does not provide a satisfactory solver
for this problem in all practical cases. Therefore, we also test’stron-
ger’ smoothers such as ILU(k) and BiCGStab(ILU(k)).

The procedure to measure the multigrid convergence rates was
chosen as follows: for given x we apply several DPM iterations un-
til some prescribed stopping criteria are satisfied. The obtained
steady state solution ð~u; ~pÞ is used as an initial solution so that
diagðAÞ ¼ diagðAð~uÞÞ. Further we solve the pressure diffusion equa-
tion by the multigrid method with two different smoothers and
various values of xDt. In Table 4.3 convergence rates are given
for the V-cycle with four post-smoothing steps (no pre-smoothing)
by ILU(1) iterations or two post-smoothing steps by BiCGStab with
ILU(1) preconditioning. Thus in either case the computational com-
plexity of the multigrid was approximately the same. Summarizing
our numerical results for the pressure problem, we conclude:

� The convergence rates are almost level independent.
� For large values of xDt the matrix P ¼ BTM�1

ðmassþcoriolÞB tends
towards a tridiagonal matrix. This explains the excellent conver-
gence rates with the ILU(1) and BiCGStab(ILU(1)) smoother since
they are exact solvers for tridiagonal matrices. However,
although the pressure diffusion equation with these matrices
is easy to solve, the global behaviour of the outer DPM may
get worse as the following section illustrates.

4.3. Numerical results for the DPM

We start numerical experiments with finding a stationary limit
of unsteady solutions to the Stokes and the Navier–Stokes problem.
This is done by performing a pseudo-time-stepping with the DPM
Table 4.3
Multigrid convergence rates for different preconditioners P ¼ BTM�1

ð�Þ B with 4
smoothing steps, respectively, 2 smoothing steps for BiCGStab

Level Smoother 2xDt

0.05 0.5 5.0 50.0

MðmassþcoriolÞ
Level 3 ILU(1) 0.17�02 0.14�02 0.35�05 0.57�07
Level 4 ILU(1) 0.19�02 0.19�02 0.77�03 0.12�06
Level 5 ILU(1) 0.50�02 0.52�02 0.47�02 0.24�06
Level 3 BiCGStab(ILU(1)) 0.95�03 0.70�03 0.73�07 0.56�07
Level 4 BiCGStab(ILU(1)) 0.39�03 0.35�03 0.12�03 0.12�06
Level 5 BiCGStab(ILU(1)) 0.53�03 0.58�03 0.70�03 0.24�06

MðdiagÞ
Level 3 ILU(1) 0.31�01 0.14+00 0.23+00 0.25+00
Level 4 ILU(1) 0.28�01 0.20+00 0.34+00 0.35+00
Level 5 ILU(1) 0.13+00 0.38+00 0.44+00 0.45+00
Level 3 BiCGStab(ILU(1)) 0.37�02 0.51�02 0.75�02 0.13�01
Level 4 BiCGStab(ILU(1)) 0.95�02 0.45�01 0.79�01 0.78�01
Level 5 BiCGStab(ILU(1)) 0.78�01 0.16+00 0.19+00 0.19+00

MðdiagþcoriolÞ
Level 3 ILU(1) 0.31�01 0.10+00 0.13+00 0.25+00
Level 4 ILU(1) 0.28�01 0.20+00 0.32+00 0.35+00
Level 5 ILU(1) 0.10+00 0.31+00 0.36+00 0.45+00
Level 3 BiCGStab(ILU(1)) 0.37�02 0.51�02 0.05�02 0.18�01
Level 4 BiCGStab(ILU(1)) 0.89�02 0.29�01 0.71�01 0.78�01
Level 5 BiCGStab(ILU(1)) 0.70�01 0.02+00 0.16+00 0.18+00
until the steady state is achieved. To monitor the convergence to a
steady solution we compute the values of kutkl2

=kukl2
and

kptkl2
=kpkl2

. In the next section the DPM is used to compute the
fully unsteady solution of the STR problem. Important characteris-
tics for incompressible viscous flows with Coriolis force are given
by the dimensionless Reynolds Re ¼ UL

m

� �
and Rossby ðRo ¼ U

2xLÞ
numbers, where L and U are reference length and velocity, respec-
tively. For the numerical experiments with the Stokes problem in
Section 4.3.1 these numbers are not relevant, however. For the Na-
vier–Stokes case in Section 4.3.2 we compute these numbers based
on the reference values L ¼ 1 and U equals the maximum velocity
prescribed on the boundary oX. This leads to Ro ¼ 1ffiffi

2
p ; the Reynolds

number varies.

4.3.1. Results for the Stokes equations with Coriolis force
First we find a steady limit for the solution of (3.1) by the DPM

with homogeneous force term f ¼ 0. The velocity equation in step
1 of the DPM is solved (almost) exactly. For the projection and cor-
rection steps 2 and 3 we examine two options for choosing Mð�Þ.
One is Mð�Þ ¼MðmassÞ leading to a standard projection method, an-
other choice is Mð�Þ ¼MðmassþcoriolÞ defined in (3.7).

It is natural to expect that as soon as the value of xDt increases,
the off-diagonal block of the matrix MðmassþcoriolÞ, which is due to
the Coriolis force, plays a more important role and the solution
converges to a steady state in a smaller number of time steps.
And vice versa, if xDt is small there is no big difference in the
behavior of the standard and modified DPM. We illustrate both
phenomena in Fig. 4.1.
4.3.2. Results for the Navier–Stokes equations
Similar to the Stokes case for the Navier–Stokes Eq. (1.3) one

can expect to gain a substantial improvement by applying the
modified DPM with the matrix MðmassþcoriolÞ. However one may also
take care about the contribution of convective terms to the matrix
P in (3.8). As it was proposed in the previous section, the convec-
tive terms are taken into account by defining Mð�Þ ¼ MðdiagþcoriolÞ
as in (3.9). The simple choice is given by

MðdiagÞ ¼
diagðAÞ 0 0
0 diagðAÞ 0
0 0 diagðAÞ

0B@
1CA

Fig. 4.2 compares the performance of the DPM with Mð�Þ equal to
MðmassþcoriolÞ, MðdiagþcoriolÞ and MðdiagÞ. We note that although the use
of MðmassþcoriolÞ leads for large xDt to almost tridiagonal matrix
and therefore extremely fast multigrid convergence for pressure
diffusion problem (see Table 4.3), the overall convergence behavior
of the DPM is better with MðdiagþcoriolÞ.

For the last test case from these series, we perform computa-
tions with the linearized convective term of the form U � ru. To
choose an appropriate U, we first perform the numerical
simulation for the Navier–Stokes equations until steady state.
Then we set U ¼ u and solve this linear problem with the DPM
which allows now much higher values of xDt, since the convection
part becomes linear. For the higher values of xDt the matrix
MðdiagþcoriolÞ in P ensures significantly better convergence to a stea-
dy solution than MðdiagÞ or other choice. Results are shown in
Fig. 4.3.
5. Numerical experiments with the STR configuration

Finally, we demonstrate the behavior of the new DPM scheme
for a more realistic configuration, namely the stirred tank reactor
geometry which is shown in Fig. 5.1 (left). We solve the time-



Fig. 4.1. Stokes equations (upper) 2xDt ¼ 0:5; (middle) 2xDt ¼ 1:0; (bottom) 2xDt ¼ 10:0.
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dependent Navier–Stokes equations with the following given data:
the height of the tank H ¼ 4, the radius of the tank R ¼ 10, the
length of the propeller Lprop ¼ 6, the angular velocity of the propel-
ler ðxÞ equals 2p. Fluid enters the tank through an inlet on the right
side with a constant velocity equals 40, then it is ‘mixed’ by the
rotating propeller and leaves the stirred tank through an outlet lo-
cated on the left side. Thus for the Reynolds and the Rossby num-
bers we have Re � 630 and Ro ¼ 0:5, where R is taken as a
reference length and the velocity of the outer boundary is taken
as a reference velocity. The coarsest mesh contains 22,528 quadri-
laterals, 25,074 vertices and 70,144 faces. This mesh is presented in
Fig. 5.1 (left). The finest mesh used in the STR simulation is two
levels higher and possesses 884,736 quadrilaterals, 908,802 verti-
ces and 2,678,272 faces leading to approximately 9 million
unknowns.
The coordinate transformation made it possible to preserve the
mesh aligned with the boundaries of the propeller such that even
the small-scale flow features are resolved. At the end of the simu-
lation, in the postprocessing phase, the backward coordinate trans-
formation (from the noninertial to the inertial one) is performed
and the velocity field is changed respectively to provide the user
with the ‘standard’ motion of the propeller in the stirred tank reac-
tor. The iso-surfaces and isolines of juj are shown in Figs. 5.1 (right)
and 5.2 (left). Next we compare the performance of the standard
scheme (2.1) and (2.2) and the modified scheme. The Fig. 5.2
(right) shows the kinetic energy plots obtained for the for STR
using both schemes with relatively large time step with the ‘refer-
ence’ kinetic energy computed with a smaller time step. One can
note that the solution computed with the new projection method
is somewhat more accurate.



Fig. 4.2. Navier–Stokes equations (TOP) 2xDt ¼ 1:5; (bottom) 2xDt ¼ 2:5.

Fig. 4.3. Linearized Navier–Stokes equations (LEFT) 2xDt ¼ 5:0; (right) 2xDt ¼ 10:0.

Fig. 5.1. (left) Coarse mesh; (right) iso-surface of juj.
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Fig. 5.2. (left) iso-lines of juj; (right) kinetic energy.
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6. Conclusions

We proposed a new discrete projection method for the incom-
pressible Navier–Stokes equations with Coriolis force which in-
cludes new multigrid and preconditioning techniques for the
arising subproblems for pressure and velocity. In particular, the
constructed multigrid method for the velocity matrix shows a ro-
bust convergence behavior for a wide range of xDt values. More-
over, its explicit inversion does not require any additional
memory or computational resources. The modified discrete pres-
sure Poisson operator in a projection step was deduced using the
pressure Schur complement preconditioning technique. It appears
to be much more efficient than the standard one since convective
as well as rotational parts were taken into account. The numerical
results show that the modified DPM is more efficient and robust
with respect to the variation in problem parameters than standard
projection schemes.
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