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In this paper we introduce a mixed formulation of the Bingham fluid flow problem. We consider both the
original and a regularized version of the problem, where a parameter e is introduced, forcing the entire
domain to be formally a fluid region. In general, common solvers for the regularized problem experience a
performance degradation when the parameter e gets smaller. The method studied here introduces an
auxiliary tensor variable and shows enhanced numerical properties for small values of e. A good perfor-
mance is also observed for the non-regularized case. The well posedness for the regularized problem and
the equivalence – at the continuous level – between the original (primitive variables) and the mixed for-
mulation are demonstrated. We analyze properties of linearized problems that are relevant for the con-
vergence of numerical solvers. A finite element method for the mixed formulation is discussed. Numerical
results confirm the predicted better performances of the mixed formulation when compared to the
primitive variables formulation. A comparison to a non-regularized solver based on the augmented
Duvaut–Lions–Glowinski formulation of the problem is carried out as well.
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1. Introduction

The Bingham plastic is a material that behaves like a rigid
medium for stresses s not exceeding a certain critical value ss

(called the yield stress) and behaves like an incompressible fluid
if the stresses are equal to or exceed ss. The viscosity of the fluid
depends on the shear rate, thus the Bingham flow represents an
example of a non-Newtonian fluid. Bingham fluids occur in many
situations of geophysical as well as industrial interest, see [6] for
a comprehensive review, and more recently [37] for the applica-
tions in hemodynamics.

Let Du ¼ 1
2 ðruþruTÞ denote the strain rate tensor and let

jDuj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du : Du
p

be the Frobenius norm of Du. The conservation
of momentum in the steady case for an incompressible fluid reads

�divsþrp ¼ f
r � u ¼ 0

�
in X; ð1:1Þ
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where div denotes the divergence operator for tensors, u, p are the
unknown velocity and pressure. For Bingham fluids the domain X is
split into two subdomains, the fluid region Xf and the rigid (or plug)
region Xr. The constitutive relation for the stress deviator tensor s
and the strain rate tensor reads

Du ¼
0 for jsj 6 ss ðrigid regionÞ;

1� ss

jsj

� �
s

2l
for jsj > ss ðfluid regionÞ:

8<
: ð1:2Þ

where the plastic viscosity l > 0 and the yield stress ss P 0 are
given constants. These equations can be observed as a generaliza-
tion of the classical Stokes equation having in Xf a shear dependent
viscosity l̂ ¼ 2lþ ss

jDuj that reduces to the Stokes equations with

constant viscosity for ss = 0. One of the difficult features of the prob-
lem is that the two regions are unknown a priori and finding them is
a part of the problem; also l̂ becomes singular in the plug zone. A
common way to avoid this difficulty is to regularize l̂. This can be
done in different ways, see e.g., [4,32,18]. Here we consider the
Bercovier–Engelman regularization [4]: in the definition of l̂ the
norm jDuj is replaced with jDuje ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du : Duþ e2
p

. Extension of the
approach presented hereafter to other forms of regularization can
be considered as well. The regularization ensures l̂ to be nonsingu-
lar even in presence of plug regions and the fluid equations can be
posed in the entire domain:
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�div 2lþ ss

jDuje

� �
Duþrp ¼ f

�r � u ¼ 0

8<
: in X: ð1:3Þ

The regularized model can be treated as the model of a quasi-
Newtonian fluid flow and its numerical implementation becomes
relatively simple within an existing CFD code. A variety of well-
established computational techniques, including parameter free
iterative algorithms as Newton method and Krylov subspace meth-
ods, can be used to treat the regularized equations numerically.
However, the regularization prevents finding the ‘exact’ visco-plas-
tic solution. In particular, finding arrested states and defining plug
regions with e > 0 become non-trivial tasks, see [35] and also
[38,39] (the latter papers deal with compressible fluids). Therefore
accurate and predictive computations demand using small values
of the regularization parameter e (see e.g., [18,31,12]). Using small
values of e in (1.3) gives rise to several computational issues. For
example, the Newton method applied to the regularized problem
(1.3) is not robust with respect to e (see [12] and numerical results
in [25,26]). The domain of convergence for the Newton method
shrinks as e ? 0. Indeed, the norm of the matrix of the second deriv-
atives grows like O(e�1) [12] implying that to ensure convergence
the initial guess for the Newton method should belong to an O(e)-
neighborhood of the (unknown) solution. One possibility to over-
come the issue is to apply a continuation method in e. This means
that e is selected dynamically and it gets smaller along the itera-
tions. Another option is to perform a number of more robust Picard
iterations and switch to the Newton method when a sufficiently
good approximation to the solution is found. In the latter case, how-
ever, the required number of Picard iterations still grows as e ? 0
[25].

Both mathematical and numerical difficulties forced several
authors to consider different formulations of the problem (1.1)
and (1.2). One approach is based on the variational inequality for-
mulation of Duvaut and Lions [15] and has been proposed by Glo-
winski and coauthors (see Section 8 of the review paper [13] and
refereneces therein). The formulation has been studied mathemat-
ically and used to solve the problem numerically with Uzawa-like
iterative schemes. The iterations are proven to be convergent upon
the introduction of a relaxation parameter (see [12]), however may
exhibit a slow convergence rate. Nevertheless, the approach is
attractive for solving practical problems when it is necessary to
compute the ‘true’ visco-plastic solution and find the plug region
(see e.g., [35,34]). We briefly review this approach in Section 5.

In this paper, we consider a different formulation intended to
enhance the numerical properties of the regularized formulation
(1.3). We introduce an auxiliary symmetric tensor W such that

jDujeW � Du ¼ 0: ð1:4Þ

Equations (1.3) in X with the auxiliary variable read
�divð2lDuþ ssWÞ þ rp ¼ f ;
�r � u ¼ 0:

�
ð1:5Þ

System (1.4) and (1.5) represents the mixed formulation we inves-
tigate in this paper. We will show that this formulation is efficient
for solving the regularized problem. For a given e the number of
nonlinear iterations required for convergence is significantly re-
duced compared to solving the original problem (1.3) in the primi-
tive variables. While most analysis of (1.4) and (1.5) is carried out in
this paper for e > 0, numerical results show that the method re-
mains efficient even for the case e = 0. In this case, the approach
and the resulting iterative method compares favorably with the
Uzawa type algorithm for the augmented Lagrangian saddle-point
formulation of Glowinski et al.
The mixed formulation (1.4) and (1.5) is closely related with the
approach of Cea and Glowinski [7] (see also Sections 5–7 in [13]).
In that approach a symmetric tensor W satisfying W : Du ¼j Du j
was introduced in the numerical formulation through the relation

W ¼ PðW þ rDuÞ 8r P 0; ð1:6Þ

with the projector P on the convex set of tensor functions
Z 2 (L2(X))d�d satisfying jZj < 1. The projector is defined by
PðZÞðxÞ :¼ ZðxÞ½maxf1; j ZðxÞ jg��1. The equations (1.5) and (1.6)
were solved numerically with the Uzawa type method with W
serving for the primal iterated variable and r as a relaxation param-
eter. Further, a special regularization was introduced in [13] to facil-
itate the application of a variant of the Newton method. While
formulation (1.4) and (1.5) is formally equivalent to (1.5) and (1.6)
for e = 0, it leads to a different variational formulation and finite
element solutions, coupled iterative algorithms of Picard and (for
e > 0) Newton may be directly applied. Moreover (1.4) and (1.5) is
amenable to common regularizations like the one used in this paper.

The remainder of the paper is organized as follows. Necessary
notations and preliminaries are given in Section 1.1. In Section 2,
we consider the weak formulations of (1.3) and (1.4)–(1.5) and
prove some well-posedness results. Some linearized problems are
studied here as well. We prove that the weak formulations of
(1.3) and (1.4)–(1.5) are equivalent in the sense that they share
the unique solution. At the same time, equivalence does not neces-
sarily hold for the corresponding numerical discretizations. In Sec-
tion 3 we introduce non-linear iterative methods of Picard and
Newton for solving (1.3) and (1.4)–(1.5). Several convergence esti-
mates for the case e > 0 are proven which suggest the superior
properties of (1.4) and (1.5) in building efficient solvers. A finite
element discretization method is considered in Section 4, including
the discussion of algebraic properties of resulting discrete systems.
In Section 5 we briefly recall another method for numerical treat-
ment of the Bingham problem (1.1) based on variational inequali-
ties and augmentation. Several numerical results are presented in
Section 6. These results show that the mixed formulation (1.4)
and (1.5) leads to much better convergence rates than the primi-
tive variables formulation (1.3). Moreover, it appears that the Pi-
card method for solving (1.4) and (1.5) is applicable with e = 0
and demonstrates fast convergence even in this limit case. Thus
for e = 0, we include few results of comparison with the Uzawa
method for the augmented saddle-point formulation of Glowinski
et al. In this section, we also consider a continuation Newton meth-
od based on the mixed formulation. Section 7 contains some clos-
ing remarks.

1.1. Notations and preliminaries

In what follows, we use the standard notation for the func-
tional spaces we need: for 1 6 p 61 and k > 0, Lp(X), Hk(X)
are standard Lebesgue and Sobolev spaces. Also L2

0ðXÞ denotes
the subspace of L2(X) of functions with zero mean over X,
H1

0ðXÞ is the space of functions in H1(X) with vanishing trace
on @X. The corresponding spaces for (2D or 3D) vectors are de-
noted in bold, e.g. L2(X), Hk(X) or H1

0ðXÞ. The subspace of H1
0ðXÞ

of divergence free vector-functions is denoted by V. We use the
notation HkðXÞ for tensors whose components are Hk(X) func-
tions. For symmetric tensors, this particularizes to
Lp

s ðXÞ; Hk
s ðXÞ. When there is no possibility of confusion, we

omit the indication of the domain X. The norm in Hk is denoted
by k � kk, the scalar product and the norm in L2 is denoted by (�, �)
and k � k, respectively, the same norm and product notation is
used for the vector and tensor counterparts of Hk and L2.

From the vector identities 2divD = D +rr� and rr � = D +
r�r�with the help of integration by parts one immediately gets
the following Korn type inequalities
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kDuk 6 kruk 6
ffiffiffi
2
p
kDuk 8u 2 H1

0; ð1:7Þ

stating the equivalence between the L2 norms of the gradient and its
symmetric part. We shall also refer to the Friedrichs inequality

kuk 6 CFkruk 8u 2 H1
0: ð1:8Þ
2. Some well-posedness results for the regularized problem

We assume that the domain is polygonal or @X 2 C1;1 and that
f 2 L2. Moreover, for the sake of analysis, we assume homogeneous
Dirichlet boundary conditions to hold (i.e. u = 0 on oX). The gener-
alization to mixed Dirichlet/Neumann boundary problems is
straightforward.

Our primary goal is to develop and study a formulation of the
regularized Bingham problem with enhanced robustness proper-
ties with respect to a small regularization parameter. Thus, if not
explicitly stated otherwise, we consider further only the regular-
ized version of the problem, i.e. e > 0. However, we shall also
address some properties of the problem for e ? 0.

Let us introduce the following bilinear forms,

aðu;vÞ ¼
Z

X
2lDu : Dv on H1

0 �H1
0;

bðp;vÞ ¼ �
Z

X
pr � v on L2

0 �H1
0:

For the form

aeðu;vÞ :¼ aðu;vÞ þ
Z

X

ss

jDuje
Du : Dv on H1

0 �H1
0;

one readily checks (thanks to the Korn and the Friedrichs inequali-
ties (1.7) and (1.8) the coercivity

aeðu;uÞP ckuk2
1 8u 2 H1

0 ð2:1Þ

and continuity

aeðu;vÞ 6 2lþ ss

e

� �
kuk1kvk1 8u;v 2 H1

0: ð2:2Þ

Moreover, one can show the strict monotonicity:

aeðu;u� vÞ � aeðv;u� vÞP cku� vk2
1 8u;v 2 H1

0: ð2:3Þ

Indeed, it holds

aeðu;u�vÞ�aeðv;u�vÞ¼
Z

X
2ljDu�Dvj2þss

Du�Dv
jDuje

�

þ 1
jDuje

� 1
jDvje

� �
Dv
�

: ðDu�DvÞ¼
Z

X
2ljDu�Dvj2

þ ss

jDuje
jDu�Dvj2�jDuje�jDvje

jDvje
Dv : ðDu�DvÞ

� �

P
Z

X
2ljDu�Dvj2þ ss

jDuje
jDu�Dvj2�jDu�Dvj

jDvje
Dv : ðDu�DvÞ

� �
:

Monotonicity (2.3) follows from (1.7) applied to the first term in the
last inequality and noting that since kDvj�1

e Dvj 6 1, the second term
is non-negative.

The weak formulation of the regularized problem (1.3) reads:
find u 2 H1

0; p 2 L2
0 such that for any v 2 H1

0; q 2 L2
0

aeðu;vÞ � bðp;vÞ þ bðq;uÞ ¼ ðf;vÞ: ð2:4Þ
Proposition 1. The problem (2.4) has a unique solution fu; pg 2
H1

0 � L2
0 satisfying the estimate

kruk 6 l�1kfk�1; kpk 6 cðkfk�1 þ ss minf1; e�1kfk�1gÞ: ð2:5Þ
Proof. First, consider (2.4) restricted to the divergence-free sub-
space V: find u 2 V such that
aeðu;vÞ ¼ ðf ;vÞ 8v 2 V: ð2:6Þ

Thanks to (2.1)–(2.3) and V � H1
0 one applies the Browder–Minty

method of strictly monotone operators (see e.g., [16], Section 9.1)
to prove the existence and uniqueness of u 2 V solving (2.6). The
equivalence of (2.6) and (2.4) together with the existence and
uniqueness of the pressure as a Lagrange multiplier corresponding
to the div-free constraint can be shown by a standard argument,
see [23]. To prove the estimate (2.5) for velocity one sets in (2.4)
v = u and q = p and applies the (f,v) 6 kfk�1krvk inequality to esti-
mate the right-hand side. The bound for the pressure follows thanks
to the Nečas inequality

kpk 6 c sup
v2H1

0

ðr � v;pÞ
krvk : ð2:7Þ

Indeed, setting in (2.4) q = 0, dividing the equality by krvk and
exploiting kDuj�1

e Duj < 1 and the Korn and Cauchy inequalities
one obtains

ðr � v;pÞ
krvk ¼ 2lðDu;DvÞ þ ssðjDuj�1

e Du;DvÞ � ðf ;vÞ
krvk

6
2lkrukkrvk þ ssð1; jDvjÞ þ kf k�1krvk

krvk

6 2lkruk þ ssjXj
1
2 þ kfk�1:

Passing to the upper limit with respect to v and using (2.7) yields

kpk 6 cð2lkruk þ ssjXj
1
2 þ kfk�1Þ:

The estimate

kpk 6 c 2lþ ss

e

� �
kruk þ kfk�1:

is proven by the same arguments through the use of (2.2). Combin-
ing both estimates leads to the pressure estimate in (2.5). h

Notice that for the limit case e = 0 we do not have the implica-
tion f ? 0) p ? 0 because in the model the kinematic pressure is
under-determined in the rigid zone.

To handle the mixed form (1.4) and (1.5) we define the follow-
ing bilinear and non-linear forms

cðu; ZÞ ¼
Z

X
ssDu : Z on H1

0 �L2
s ; gðjDuje;W; ZÞ ¼

Z
X
ssjDujW

: Z on H1
0 �L2

s �L1
s :

Note that g(jDuje,W,Z) is well defined on H1
0 �L2

s �L1
s and it

holds

jgðjDuje;W; ZÞj 6 kuk1kWkkZkL1 :

The weak formulation of (1.4) and (1.5) reads as follows: Find
u 2 H1

0; p 2 L2
0 and W 2L2

s such that for any v 2 H1
0; q 2 L2

0 and
Z 2L1

s

aðu;vÞ � bðp;vÞ þ cðv;WÞ þ bðq;uÞ þ cðu; ZÞ
� gðjDuje;W; ZÞ
¼ ðf;vÞ: ð2:8Þ

Now we are in position to prove the following well-posedness
result:

Theorem 1. The problem (2.8) has a unique solution {u,W,p} from
H1

0 �L2
s � L2

0 such that

kuk2
1 þ esskWk2

6 kf k�1; kpk
6 cðkfk�1 þ ss minf1; e�1kfk�1gÞ: ð2:9Þ

Moreover W 2L1
s and

kWkL1 6 1: ð2:10Þ



A. Aposporidis et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2434–2446 2437
Proof. The proof of the well-posedness is based on showing the
equivalence of (2.8) and (2.4) and applying Proposition 1. Indeed,
assume u, p from H1

0 � L2
0 solves (2.4) and define W :¼ jDuj�1

e Du.
Since Du 2L2

s we conclude that the components of W are measur-
able functions (as products of such functions). Moreover, since for
any x 2 X; kDuðxÞj�1

e DuðxÞj 6 1, we have W 2L1
s and both equal-

ities WjDuj�1
e ¼ Du and W ¼ jDuj�1

e Du hold in L2
s . Therefore, in

view of (2.4) and noting that for W ¼ jDuj�1
e Du it holds

aðu;vÞ þ cðv;WÞ ¼ aeðu;vÞ;

we conclude that the triple {u,W,p} satisfies (2.8) for any {v,Z,q}
from H1

0 �L1
s � L2

0. Thus the existence of a solution to (2.8) follows
from Proposition 1. Now assume that some {u,W,p} solves (2.8).
Setting v = 0, q = 0 and varying Z 2L1

s we conclude that
jDuje W = Du holds in L1

s

� 	0 �L1
s . Hence for any solution of (2.8)

it holds

W ¼ jDuj�1
e Du a:e: ð2:11Þ

Using this in the third term of (2.8) and setting Z = 0 we deduce that
u, p satisfy (2.4). The uniqueness of the solution to (2.8) follows
from Propositions 1 and 2.11. Finally, the first two estimates in
(2.9) follow by the same arguments as in (2.5), i.e. by taking v = u,
q = p, Z = W, and W 2L1

s with (2.10) follows from (2.11). h

Although the formulations (2.8) and (2.4) are equivalent, their
(finite element) discretizations are not necessarily equivalent and
feature different numerical properties.

We are not aware of possible extensions of the results of Theo-
rem 1 or Proposition 1 to the limit case of e = 0. Some well-posede-
ness results for the (non-regularized) Bingham problem are based
on the reformulation of the problem as a variational inequality, see
[15]. In [2] a non-regularized nonhomogeneous problem is analyzed
as a limit case of a regularized problem with an existence result for
2D periodic problems. Somewhat related results can be found in
[5], where the Navier–Stokes unsteady equations are considered
for fluids featuring a stress tensor of the form

s ¼ lðdþ jDujÞs�2Du; s 2 ð1;1Þ:

The extension to the case s = 1 and to the Bingham fluid problem is
still an open problem.

Remark 1. Once we proved that the solution W of (2.8) is actually
from L1s one can extend the space of admissible test functions Z in
(2.8) from L1s to L2

s .
The mixed formulation and convex programming. The velocity

solution to the Bingham problem (1.1) satisfies

u ¼ arg min
v2V

JðvÞ;

where the functional Jð�Þ reads JðvÞ ¼ lkDvk2 þ ss
R

X jDvj �
R

X f v.
Notice thatZ

X
jDvj ¼ sup

jWj61

Z
X

Dv : W for v 2 H1
0:

By the duality theory for convex programming, the mixed formula-
tion (1.4) and (1.5) can be observed therefore as the Euler–Lagrange
system corresponding to the saddle point problem

min
v2V

sup
jW j61
flkDvk2 þ ss

Z
X

Dv : W �
Z

X
f vg:

This introduces W from (1.4) as a dual variable. The argument has
been advocated in [11] for an image restoration problem and gave
additional stimulus to the present work. In that paper, the scalar
variable u is the grey-level of an image and the minimization in-
volves the total variation

R
X jruj. The analogies between image res-

toration problems and visco-plastic fluids have been already
exploited in [19,20].
3. Iterative methods

3.1. Two auxiliary linear problems

Let b 2 H1
0 be given, we look for u, p such that

�div 2lþ ss

jDbje

� �
Du

� �
þrp ¼ f

r � u ¼ 0

8<
: in X ð3:1Þ

with u = 0 on @X for simplicity. Let us introduce the bilinear form
on V � V,

abðu;vÞ :¼
Z

X
2lþ ss

jDbje

� �
Du : Dv:

The weak formulation of (3.1) reads: find ðu;pÞ 2 H1
0 � L2

0 such that

abðu;vÞ þ bðp;vÞ � bðq;uÞ ¼ ðf;vÞ 8ðv; qÞ 2 H1
0 � L2

0: ð3:2Þ

The following proposition can be promptly proven:

Proposition 2. Given f 2 L2 and b 2 H1
0 , there exists a unique solution

{u, p} to (3.2).
Proof. Thanks to the Korn and Friedrichs inequality, the bilinear
form ab(�, �) is coercive,

abðu;uÞP lkruk2 P ckuk2
1:

It is also straightforward to check that ab(�, �) is continuous on V � V.
Since V can be equivalently defined as V :¼ v 2 H1

0 :
n

bðq;vÞ ¼ 0 8q 2 L2
0g, the result of the Proposition follows from

Corollary 5.1 from [23]. h

The mixed formulation of (3.1) reads

�divð2lDuþWÞ þ rp ¼ f
r � u ¼ 0
jDbje W � Du ¼ 0

8><
>: in X: ð3:3Þ

Denote ge;bðW; ZÞ �
R

X ssjDbjeW : Z. The weak form of (3.3) reads:
find fu; p;Wg 2 H1

0 � L2
0 �L2

s such that

aðu;vÞ þ bðp;vÞ þ cðv;WÞ � bðq;uÞ � cðu; ZÞ þ ge;bðW; ZÞ ¼ ðf;vÞ
ð3:4Þ

for any ðv; q; ZÞ 2 H1
0 � L2

0 �L1
s .

Proposition 3. Given f 2 L2 and b 2 V, there exists a unique solution
{u, p,W} to (3.4).
Proof. The proof is carried out by showing the equivalence of the
primitive variables and mixed weak formulations (3.2) and (3.4)
and then applying Proposition 2. The arguments are largely the
same as in the nonlinear case, see the proof of Theorem 1. The solu-
tion of (3.2) {u,p} together with W :¼ jDbj�1

e Du 2L2
s solves (3.4).

Reverse implication: if {u,p,W} solves (3.2), then setting v = 0, q = 0
and varying Z 2L1

s one finds that jDbj�1
e W ¼ u holds in

L1
s

� 	0 �L1
s . Thus W ¼ jDbj�1

e Du holds almost everywhere in X.
Inserting this in the third term of (3.4) and letting Z=0 we find that
u, p solves (3.2). h

On the numerical level, problem (3.2) or (3.3) has to be solved at
each iteration of the Picard algorithm for (1.3) or (1.4) and (1.5),
respectively.

3.2. Picard iteration

Given the well-posedness results for the auxiliary linear prob-
lems (3.1) and (3.3) we now consider iterative methods of Picard
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type to iterate for the solutions of nonlinear problems (1.3)–(1.5).
For the original problem (1.3) one iteration reads: given uðkÞ 2 H1

0,
find uðkþ1Þ 2 H1

0; pðkþ1Þ 2 L2
0 such that

�div 2lþ ss

jDuðkÞje

� �
Duðkþ1Þ þ rpðkþ1Þ ¼ f ;

�r � uðkþ1Þ ¼ 0:

8><
>: ð3:5Þ

Likewise, for the mixed problem (1.4) and (1.5) one iteration reads:
given uðkÞ 2 H1

0, find uðkþ1Þ 2 H1
0; pðkþ1Þ 2 L2

0; W ðkþ1Þ 2L2 such that

�divð2lDuðkþ1Þ þ ssW
ðkþ1ÞÞ þ rpðkþ1Þ ¼ f ;

�r � uðkþ1Þ ¼ 0;
jDuðkÞjeW

ðkþ1Þ � Duðkþ1Þ ¼ 0:

8><
>: ð3:6Þ

These problem are of the form (3.1) and (3.3) with b = u(k) and
u = u(k+1) and should be understood in the weak sense of (3.2) and
(3.4). Thus, due to Propositions 2 and 3 a single Picard iteration is
well-defined.

3.2.1. Analysis of the Picard iterations
Denote by u, p, W the solution to (2.8) (u, p also solve (2.4) and

e(k) � u(k) � u, E(k) �W(k) �W and e(k) � p(k) � p. Consider first the
iterations (3.5) for the original formulation of the problem (2.4).
Eqs. (2.4) and (3.5) yield the following error equation

aðeðkþ1Þ;vÞþ
Z

X
ss

Duðkþ1Þ

jDuðkÞje
� Du
jDuje

� �
: Dvþbðv;eðkþ1ÞÞ�bðeðkþ1Þ;qÞ¼0;

ð3:7Þ

for all v 2 V and q 2 L2
0.

Proposition 4. The velocity error of the iteration (3.5) satisfies
keðkþ1Þk1 6 Ce�1keðkÞk1 þ O keðkÞk2
1

� �
: ð3:8Þ
Proof. We rewrite the second term in (3.7) as

Z
X
ss

Duðkþ1Þ

jDuðkÞje
� Du
jDuðkÞje

þ Du
jDuðkÞje

� Du
jDuje

� �
: Dv

¼
Z

X
ss

Deðkþ1Þ : Dv
jDuðkÞje

þ
Z

X
ss

1
jDuðkÞje

� 1
jDuje

� �
Du : Dv:

Upon Frechét linearization, which is always possible for e > 0, we
have

1
jDuðkÞje

� 1
jDuje

¼ Du : DeðkÞ

jDuj3e
þ h:o:t: ð3:9Þ

Let us now select v = e(k+1) and q = e(k+1) in the error Eq. (3.7), so that
we have

aðeðkþ1Þ; eðkþ1ÞÞ þ
Z

X
ss

Deðkþ1Þ : Deðkþ1Þ

jDuðkÞje

¼ �
Z

X
ss

Du : DeðkÞ

jDuj3e
þ h:o:t:

 !
Du : Deðkþ1Þ: ð3:10Þ

Exploiting the coercivity of the bilinear form a(�, �), inequality (1.7),
the bound (2.9) on u (independent of e) and noting that x2ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2þe2Þ3
p 6

2ffiffiffiffi
27
p e�1 for any x 2 R, we obtain the inequality

lkreðkþ1Þk2
6

C
e
keðkÞk1 þ O keðkÞk2

1

� �� �
keðkþ1Þk1 ð3:11Þ

where C here and after is a constant independent of e. The latter
inequality yields (3.8). h
The previous theorem quantifies the impact of small values of
the regularization parameter e on the Picard iteration in the prim-
itive variables formulation. In general, small values of e slow down
the convergence, as was mentioned in the introduction and
pointed out in [25,26].

Let us consider now a similar analysis for the mixed
formulation.

Proposition 5. The error of the iteration (3.6) satisfies

keðkþ1Þk1 þ e1
2kEðkþ1Þk 6 Ce�1

2keðkÞk1: ð3:12Þ
Proof. After a memberwise subtraction of (3.6) and (4.1) and
standard manipulations with v = e(k+1), q = e(k+1) and Z = E(k+1) (test
function can be taken from L2

s , cf. Remark 1), we get

a eðkþ1Þ; eðkþ1Þ� 	
þ ge jDuðkÞje � jDuje;W;Eðkþ1Þ

� �
þ ge jDuðkÞje;E

ðkþ1Þ;Eðkþ1Þ
� �

¼ 0: ð3:13Þ

For the mapping f(v) :¼ jDvje from H1 to L2 we find the Frechet
derivative operator

dðf Þja ¼ jDaj�1
e Da : D ) kdðf ÞjakH1

0!L2 6 1 8a 2 H1
0: ð3:14Þ

Therefore it holds

kjDuðkÞje � jDujek 6 kDeðkÞk: ð3:15Þ

Recalling kWkL1 6 1 (cf. Theorem 1) and ge(jDu(k)je,E(k+1),
E(k+1)) P ekE(k+1)k2, we obtain from (3.13) and (3.15) the inequality

lkreðkþ1Þk2
1 þ ekEðkþ1Þk2

6 sskeðkÞk1kE
ðkþ1Þk

6
s2

s

2e
keðkÞk2

1 þ
e
2
kEðkþ1Þk2

: ð3:16Þ

Thus we get

keðkþ1Þk2
1 þ ekEðkþ1Þk2

6 Cs2
s e
�1keðkÞk2

1: �
Remark 2. Notice that (3.12) enjoys a milder dependence on e
than (3.8); also the higher order terms disappear. At the same time,
the velocity (and pressure) iterations from (3.5) and (3.6) are the
same (thanks to the equivalence of the auxiliary linear systems dis-
cussed in Section 3.1). Thus the velocity error e(k) from (3.5) should
also satisfy the improved bound (3.12). However, the argument to
show this improved bound is indirect and resorts to the mixed for-
mulation. Moreover, such an indirect argument may not be valid in
the discrete case, since the equivalence does not necessarily hold
any longer, apart from some special choice of the discretization
scheme (see Section 6). Testing both formulations numerically
shows that iterative methods for the mixed one are less sensitive
to small values of e.

A relaxed formulation. The method of the previous section can be
generalized by introducing a relaxation parameter # 2 [0,1]. If uw

denotes the solution to (3.5) or (3.6), we set

uðkþ1Þ ¼ #uH þ ð1� #ÞuðkÞ:

Relaxation can be either static or dynamic, i.e. with # depending on
k.

Given b 2 H1
0 define the following norms:

kukb :¼ kruk2 þ sskjDbj�
1
2

e Duk2
� �1

2
on H1

0;

ku;Wkb :¼ kruk2 þ sskjDbj
1
2
eWk2

� �1
2

on H1
0 �L1

s :

ð3:17Þ

We prove the following theorem.
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Theorem 2. The relaxed versions of the Picard iterations (3.5) and
(3.6) admit the following error reduction relations:

for ð3:5Þ keðkþ1ÞkuðkÞ 6 ð1�ce2ÞkeðkÞkuðkÞ þOðkeðkÞk
3
2
uðkÞ Þ; with #¼ ce2;

for ð3:6Þ keðkþ1Þ;Eðkþ1ÞkuðkÞ 6 ð1�ceÞkeðkÞ;EðkÞkuðkÞ ; with #¼ ce;
ð3:18Þ

and sufficiently small positive constant c independent of e.
Proof. The proof of the first estimate in (3.18) is a simple variation
of the arguments used in proving Proposition 4. We show the proof
below. The error equation reads (compare to (3.7))

a eðkþ1Þ � ð1� #ÞeðkÞ;v
� 	

þ
Z

X
ss#

DuH

jDuðkÞje
� Du
jDuje

� �
: Dv

þ bðv; eðkþ1ÞÞ � bðeðkþ1Þ; qÞ ¼ 0; ð3:19Þ

for all v 2 V and q 2 Q. To produce the last term on the left-hand
side of (3.19) we use that u(k), uw 2 V yields u(k+1) 2 V. We rewrite
the second term in (3.19) asZ

X
#ss

DuH

jDuðkÞje
� Du
jDuðkÞje

þ Du
jDuðkÞje

� Du
jDuje

� �
: Dv

¼
Z

X
ss

Dðeðkþ1Þ � ð1� #ÞeðkÞÞ : Dv
jDuðkÞje

þ #
Z

X
ss

1
jDuðkÞje

� 1
jDuje

� �
Du : Dv:

Set v = e(k+1) and q = e(k+1) in Eq. (3.19) and use (3.9) to obtain

aðeðkþ1Þ � ð1� #ÞeðkÞ; eðkþ1ÞÞ þ
Z

X
ss

Dðeðkþ1Þ � ð1� #ÞeðkÞÞ : Deðkþ1Þ

jDuðkÞje

¼ �#
Z

X
ss

Du : DeðkÞ

jDuj3e
þ h:o:t:

 !
Du : Deðkþ1Þ

¼ �#
Z

X
ss

Du : DeðkÞ

jDuj3e
þ h:o:t:

 !
Du : ðDeðkþ1Þ � ð1� #ÞDeðkÞÞ

� #ð1� #Þ
Z

X
ss

Du : DeðkÞ
� 	2

jDuj3e
þ O keðkÞk3

1

� �
: ð3:20Þ

Now we note that the second integral term on the right-hand side of
(3.20) is negative, exploit the simple identity 2(a � b,a) =
kak2 � kbk2 + ka � bk2 as well as x2ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2þe2Þ3
p 6

2ffiffiffiffi
27
p e�1 and the Cauchy

inequality to obtain the inequality

keðkþ1Þk2
uðkÞ þ keðkþ1Þ � ð1� #ÞeðkÞk2

uðkÞ 6 ð1� #Þ
2keðkÞk2

uðkÞ

þ C
e
#kDeðkÞkkDðeðkþ1Þ � ð1� #ÞeðkÞÞk þ O keðkÞk3

1

� �
with C independent of e. Now we apply the Young inequality to the
handle the second term on the right-hand side and get after a
cancellation

keðkþ1Þk2
uðkÞ 6 ð1� #Þ

2keðkÞk2
uðkÞ þ

C2

4e2 #
2kDeðkÞk2 þ O keðkÞk3

1

� �
:

The latter inequality proves the first estimate in (3.18) for # = ce2,
with a sufficiently small positive constant c independent of e. Sim-
ilar changes should be applied to the arguments of Proposition 5 to
show the second estimate in (3.18). h

We note that the error norms in (3.18) depend in general on the
iteration number k. Thus we consider (3.18) as an error reduction
property rather than a convergence result. However, comparing
the reduction factors for both formulations we note that the mixed
formulation still leads to a milder dependence on e than the origi-
nal one.
3.3. The Newton method

For the primitive variables formulation (1.3) one step of the
Newton method can be written as follows: given u(k) find u(k+1),
p(k+1) solving

�div 2lþ ss

jDuðkÞje
1�DuðkÞDuðkÞ :

jDuðkÞj2e

" # !
Duðkþ1Þ þrpðkþ1Þ ¼ f �ssdiv

DuðkÞjDuðkÞj2

jDuðkÞj3e
;

r�uðkþ1Þ ¼0:

ð3:21Þ

For the mixed formulation one step of the Newton method reads:
given u(k), W(k) find u(k+1), p(k+1), W(k+1) solving

�div 2lDuðkþ1Þ þ ssW
ðkþ1Þ

� �
þrpðkþ1Þ ¼ f ;

r � uðkþ1Þ ¼ 0;

Duðkþ1Þ � jDuðkÞjeW
ðkþ1Þ � DuðkÞ : Duðkþ1Þ

jDuðkÞje
W ðkÞ ¼ � jDuðkÞj2

jDuðkÞje
W ðkÞ:

ð3:22Þ

As stated in the Introduction, the degradation of performance of the
Newton method when e gets smaller can be remedied in different
ways. One possibility is to use a mix of Picard and Newton methods:
One performs a few iterations of more robust Picard method and
starts Newton when a good initial guess becomes available. Another
possibility is a continuation strategy that corresponds to a non-sta-
tionary selection of e, such that e = e(k) and limk?1e(k) = 0. Numer-
ical results with these strategies will be presented in Section 6.

Remark 3. While the Picard iterations formally produce the same
approximations for velocity and pressure for both formulations, cf.
Remark 2, the Newton method approximations are in general
different for primitive variables and mixed formulations both on
continuous and discrete levels. This can be seen by eliminating
W(k+1) from (3.22) with the help of the third relation. Doing this
one finds that (3.21) and (3.22) would be equivalent only if
WðkÞ ¼ jDuðkÞj�1

e DuðkÞ. The latter is not expected to be true for a
general k, since setting WðkÞ ¼ jDuðkÞj�1

e DuðkÞ in (3.22) does not
imply Wðkþ1Þ ¼ jDuðkþ1Þj�1

e Duðkþ1Þ. Numerical experience shows
that for small values of e (3.22) is considerably less sensitive to
the choice of the initial guess than (3.21).
4. Finite element approximation

There are different ways to discretize (1.1), examples are the
MAC discretization on staggered grids and collocated finite differ-
ence methods [27,30], finite volume [36] or LBB-stable finite ele-
ments [13]. In this paper we consider Galerkin finite element
discretization methods, although the approach is essentially inde-
pendent of a specific discretization method.

Denote by Hh � H1
0; Qh � L2

0 and Wh �L2
s the finite dimen-

sional subspaces for the velocity, pressure and W, respectively.
We assume that the pair of spaces Hh, Qh is LBB stable [23]. The
finite element method for (2.8) reads: find uh 2 Hh;

ph 2 Q h; Wh 2Wh such that

aðuh;vhÞ þ bðph;vhÞ þ cðvh;WhÞ � bðqh;uhÞ � cðuh; ZhÞ
þ geðuh;Wh; ZhÞ ¼ ðf;vhÞ ð4:1Þ

for any vh 2 Hh, qh 2 Qh and Zh 2Wh.
Now we address the well-posedness and stability of (4.1). Un-

like the continuous case (see Theorem 1) the discrete problem
(4.1) is not in general equivalent to the finite element counterpart
of the original problem (2.4). Thus the well-posedness for (4.1)
would not follow directly from the theory of monotone operators
applied to the Galerkin formulation of (2.4). The proof of the
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well-posedness for (4.1) relies on the Schaefer’s extension of the
Brouwer theorem (a.k.a. the Leray-Schauder theorem, see e.g.,
[16], Sections 8.1.4 and 9.2.2).

Theorem 3. The problem (4.1) has a solution {uh,Wh,ph} from
Hh �Wh � Qh such that

kuhk2
1 þ esskWhk2

0 6 kf k�1; kphk 6 cð1þ sse�1Þkfk�1: ð4:2Þ

If f is sufficiently small or l,e are sufficiently large then the solution is
unique.
2 In 3D we have 3 velocity components and 6 different components of the tensor
.
3 If we impose u = 0 on the entire boundary oX, then B is one-rank deficient having

ydrostatic pressure mode in its kernel. This will however not alter our further
nsiderations.
Proof. Define the discrete divergence-free space
Vh :¼ fvh 2 Hh : bðqh;vhÞ ¼ 0 8qh 2 Q hg. For arbitrary k 2 [0,1]
consider the problem: find uk

h 2 Vh, Wk
h 2Wh such that

aðuk
h;vhÞ þ kcðvh;W

k
hÞ ¼ kðf;vhÞ;

geðuk
h;W

k
h; ZhÞ � kcðuk

h; ZhÞ ¼ 0;
ð4:3Þ

for any vh 2 Vh and Zh 2Wh. For k = 1 the problem (4.3) is equiva-
lent to (4.1). To apply the Leray–Schauder fixed point theorem it
is sufficient to show: (i) the set of solutions to (4.3) is bounded uni-
formly with respect to k and (ii) the mapping fuold

h ;Wold
h g !

funew
h ;Wnew

h g defined by

a unew
h ;vh

� 	
¼ ðf;vhÞ � c vh;W

old
h

� �
8vh 2 Vh;

ge uold
h ;Wnew

h ; Zh
� 	

¼ c uold
h ; Zh

� 	
8Zh 2Wh

ð4:4Þ

is continuous and bounded (all spaces are of finite dimension, so the
boundedness implies compactness).

To find a bound for uk
h, Wk

h we set in (4.3) vh ¼ uk
h, Zh ¼Wk

h.
Summing up the equalities gives

minð2l; sseÞ kruk
hk

2 þ kWk
hk

2
� �

6 aðuk
h;u

k
hÞ þ geðuk

h;W
k
h;W

k
hÞ ¼ kðf;uk

hÞ

6
1
2

minð2l; sseÞkruk
hk

2 þmaxðl�1; s�1
s e�1Þkfk2

�1:

Thus

kruk
hk

2 þ kWk
hk

2
6 max l�2; s�2

s e�2� 	
kf k2

�1 8k 2 ½0;1�:

Now we check that the mapping defined by (4.4) is bounded and
continuous. To see the boundedness we set in (4.4) vh ¼ unew

h ,
Zh ¼Wnew

h and get through the Cauchy and Friedrichs inequalities:

krunew
h k 6 cðsskWold

h k þ kf k�1Þ and ekWnew
h k 6 kruold

h k:

The continuity follows from the observation that forms in (4.4) are
continuous with respect to every argument. Hence the Leray-
Schauder theorem provides the existence of a solution to (4.3) for
k = 1. Let u1, W1 and u2, W2 be two solutions to (4.3) with k = 1.
Denote e = u1 � u2 and E = W1 �W2. One sets vh = e and Zh = E in
(4.3) and readily gets

2lkDek2 þ geðu1; E; EÞ þ ðgeðu1;W2; EÞ � geðu2;W2; EÞÞ ¼ 0: ð4:5Þ

Thus (4.5) and (3.14) yields

2lkDek2 þ ekEk2 � kW2kL1kDekkEk 6 0:

Now the a priori bound (4.2) and the smallness assumption yield the
uniqueness result. The standard argument [23] shows the existence
and uniqueness of the pressure ph as a Lagrange multiplier. h

Even though the equivalence between primitive variables and
mixed formulation at the discrete level does not necessarily hold,
in Section 6 we will consider a particular selection of finite element
subspaces that ensures this equivalence to hold.
4.1. Algebraic properties

Denote by Nvel, Np and Nw the number of degrees of the freedom
of each velocity component in Hh, the pressure in Qh and each com-
ponent of the symmetric tensors in Wh, respectively. Let {ui} for
i = 1, . . . ,Nvel be the basis functions for each velocity component,
{qi} for i = 1, . . . ,Np the basis functions of Qh, and {zi} for
i = 1, . . . ,Nw the basis functions for each entry of the symmetric
tensors. We introduce to the following notation for 2D problems2:
Matrix A is 2Nvel � 2 Nvel s.t.

A ¼ A11 A12

A21 A22

" #
;

A11
ij ¼

R
X l @uj

@x1

@ui
@x1
þ 1

2
@uj

@x2

@ui
@x2

� �
;

A12
ij ¼ A21

ji ¼
R

X l @uj

@x1

@ui
@x2
;

A22
ij ¼

R
X l @uj

@x2

@ui
@x2
þ 1

2
@uj

@x1

@ui
@x1

� �
:

8>>>><
>>>>:

ð4:6Þ

Matrix B is 2Nvel � Np s.t.

B ¼ B1 B2

 �

; B1
ij ¼ �

R
X qi

@uj

@x1
; B2

ij ¼ �
R

X qi
@uj

@x2
: ð4:7Þ

We assume that the finite elements for velocity and pressure are
inf-sup compatible, so that BT is a full-rank matrix.3

Matrix C is 2Nvel � 3Nw s.t.

C ¼ C1;1 C2;1 C12;1

C1;2 C2;2 C12;2

" #
;

C1;1
ij ¼

R
X sszj

@ui
@x1
; C2;1 ¼ 0; C12;1

ij ¼
R

X sszj
@ui
@x2
;

C1;2 ¼ 0; C2;2
ij ¼

R
X sszj

@ui
@x2
; C12;2

ij ¼
R

X sszj
@ui
@x1
:

8<
: ð4:8Þ

Finally, we define matrix N 2 R3Nw�3Nw s.t.

N ¼ blockdiagðN1;N2;N12Þ; Nl
ij ¼

R
X ssjDuðkÞh jezjzi; l ¼ 1;2;3:

ð4:9Þ

Notice that N is a weighted type mass matrix, so in computations it
can often be replaced by a lumped (diagonal) matrix.

Each iteration of the Picard method for the mixed formulation
requires solving a system of the form

A

U
W
P

2
64

3
75 ¼

b
0
0

2
64

3
75; with A ¼

A C BT

CT �N 0
B 0 0

2
64

3
75: ð4:10Þ

and U ¼ ½U1; U2�T , W = [W1,W2,W12]T and P are the vectors of the
nodal values of the unknowns. Let us denote for convenience

D ¼
A C
CT �N

� 
; B ¼ B 0½ �; then A ¼ D B

T

B 0

" #
:

Proposition 6. For e > 0, system (4.10) is non-singular for any choice
of the finite element subspace Wh.
Proof. First we prove that D is non-singular. To this end, consider
the matrix factorization

D ¼
I 0

CT A�1 I

� 
A 0
0 RW

� 
I A�1C
0 I

" #
;

with Schur complement matrix RW ¼ �ðA�1 þ CN�1CTÞ. Thus D is
non-singular if N and RW are non-singular. Since e > 0, N is invert-
ible. The non-singularity of RW follows from the observation that
W

h
co
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A and N are symmetric positive definite. By the same argument, A is
non-singular if D and the Schur complement BD

�1
B

T are non-sin-
gular. For the pressure Schur complement of A we get

�BD
�1

B
T ¼ �BR�1

W BT ;

which is a symmetric positive definite matrix, so the proposition is
proven. h

For e = 0, the previous result does not hold and the non-singu-
larity of the system is not guaranteed. A necessary condition in this
case is that Ker(C) \ Ker(N) = ;. The question of the selection of fi-
nite dimensional spaces forcing the well posedness of the discrete
problem in this case is open.
5. The Lions–Glowinski augmented formulation

In [24] an alternative variational formulation is considered. To
underline differences and similarities with our approach we briefly
recall the method from [24]. The solution of the Bingham problem
(1.1) u, s together with c is the saddle point of the following
Lagrangian:

Lðu; c; sÞ ¼ l
Z

X
jcj2dxþ ss

Z
X
jcjdxþ

Z
X
ðDðuÞ � cÞ : sdx

þ k
Z

X
jDðuÞ � cj2dx�

Z
X

f � udx:

Here kP0 is an auxiliary augmentation parameter. Then

Lðu; c; sÞ ¼ min
r2L2

s ;v2V
max
n2L2

s

Lðv; r; nÞ: ð5:1Þ

Note that the auxiliary variable c is introduced in a way that c = Du
in a weak sense. This is in contrast to our approach where jDuj�1Du
is treated as the auxiliary variable W.

The variational saddle point problem (5.1) can be equivalently
written as an integral inequality problem, see Duvaut and Lions
[15]. For e > 0, however, one can also look for the equivalent inte-
gral equality formulation. In our notation it would read: find u, p
and c such that

kaðu;vÞ þ bðp;vÞ þ 1
2 cðs� 2kc;vÞ ¼ ðf ;vÞ;

bðq;uÞ ¼ 0;
cðw;uÞ � ðc;wÞ ¼ 0;
s ¼ 2lcþ sscjcje:

for any test functions v, q, w in appropriate spaces. Departing from
this formulation, different discretization schemes can be consid-
ered. We note that the penalty parameter k also plays the role of
the relaxation parameter in the iterative algorithm of Uzawa type.
In [24] the iterative algorithm (further referred as ALG) for solving
(5.1) is considered, see Fig. 5.1.
The convergence can be tested using different stopping criteria.
Here we consider the difference between sðkþ1Þ

h and sðkÞh , that basi-
cally means that we test the residual DuðkÞh � cðkÞh . One of the strong
aspects of this scheme is that it does not require a regularization
parameter e > 0 and the method is proven to be convergent. How-
ever, no convergence rate has been rigorously established and the
numerical evidence suggests that convergence can be very slow.
We include some numerical results with this approach in the next
section.

6. Numerical results

In this section we present results of several numerical experi-
ments illustrating the performance of the approach introduced in
the paper. We compare the results with the primitive variables for-
mulation and show an advantage in using the mixed formulation,
especially for small values of e. A few experiments with the mixed
formulation are done for the non-regularized case (e = 0). In this
case its performance is compared with the ALG algorithm for the
Lions-Glowinski augmented formulation. We will also consider
the Newton continuation method and give numerical evidence of
its effectiveness. Finally, we will show some results for domains
with a less trivial geometry.

6.1. Primal vs mixed, quadrilateral elements

In this first set of experiments we use the IFISS package in
MATLAB [17]. Problem (1.5) is discretized using Q2–Q1 finite
elements for velocity and pressure, respectively, and the mixed
variable W is discretized in Q1. Starting with the zero vector as
an initial guess, we perform Picard iterations until krkk1

kr0k1
6 10�6,

i.e. until the initial residual drops by six orders of magnitude.
Unless stated otherwise, l = 1 and f = 0. MATLAB’s backslash
operator serves as the linear solver. Note that when e gets smaller
the linear systems are expected to become increasingly ill-
conditioned (for both primitive variables and mixed form) and
ad hoc preconditioned iterative method should be developed to
solve them efficiently for mid-size and larger problems.

In practice, another good initial guess is given by the solution of
a Stokes (Newtonian) problem.

6.1.1. An Analytical Test Case
One of the few available analytical solutions to (1.1) describes

the flow between two parallel plates, and in two dimensions it is
given by

u1 ¼

1
8 ½ð1� 2ssÞ2 � ð1� 2ss � 2yÞ2�; if 0 6 y < 1

2� ss;

1
8 ð1� 2ssÞ2; if 1

2� ss 6 y 6 1
2þ ss;

1
8 ½ð1� 2ssÞ2 � ð2y� 2ss � 1Þ2�; if 1

2þ ss < y 6 1;

8>><
>>:

ð6:1Þ



Table 6.1
Number of Picard iterations required for reducing the residual of a factor 10�6 in the analytical test case for ss = 0.3 and different h and e in both primitive variables and mixed
formulation. The last column shows results for the non-regularized case (that is not working in the primitive variables formulation).

h;ne? 10�1 10�2 10�3 10�4 10�5 10�1 10�2 10�3 10�4 10�5 0

Primitive variables Mixed variables
1 / 16 7 20 15 30 38 5 12 17 20 23 19
1 / 32 7 23 60 81 83 4 12 19 24 25 24
1 / 64 7 27 89 95 88 4 9 14 16 16 22
1 / 128 6 23 61 134 192 3 8 11 12 12 13
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Fig. 6.1. Numerical error ku� uexkA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� uexÞT Aðu� uexÞ

q
for different sizes of

the mesh and different e. The matrix A is a finite element stiffness matrix. The thin
solid line is a reference line for O(h2), the thin dotted one is for O(h).

Fig. 6.2. Top, left: pressure field of the analytical test case computed with ss = 0.3, h ¼ 1
128

and ss = 0.4.
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u2 � 0 and p = � x. The rigid region y 2 Xj 12� ss 6 y 6 1
2þ ss

� �
is

the kernel moving at a constant velocity. In our experiment, we
choose ss = 0.3. We impose Dirichlet boundary conditions on the
domain X = [0,1]2 according to (6.1). The number of Picard itera-
tions for both primitive variables and mixed formulations can be
seen in Table 6.1. The comparison clearly outlines the advantage
of using the mixed formulation. In particular, we noticed that even
for the non-regularized case the mixed formulation is convergent
and gets accurate results.

Fig. 6.1 shows the numerical error in the discrete energy norm
for different choices of e and h (obtained with the mixed formula-
tion). For the analytical velocity solution u from (6.1) it holds
u 2 H2, but u R H3. This limits the guaranteed order of convergence
to O(h) in the energy norm. Large values of e with small values of h
clearly prevent the optimal convergence rate of the finite element
method. For smaller values of e the observed order of convergence
is between 1 and 2.

Fig. 6.2, top left, shows the computed pressure field. The pres-
sure field indicates a numerical error in the area around the rigid
region. This is expected, since in the model the stress tensor is un-
and e = 10�5. Top, right: velocity error for ss = 0.1. Bottom, velocity error for ss = 0.3
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der-determined in the rigid region. The other subplots of the
Figure illustrate the velocity error for different values of ss,
pointing out the presence of error spikes in the neighborhood of
the rigid region. Note however that the maximum error is of the
order of 10�5.

6.1.2. The lid-driven cavity
We perform two different numerical simulations, both of them

in the unit square domain X = [0,1]2. For the first case, we solve
(1.4) and (1.5) imposing Dirichlet boundary conditions by
ujy=1 = (1,0)T and u = 0 everywhere else. Table 6.2 shows the
number of iterations of the Picard method described in Section 3
for different sizes of the mesh and different values of ss and e.
Again, the comparison between the mixed formulation and the ori-
ginal one demonstrates the effectiveness of the former; for the
primitive variables formulation the method does not converge
within 500 iterations in some cases (denoted by �).

We compare also the numerical results of the mixed formula-
tion with e = 0 to the augmented formulation by Lions–Glowinski
described in Section 5. The latter involves an additional parame-
ter k. In Fig. 6.3 on the left we compare the dynamics of the
reduction of the difference ks(k+1) � s(k)k along the iterations for
several values of k. The best choice for parameter k is k = 0.01.

Fig. 6.3 on the right illustrates the dynamics of ks(k+1) � s(k)k
along 200 iterations of the non-regularized version of (3.6), i.e.
e = 0 and the Lions-Glowinski method with k = 0.01. Note that
in the previous results we used the Picard residual for the stop-
ping criterion, here we check the difference between two con-
Table 6.2
Number of Picard iterations required for reducing the residual by 10�6 for the primitive
h = 1/128 and in many cases for h = 1/64 the iterations in primitive variables do not conv
formulation.

h;ne? 10�1 10�2 10�3 10�4 10�5

Primal

ss = 2:
1 / 16 22 49 51 51 51
1 / 32 99 173 224 224 224
1 / 64 213 – – – –
1 / 128 – – – – –

ss = 5:
1 / 16 18 37 48 51 51
1 / 32 66 94 269 267 266
1 / 64 128 – – – –
1 / 128 – – – – –
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Fig. 6.3. Reduction of the difference ksk+1 � skk for the first 200 iterations when solving th
k. No convergence occurs for the case of k = 0.001. Right: Comparison between Picard ite
secutive computation of the stress. This is consistent with the
common stopping criteria for the ALG. We used ss = 2, h ¼ 1

32.
The convergence rate of the mixed formulation is better than
the one of the Lions-Glowinski formulation measured in terms
of ks(k+1) � s(k)k (notice however that Picard residual indicates
the convergence to the same solution in less iterations). In gen-
eral the identification of the optimal parameter k is not easy
whilst the solver for the new mixed formulation is parameter
free.

Monitoring the difference kc(k+1) � c(k)k we have obtained very
similar results both for the convergence with different values of k
and the comparison with the mixed formulation (actually, with
an even more evident better convergence rate for the mixed
formulation), so we did not report the results here.

In the second experiment, we solve the unsteady Bingham
problem taking into account the effect of the inertia terms, i.e.
including the nonlinear convective term. We set the density q = 1
for simplicity. Unsteady problem in the mixed form reads

@u
@t
þ ðu � rÞu� divW þrp ¼ f;

r � u ¼ 0;
WjDuj � Du ¼ 0:

8>><
>>: ð6:2Þ

We impose Dirichlet boundary conditions by ujy=1 = (10,0)T and
homogeneous Dirichlet boundary conditions everywhere else. We
choose Dt = 0.1 as the time step, h ¼ 1

128, e = 10�5 and ss = 2 and
l = 0.1. We solve the Stokes problem and the Navier-Stokes one.
In Fig. 6.4 we show the Stokes and the Navier-Stokes solutions with
variables formulation (left) and the mixed one (right) for the lid-driven cavity. For
erge (-). The non-regularized case e = 0 is included in the last column for the mixed

10�1 10�2 10�3 10�4 10�5 0

Dual

11 21 26 27 27 21
10 15 17 17 17 23

8 12 12 12 12 15
7 9 9 9 9 11

17 31 37 37 38 27
14 22 23 24 24 32
12 17 18 18 18 22
10 13 14 14 14 15
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Picard (Formulation (3.6))

e lid-driven cavity problem with ss = 2 and h ¼ 1
32. Left: ALG with different choices of

rations (3.6) with e = 0 and formulation (5.1) with the algorithm ALG and k = 0.01.



Fig. 6.4. Streamlines of the lid-driven cavity flow (ss = 2, h ¼ 1
128 and e = 10�5). Left: Solution of the Stokes problem. Center and right: solution of the unsteady Navier–Stokes-

type problem computed with ujy=1 = (10,0)T, l = 0.1 (center) and l = 0.01 (right).

u p W

Fig. 6.5. Degrees of freedom for the P1isoP2–P1–P0isoP2 elements used for the mixed formulation. � are the degrees of freedom for the velocity components, s for the
pressure, s for the auxiliary tensor W.

Fig. 6.6. Pseudocode for the continuation algorithm with the Newton method.
newton(u,p,W; f;ecurr) stands for one iteration of the Newton method; ‘‘suc-
cess’’ == ‘‘true’’ if the new residual is less than ecurr.

Table 6.3
Total number of the Newton iterations within the continuation algorithm for the lid-
driven cavity problem with etarget = 1e � 5, ss = 2, and varying h.

h 1
32

1
64

1
128

1
256

Primal form 95 104 107
Augmented form 14 15 15 15
�wmin 0.08070 0.08182 0.08231 0.08254

Table 6.4
Total number of the Newton iterations within the continuation algorithm for the lid-
driven cavity problem with etarget = 1e � 5 and varying ss; h ¼ 1

128.

ss 2 5 10

Primal form 107 123 140
Augmented form 14 29 46
�wmin 0.08231 0.06874 0.05696
yw 0.805 0.836 0.861
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l = 0.1 and l = 0.01. The nonlinear term is handled with a lineariza-
tion through a semi-implicit time advancing scheme. Effectiveness
of the mixed formulation is confirmed also in this case. Plots of
the solution in Fig. 6.4 show the equally distributed velocity
streamlines at t = 1 after the solutions reached steady states.

6.2. Newton method with continuation, triangular elements

In this section, we show results of several numerical experi-
ments with the Newton method enhanced by a continuation algo-
rithm. We run tests for both primitive variables and mixed form of
the discrete problem. These numerical results were produced using
the different triple of finite element pairs: P1isoP2-P1 for velocity
and pressure (Vh consists of continuous piecewise linear functions
with respect to the triangulation built by connecting the middle
points of the edges of the original triangulation), Wh consists of
piecewise constant functions with respect to the same refined tri-
angulation (by analogy we will denote this element by P0isoP2), cf.
Fig. 6.5. Further in the tables, h denotes the size of the (larger) pres-
sure element. Despite of a low approximation order, this choice of
finite element spaces has several advantages: (i) Vh and Qh form an
LBB stable pair, (ii) it holds DðVhÞ �Wh, (iii) for any uh 2 Vh

and Wh 2Wh it holds jDuhjeWh 2Wh. Therefore (4.1) implies
jDuhjeWh = Duh to be valid in a usual pointwise sense. Thus
P1isoP2–P1–P0isoP2 is a (somewhat exceptional) example of a
stable FE triple which provides the the equivalence of the discrete
primitive variables and mixed formulations, similar to their continu-
ous counterparts. Thus, the difference between the two formula-
tions lies entirely in the performance of the Newton type solvers,
while the resulting discrete solution accuracy is the same. We also
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Fig. 6.8. Plot of jDujfor a nontrivial domains with a circular cavity attached to a
rectangular pipe (top) and an occluded pipe (bottom). Results obtained with the
mixed non-regularized formulation.
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remark that due to inherent irregularity of the visco-plastic solu-
tions4 it may not be beneficial to use high order elements.

A pseudocode of the continuation algorithm we used is shown
in Fig. 6.6. Newton iterations inside the continuation method are
stopped (with ‘‘success’’ == ‘‘true’’) once the L2 norm of the nonlin-
ear residual is less than e, where e is a current value of the regular-
ization parameter. Numerical experiments show that finding unew,
pnew, Wnew with better accuracy does not lead to a better conver-
gence of the subsequent Newton step. If during the newton(. . .)
step the residual exceeds twice the initial residual (it was found
beneficial to allow a small increase of residual on the first step of
the Newton method), then the Newton iterations are terminated
with ‘‘success’’ == ‘‘false’’. The target e in all our tests is 10�5. On
every step of the Newton method a linear system of algebraic
equations was solved approximately by a preconditioned GMRES
method. For these inner linear iterations the stopping criteria
was the reduction of the initial residual by a factor of 0.1e. Increas-
ing the inner tolerance did not lead to a notable reduction of the
total number of nonlinear iterations. We note again that for small
4 The velocity gradient is expected to have a kink on the yield surface, as clearly
seen from the analytical example in (6.1), thus u R H3. Of course, introducing e > 0
smears the irregularity.
values e the linear systems become increasingly ill-conditioned
(for both primitive variables and mixed form) and special precon-
ditioned iterative method should be developed to solve them effi-
ciently. Lacking such solvers in our current implementation
prevented us from decreasing etarget in this test below 10�5.

Tables 6.3 and 6.4 show the total number of Newton iterations
within the continuation algorithm (the total number includes also
those iterations which were not accepted, i.e. ended with ‘‘suc-
cess’’ = ’’false’’). The results are shown for the problem in both
primitive variables and the mixed form for different values of mesh
size and stress yield. We also show the minimum of the stream
function and the position of the main vortex center for the com-
puted solutions. Fig. 6.7 presents the equally distributed velocity
streamlines and the isoline of ð2lþ ssjDuj�1

e ÞjDuj ¼ ss, the latter
may be interpreted as a reasonable approximation of the yield sur-
faces [35]. Comparing these statistics to those found in [29,30] we
assure that sufficiently accurate solutions are computed.
6.3. A 2D computation on non-rectangular domains

We finally present two simple test cases carried out in non-
rectangular geometries, showing that the mixed formulation even
with no regularization is a viable approach for more realistic prob-
lems. Simulations are carried out with the code FreeFem++

(version 3.9), P1 bubble finite elements for the velocity, P1 for
the pressure and each component of the tensor W. A streamline
upwind Petrov–Galerkin stabilization has been added for the treat-
ment of the convective term (linearized with a Picard approach). In
the first case we simulated a 2D circular cavity problem attached to
a 2D rectangular channel. In the second case we considered a rect-
angular channel featuring an obstacle represented by a sinusoidal
bump. We tested several values of the parameters, both the phys-
ical and the numerical ones. In particular, in Fig. 6.8 – left – we
show the computed shear rate for the first geometry with s = 1,
l = 0.05 and an incoming velocity profile with peak uM = 2. In
Fig. 6.8 – right – we present results for the second geometry with
s = 1, l = 0.1, s = 2 and uM = 10. The non-regularized mixed formu-
lation gets convergent results also in these cases.
7. Conclusion

In this paper we introduced a new formulation for the regu-
larized Bingham flow equations. This formulation has the advan-
tage of being numerically more robust when the regularization
parameter e gets smaller. We proved well-posedness results for
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the weak form of the problem and discussed algebraic properties
of the discretized equations. We have performed several numer-
ical experiments using finite element methods. These experi-
ments show that the number of nonlinear iterations is
significantly reduced for the new formulation compared to the
classical formulation in primitive variables. The mixed formula-
tion does not become singular in the plug region, so that, even
if the theory of this paper covers only the regularized case,
numerical experiments also demonstrate good performances for
the non-regularized case. For the non-regularized case the mixed
formulation was found to compare favorably to the classical
Uzawa method based on the Lions-Glowinski approach. Further
we plan to validate and use the new formulation for more
practical 3D problems. Validation will include the accurate
computation of the plug region in problems of practical interest
(see [35]).
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