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We investigate numerically a recently proposed vorticity based formulation of the incompressible
Navier–Stokes equations. The formulation couples a velocity–pressure system with a vorticity–helicity
system, and is intended to provide a numerical scheme with enhanced accuracy and superior conserva-
tion properties. For a few benchmark problems, we study the performance of a finite element method for
this formulation and compare it with the commonly used velocity–pressure based finite element method.
It is shown that both steady and unsteady discrete problems in the new formulation admit simple decou-
pling strategies followed by the application of iterative solves to auxiliary subproblems. Further, we com-
pare several iterative strategies to solve the discrete problems and study the interplay between the choice
of stabilization parameters in the finite element method and the efficiency of linear algebra solvers.
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1. Introduction uj ¼ /; wj ¼ w; ð1:5Þ
We consider the system of the Navier–Stokes (NS) equation
describing incompressible fluid dynamics in the velocity–vortici-
ty–helicity (VVH) form, on a bounded domain X � R3 with suffi-
ciently smooth boundary and for time interval t 2 ð0; T�,
wt � mDwþ 2DðwÞu�rg ¼ r� f; ð1:1Þ
ut � mDuþw� uþrP ¼ f; ð1:2Þ
r � u ¼ r �w ¼ 0; ð1:3Þ

where u denotes velocity, w vorticity, g and P denote the helical
density and Bernoulli pressure, DðwÞ :¼ 1

2 ðrwþ ½rw�TÞ is the sym-
metric part of the vorticity gradient, and m is the kinematic viscos-
ity. The system is equipped with the initial conditions

u ¼ u0; w ¼ r� u0; for t ¼ 0; ð1:4Þ
and with the boundary conditions
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where the natural choice of w is w ¼ r� u or w ¼ 0 for the far-field
outflow boundaries. This formulation was derived in [31], and has
since been studied numerically in the case of equilibrium NS equa-
tions [23], and for the Boussinesq system [27]. All three of these
studies have shown promising results.

The VVH system is particularly interesting from the physical
point of view. It solves directly for the vorticity, and it has been ar-
gued that methods that do so are more physically accurate, partic-
ularly near boundaries [8]. Using vorticity equations for fluid
dynamics solvers has a long history and has been a subject of
intensive studies, see, e.g., [16,18,24,25,34,35] for a sample of re-
sults. Furthermore, it was pointed out recently in [30], see also
the discussion in [14], that the discrete vorticity wh from the finite
element vorticity equation is a more natural quantity than r� uh

for the discrete balance laws for vorticity, enstrophy and helicity
when the forcing terms are conservative. Therefore, it may be ben-
eficial to use this discrete vorticity wh in the momentum equations
for the velocity through the Lamb vector wn � uh. Additionally,
using the dynamic equation (1.2) for linking velocity and vorticity
instead of the vector Poisson equation Du ¼ �r�w immediately
provides the discrete system with the ‘correct’ energy balance (or
a desired alteration of it if a subgrid/stabilization model is used).
This was exploited, in particular, in [23], where the first error anal-
ysis was done for vorticity based finite element formulations. VVH
is also the first NS formulation to solve directly for the helical
density (which is related to the helicity through H ¼

R
X g dx), a

quantity known to be of fundamental physical importance in fluid
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flow [26,6,15]. This formulation also explicitly enforces the vortic-
ity to be incompressible by Eq. (1.3), with helical density g in (1.1)
acting as a Lagrange multiplier corresponding to this constraint.
Since r � r� ¼ 0, that the vorticity is solenoidal is important both
for physical relevance and mathematical consistency. Although it is
possible to couple this constraint to the usual vorticity equation by
adding an artificial Lagrange multiplier, VVH enforces this con-
straint naturally. Thus, we deem the formulation worth of further
study in the direction of cost-efficiency comparison to the more
common velocity–pressure formulation and the development of
fast algebraic solvers. This is the objective of the present paper.

For the purpose of benchmarking, we choose one problem with
a known analytical solution from [13], and the unsteady flow over
a 3D forward–backward facing step with Re ¼ 200, see [20]. Both
problems feature essentially 3D solutions and are relevant for test-
ing the accuracy, the stability, and the ability of an incompressible
CFD solver to capture important flow properties on relatively
coarse meshes. Another perceptible difficulty in computing with
the fully coupled VVH system is solving the large sparse linear sys-
tems that arise in the discretizations. In this paper, we use explicit
(for unsteady problem) or implicit (for steady solutions) decou-
pling strategies to reduce the computations and to solve more
standard linear algebraic systems of lower dimension. The alge-
braic approach we consider herein is block preconditioned GMRES
[33], where the block preconditioning is based on an augmented-
Lagrangian (AL) approach developed earlier in [2,4,3] for veloc-
ity–pressure saddle point systems. Here we extend and study this
approach for the dual-coupled saddle points systems resulting
from a finite element discretization of (1.1)–(1.5).

This paper is arranged as follows. In Section 2, we present the
finite element discretization for the VVH system (1.1)–(1.5). Re-
sults of numerical experiments for the Ethier–Steinman and the
3D step problems are discussed in Section 3. Preconditioning and
the algebraic solvers are studied in Section 4. Finally, in Section 5,
we draw conclusions and discuss future directions.

2. Finite element solver

We present in this section the finite element discretization for
the system (1.1)–(1.5), along with a brief discussion. We assume
homogeneous boundary conditions for the velocity to simplify
the weak formulation and the subsequent analysis. Both of our
numerical experiments are for inhomogeneous boundary condi-
tions for the velocity. The Galerkin finite element method for the
steady Eqs. (1.1)–(1.5) is as follows.

Let ðXh;QhÞ � ðH1ðXÞ; L2ðXÞÞ be conforming finite element
spaces on a regular mesh sh on a polyhedral domain X, satisfying
the LBB condition, inverse inequality and the standard approxima-
tion properties, see, e.g., [17]:

inf
vh2Xh

k/� vhk0 þ hk/� vhk1ð Þ 6 Ch‘þ1j/j‘þ1;

inf
qh2Qh

kr � qhk0 6 Ch‘jrj‘; for ‘ ¼ 0; . . . ; k;

with some integer k P 1. Define the subspaces Xh0 :¼ Xh \H1
0ðXÞ.

The finite element formulation reads: given forcing f 2 L2ðXÞ
and kinematic viscosity m > 0, find ðuh;wh; Ph;ghÞ 2 Xh0 � Xh�
Q h � Q h for any time t 2 ½0; T� satisfying 8ðvh;vh; qh; rhÞ 2 Xh0�
Xh0 � Qh � Q h,

ððuhÞt ;vhÞ þ ðwh � uh;vhÞ � ðPh;r � vhÞ þ mðruh;rvhÞ ¼ ðf;vhÞ;
ðr � uh; qhÞ ¼ 0;
ððwhÞt ;vhÞ þ 2ðDðwhÞuh;vhÞ þ ðgh;r � vhÞ þ mðrwh;rvhÞ ¼ ðr � f;vhÞ;
ðr �wh; rhÞ ¼ 0;
wh � Ihðr � uhÞ ¼ 0 on @X:

8>>>>>><>>>>>>:
ð2:6Þ
Here Ih denotes a generic interpolant such thatR
@X Ihðr � uhÞ � n ¼ 0, where n is an outward normal vector to @X,

e.g., a Clement-type interpolant IC
h based on local averaging.

This method was analyzed in [23] for the case of equilibrium
solution, and was found to be stable and optimally convergent.
More precisely, the following result is valid: let ðu; pÞ be the solu-
tion to the stationary incompressible Navier–Stokes equations in a
bounded domain X � R3 with a sufficiently regular boundary and
homogeneous Dirichlet boundary conditions for u. Assume
f 2 L2ðXÞ;u 2 H1

0ðXÞ \Hkþ1ðXÞ. If ðuh; PhÞ; ðwh;ghÞ are the solutions
to (2.6), with wh ¼ IC

hðr � uÞ on @X and with a small data assump-
tion on kfk, then the a priori error estimate

krðu�uhÞk2þkw�whk2
6 C h2kþk r�u� IC

hðr�uÞ
� ��

�nk2
�1

2;@X

þk r�u� IC
hðr�uÞ

� �
�nk2

�1
2;@X

�
holds with w ¼ r� u. Moreover, if additional regularity of the Na-
vier–Stokes velocity is assumed, u 2 H1

0ðXÞ \Hkþ2ðXÞ, P 2 HkðXÞ
then it holds

krðu� uhÞk2 þ krðw�whÞk2 þ kP � Phk þ kg� ghk 6 C h2k
:

ð2:7Þ

The above convergence result assumes wh ¼ IC
hðr � uÞ for the vor-

ticity boundary condition instead of the more practical
wh ¼ IC

hðr � uhÞ. For wh ¼ IC
hðr � uhÞ, numerical experiments from

[23], using P2-P1 finite elements, show the 1 and 0.5 convergence
order reduction for the vorticity in L2 and H1 norms, respectively,
and less than 0.5 convergence order reduction for the helical den-
sity in L2 norm, compared to those predicted by (2.7). On the other
hand, velocity errors remain of optimal order.

2.1. Grad-div stabilization

In numerical experiments we use the LBB stable P2-P1 Taylor–
Hood finite element on a regular mesh of tetrahedrons satisfying a
uniform small angle condition. In practice, using an element pair
that does not provide pointwise enforcement of the solenoidal con-
straints (such as Taylor–Hood) may lead to poor scaling of the
velocity error with respect to the viscosity coefficient and the norm
of the pressure gradient [22,32]. This effect is especially pro-
nounced for the case of the rotation form of the momentum equa-
tion, since the Bernoulli pressure may share sharp internal or
boundary layers with the velocity. One way to ameliorate much
of this bad scaling of the velocity error with respect to the viscosity
consists in introducing a simple grad-div stabilization [29,32]: one
adds the least-squares type term

c1ðr � uh;r � vhÞ

to the finite element momentum equation, with a parameter
c1 ¼ Oð1Þ. Since for 3D flows the helicity gradient can likewise affect
the error in the vorticity for small viscosities, we add a similar term

c2ðr �wh;r � vhÞ

to the finite element vorticity equation with c2 ¼ Oð1Þ. It was
shown in [29] (for the velocity–pressure form) that the accuracy
of the finite element solution is not very sensitive to the variation
in c1 up to c1 ¼ Oð1Þ. The ‘optimal’ value was found for several flows
to be around 0.2. Thus, we take c1 ¼ 0:2 further in all numerical
experiments. Here we also experiment with varying c2. The depen-
dence of the error on c2 for the steady Ethier–Steinman problem
(described in the next section) and the number of iterations in the
augmented Lagrangian preconditioned Krylov subspace method
(see details in Section 4) are shown in Fig. 1. Due to this, in the
numerical experiments herein we take the value c2 ¼ 0:5 as close
to optimal.
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Although the convergence results above were proved with
c1 ¼ c2 ¼ 0, they can be easily extended to the case of c1; c2 > 0,
with the constant C possibly dependent on the c’s. We shall see
in Section 4 that introducing the stabilization is also favorable for
building iterative solvers.

2.2. Numerical time integration

The Navier–Stokes equations written in the form (1.1)–(1.3) call
for the natural splitting algorithm for time integration. Indeed, if
the velocity u is frozen, then the vorticity equation (1.1) becomes
linear; conversely, if the vorticity w is frozen, then the velocity
equation (1.2) becomes linear. We exploit this property in the fol-
lowing second-order time integration splitting method (for the
sake of notation we suppress the spacial discretization indices
here). Denoting /n :¼ /ðtnÞ; tn ¼ t0 þ nðDtÞ;/nþ1=2 :¼ 1

2 ð/
n þ /nþ1Þ,

we compute for n ¼ 0;1;2; . . .

Step 1:

1
Dt ðunþ1 � unÞ � mDunþ1

2 þrPnþ1 þ 3
2 wn � 1

2 wn�1
� �

� unþ1
2 � fnþ1

2 ¼ 0;
r � unþ1 ¼ 0;
unþ1j@X � /nþ1 ¼ 0:

8><>:
ð2:8Þ

Step 2:

1
Dt ðwnþ1 �wnÞ � mDwnþ1

2 �rgnþ1 þ 2Dðwnþ1
2Þunþ1

2 �r� fnþ1
2 ¼ 0;

r �wnþ1 ¼ 0;
wnþ1j@X � Ihðr � unþ1Þj@X ¼ 0:

8><>:
ð2:9Þ

At every time step, two linear algebraic problems of saddle point
type must be solved. These problems have the same structure as
the discrete Oseen system resulting from the semi-explicit scheme
for the Navier–Stokes equations in the velocity–pressure convection
form (see, e.g., [21]): For n ¼ 0;1;2; . . .compute

1
Dt ðunþ1 � unÞ � mDunþ1

2 þrpnþ1 þ 3
2 un � 1

2 un�1
� �

� runþ1
2 � fnþ1

2 ¼ 0;
r � unþ1 ¼ 0;
unþ1j@X � /nþ1 ¼ 0:

8><>:
ð2:10Þ

We shall use the scheme (2.10) for the purpose of comparison of the
vorticity–velocity solutions (2.8) and (2.9) to the more common
velocity solutions. Obviously, one time step of (2.8) and (2.9) is
nearly two times as expensive as one time step of (2.10). Thus, for
a more fair comparison of the schemes we choose the time step
for (2.10) half the time step for (2.8) and (2.9). An important obser-
0 0.1 0.2 0.3 0.4
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Fig. 1. Dependence of the L2 velocity and vorticity error and the number
vation is that by using splitting schemes to integrate (1.1) and (1.2),
one largely avoids the increase of computer memory consumption
due to having double the number of unknowns compared to the
velocity–pressure formulation. Indeed, temporary data such as aux-
iliary vectors in Krylov subspace iterative methods or matrix factor-
izations for preconditioners account for a major part of total storage
inputs. Thus, it is important to reduce the dimension of the auxiliary
linear algebra problems to be solved in (2.8) and (2.9) to the same
size as in (2.10).

It is possible to develop more explicit splitting (projection)
schemes for (1.1) and (1.2) along the lines of Chorin–Temam–Yan-
enko type schemes for the velocity–pressure convection form of
the Navier–Stokes equations. This would come with the well-
known price of accepting numerical boundary layers and time step
stability restrictions. We will explore such schemes elsewhere.

3. Numerical experiments

We now describe two numerical examples that illustrate the
effectiveness of the proposed method. These tests obtain VVH
approximations to the solution using the standard finite element
approximation to (2.8) and (2.9), and P2-P1 Taylor–Hood elements
for both the velocity–pressure and vorticity–helicity systems. For
the vorticity boundary condition, the normal component can be
determined from the Dirichlet velocity condition, and the tangen-
tial components come from a nodal averaging of r� uh at the
boundary.

The numerical tests in this section were performed in MATLAB on
a 2 � 2.66 GHz Quad-Core Intel Xeon Mac 10.6.8 workstation with
32 GB 1066 MHz DDR3 memory.

3.1. Experiment 1: The Ethier–Steinman problem

The first numerical experiment we consider is to compute
approximations to the Ethier–Steinman exact Navier–Stokes solu-
tion from [13] on ½�1;1�3. For chosen parameters a; d and viscosity
m, this exact NSE solution is given by

u1 ¼ �a eax sinðayþ dzÞ þ eaz cosðaxþ dyÞð Þe�md2t ;

u2 ¼ �a eay sinðazþ dxÞ þ eax cosðayþ dzÞð Þe�md2t ;

u3 ¼ �a eaz sinðaxþ dyÞ þ eay cosðazþ dxÞð Þe�md2t;

p ¼ � a2

2 e2ax þ e2ay þ e2az þ 2 sinðaxþ dyÞ cosðazþ dxÞeaðyþzÞ�
þ2 sinðayþ dzÞ cosðaxþ dyÞeaðzþxÞ

þ2 sinðazþ dxÞ cosðayþ dzÞeaðxþyÞ�e�md2t:

8>>>>>>>>>><>>>>>>>>>>:
ð3:11Þ
γ2
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The first part of this test is to demonstrate the effectiveness of a
linear algebra solver that works very well on the vorticity-helical
density systems; effective methods for solving the velocity–pres-
sure system in rotational form are already known [1,28], and so
we do not discuss that linear solve further except to note that
the solver discussed below for vorticity–helicity worked very well
on the velocity–pressure system as well. The chosen solver was
GMRES (50) with a block lower triangular preconditioner [10].
Diagonal blocks, which approximate the pressure (helical density)
Schur complement matrices and velocity (vorticity) submatrices
were built using an inexact Cahouet–Chabard preconditioner [5]
and an incomplete LU factorization (drop tolerance 10�2), respec-
tively. To approximate the solution of the Poisson problem in the
Cahouet–Chabard preconditioner, we use incomplete Cholesky fac-
torization (again with drop tolerance 10�2). Other drop tolerance
values were tested, but we found 10�2 to be essentially optimal
in terms of total solution times. We also tested an augmented
Lagrangian preconditioner (as in [4]), and got nearly as good
results.

We computed approximate solutions for several uniform tetra-
hedralizations of the unit cube (details of which are given in Ta-
ble 1, using m ¼ 0:01;Dt ¼ 0:01; a ¼ 0:75; d ¼ 0:5 and T ¼ 0:05.
We used grad-div stabilization in both equations, taking
c1 ¼ 0:2; c2 ¼ 0:5. Timings and iteration counts are also shown in
Table 1. A slight growth in the number of total GMRES iterations
with an increase in degrees of freedom is observed, but overall
the iterations and timings are observed to be quite good.

In this numerical example, we also compare the accuracy of the
splitting scheme (2.8), (2.9) to a commonly used Navier–Stokes
discretization: the linear extrapolated Crank–Nicolson (CNLE)
scheme (2.10). For the purpose of comparison, we also use the non-
linear Crank–Nicolson scheme (CN) as an ultimately implicit sec-
ond-order scheme in the primitive variables: For n ¼ 0;1;2; . . .

compute

1
Dt ðunþ1 � unÞ � mDunþ1

2 þrpnþ1 þ unþ1
2 � runþ1

2 � fnþ1
2 ¼ 0;

r � unþ1 ¼ 0;

unþ1j@X � /nþ1 ¼ 0:

8>><>>:
ð3:12Þ

To compute with CNLE and CN we use P2-P1 Taylor–Hood finite ele-
ments, with the same mesh as for (2.8) and (2.9).

We compare solutions to these schemes to that of VVH by com-
puting each of them to T ¼ 1 on the h ¼ 1=8 uniform mesh, and
comparing errors. Since the exact solution is given in (3.11) we
use both exact vorticity values and nodal averaging of the curl of
the computed finite element velocity as vorticity boundary condi-
tions in (2.9). Note that CN is a nonlinear scheme, and we use New-
ton’s method to resolve it. On average, CN needed three Newton
iterations at each timestep. CNLE only needs one linear solve per
timestep, while VVH needs two. The computational cost of each
of these algorithms is proportional to the number of linear solves
Table 1
Degrees of freedom for the discretized Ethier–Steinman problem and iteration counts and ti
preconditioning. ‘‘# iter.’’ denotes the average number of iterations, titer is the total times

Degrees of freedom for varying h

h # Tetrahedra dim(Xh) dim(Qh)

1
4

3,072 14,739 729
1
6

10,368 46,875 2197
1
8

24,576 107,811 4913
1

10
48,000 206,763 9261

1
12

82,944 352,947 15,625
1

14
131,712 555,579 24,389
they need, and thus CNLE is about twice as fast as VVH for a single
timestep, while CN is slower than VVH. Hence for a fair compari-
son, we use Dt ¼ 0:01 for VVH and CN, but for CNLE we use
Dt ¼ 0:005. Plots of the velocity and vorticity errors are displayed
in Fig. 2, and VVH is clearly more accurate, particularly when an
exact vorticity boundary condition is known.

3.2. Experiment 2: Three-dimensional channel flow over a step

Our second test is for three-dimensional, time-dependent chan-
nel flow over a forward–backward facing step with Re ¼ 200. Fig. 3
displays a diagram of the flow domain with a 40� 10� 10 rectan-
gular channel and a 10� 1� 1 block step placed 5 units into the
channel on the bottom.

This problem is an alteration of experiments of John and Liakos
[20], but with a different treatment of inflow and outflow bound-
ary conditions. John and Liakos use a constant inflow profile, which
is likely not physical, and also not appropriate if solving directly for
the vorticity since this inflow condition will create a blow-up of
vorticity at the inflow edges. We use instead a quartic inflow pro-
file, given below by (3.13), and for simplicity also enforce this con-
dition at the outlet. The correct physical behavior for this flow
problem, which was resolved by Cousins et al. [7], is that by
T ¼ 10, an eddy forms behind the step, detaches and moves into
the flow, and another eddy forms.

For the velocity boundary conditions, we choose no-slip bound-
aries for the channel walls and step, and for the inflow and outflow
we enforce the Dirichlet condition

u ¼
0

xð10� xÞyð10� yÞ=625
0

0B@
1CA: ð3:13Þ

For the initial condition on the velocity we use the Re ¼ 50 steady
solution of this problem. For the vorticity boundary conditions, at
the inflow and outflow we enforce the vorticity to be the curl of
the inflow and outflow velocity (i.e., the curl of (3.13)), and on the
walls and step we enforce the wh � n ¼ 0 condition and for the tan-
gential directions we enforce the vorticity at the nodes to be the
average of the curl of the velocity. The initial vorticity is taken to
be the L2 projection of the initial velocity solution into the finite ele-
ment velocity space, and satisfying the above vorticity boundary
conditions. A timestep of Dt ¼ 0:04 is used to advance the VVH
algorithm (2.8) and (2.9) to T ¼ 10, using P2-P1 Taylor–Hood ele-
ments on a tetrahedral mesh that provides 404,289 degrees of free-
dom both for velocity and for vorticity, and 18,045 degrees of
freedom for both Bernoulli pressure and helical density (for a total
of 844,668 total degrees of freedom). The mesh is built from a qua-
si-uniform mesh of tetrahedra, which are built from refinement of
rectangular cubes that are refined near the step. The grad-div stabil-
ization parameters were chosen as c1 ¼ 0:2 and c2 ¼ 0:5.

For the linear solves we used preconditioned GMRES for both
the velocity–pressure and the vorticity–helicity linear systems.
mings for the vorticity–helicity solve for varying h using GMRES with block-triangular
used by iterations and tsetup is the setup time.

Solver performance

Total VVH dof # Iter. titer tsetup

30936 12 0.19 0.56

98,144 14 0.73 3.57

225,448 16 2.06 10.53

432,048 18 5.20 21.38

737,144 20 10.26 49.30

1,159,936 22 22.15 98.23



Fig. 2. The errors in discrete velocity and vorticity versus time, for CN, CNLE and VVH with averaging boundary condition, and VVH with exact boundary condition schemes
for Ethier–Steinman problem with m ¼ 0:01, using h ¼ 1=8;Dt ¼ 0:01 for VVH and CN, and Dt ¼ 0:005 for CNLE.

Fig. 3. Shown above the is domain for the 3D channel flow over a step problem.
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The same block triangular preconditioner and the same inner and
Poisson solvers as in the previous numerical example are used.
We updated each preconditioner every 20 timesteps. The average
number of iterations needed for each solve was 40 and 36, respec-
tively, for the velocity–pressure and vorticity–helicity systems.

In Fig. 4, plots are provided for the velocity and vorticity solu-
tions at T ¼ 10, and these agree with the expected qualitative
behavior; that is, it is clear from the plots that an eddy has de-
tached and another has formed.

For a comparison of results, we also ran the CNLE algorithm
(2.10), with the same mesh and initial and boundary conditions
for velocity, but with Dt ¼ 0:02 (so the overall cost is approximately
the same as for VVH). The results of this simulation at T ¼ 10
are shown in Fig. 5, and are visibly less accurate than for VVH, in
that we do not see eddy detachment and reformation. Based on
these results, VVH is more accurate with CNLE for this test problem.

One well known benefit of the vorticity based numerical meth-
od is that it gives direct access to the discrete vorticity, instead of
computing the discrete vorticity by postprocessing as
wh :¼ r� uh. In the present formulation (1.1), the computation
of vorticity and velocity are even one step further decoupled in
the sense that instead of solving Du ¼ �r�w (as many vorticity
formulations do), the discrete velocity directly solves the momen-
tum equation, where the vorticity enters the nonlinearity. This
observation suggests that the difference jwh �r� uhj can be a rea-
sonable measure of the discrete solution accuracy and thus to serve
as a simple and easily computable error indicator for a mesh
adaptation. The same is true for the difference jgh �wh � uhj. We
will study such adaptive strategies elsewhere. Here we illustrate
our hypothesis by plotting the difference jwh �r� uhj in Fig. 6
(top plot). Note that the difference is large precisely near the step
corners where the solution is known to be non-smooth, but not
necessarily in those regions where the vorticity magnitude is large
(see the bottom plot in Fig. 6).

4. Preconditioners and solvers for steady problems

We now turn to the solution of a velocity based system in the
steady case. Use of a vorticity based formulation for steady-state
computations can lead to more accurate computed velocities near
the boundary, and is a natural approach when the vorticity is
required.

Solution of the discrete VVH system in the steady case poses
considerable challenges from the linear algebra point of view. As
already discussed, in the unsteady case, decoupling of the velocity
and vorticity fields results in two fairly standard saddle-point
problems which can be effectively solved by GMRES with block tri-
angular preconditioning. For steady problems, on the other hand,
Newton (or Picard) linearization leads to a sequence of coupled
block 4� 4 linear systems for the velocity, Bernoulli pressure, vor-
ticity and helical density. Here we propose tackling this challeng-
ing system by GMRES with block triangular preconditioning, so
that decoupling of the unknowns now takes place when applying
the preconditioner within a GMRES step. Our approach should be
considered as a first attempt only, and more work is necessary to
make this approach competitive.

We use Newton’s method to converge to the solution of the
nonlinear problem (2.6). For higher Reynolds numbers, Newton’s
method should be combined with a continuation technique with
respect to m. Suppressing the spatial discretization notation, the
Newton linearization of the system (2.6) reads: Given the velocity
and vorticity approximations U and W solve for the updates
u;w; P;g the system

�mDu� c1rr � uþW � uþrP þw� U ¼ fu;

r � u ¼ gu;

2DðWÞu� mDw� c2rr �wþ 2DðwÞU �rg ¼ fv ;

r �w ¼ gv ;

uj@X ¼ 0; wj@X �r� uj@X ¼ gbc:

8>>>>>><>>>>>>:
ð4:14Þ



Fig. 4. Shown above is the VVH T ¼ 10 solution (top) velocity streamlines over speed contours over the entire channel, (bottom) velocity streamribbons zoomed in at the
step.

Fig. 5. Shown above is the T ¼ 10 CNLE solution (top) velocity streamlines over speed contours over the entire channel, (bottom) velocity streamribbons zoomed in at the
step.
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Fig. 6. Shown above are the x ¼ 5 sliceplanes at T = 10, zoomed in near the step, of the magnitude of the difference wh �r� uh (top) and vorticity magnitude (bottom)
computed by the VVH method.
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with ffu; gu; fv ; gv ; gbcg standing for a (nonlinear) residual. We re-
mark that the last equation in (4.14), representing the boundary
coupling of the vorticity and velocity, requires a special treatment
while solving the discrete linear system iteratively. In particular,
we enforce in the iteration that wj@X be equal to the nodal average
of r� u, on the boundary, from the previous iteration.

For the sake of clarity, assume that the vorticity boundary con-
ditions are decoupled from the velocity, say wj@X ¼ 0, and do not
contribute to the vorticity d.o.f. Given the structure of the system
in (4.14), the algebraic form of the finite element linearized equa-
tions in our case is the following coupled system:

Au �BT M 0
�B 0 0 0
N 0 Av BT

0 0 B 0

0BBB@
1CCCA

u
P

w
g

0BBB@
1CCCA ¼

fu

gu

fv
gv

0BBB@
1CCCA: ð4:15Þ

More specifically, the four blocks in the upper left corner

Au �BT

�B 0

 !
¼

A11 A12 A13 �BT
1

A21 A22 A23 �BT
2

A31 A32 A33 �BT
3

�B1 �B2 �B3 0

0BBBB@
1CCCCA ð4:16Þ

correspond to the rotation form of the linearized Navier–Stokes
equations. The diffusive term multiplied by the viscosity m is con-
tained in the diagonal blocks of Au, and the cross-product terms
are included in off-diagonal blocks Aij; i – j. The grad-div stabiliza-
tion terms with parameter c1 are in all nine blocks of Au. The four

blocks in the lower right corner of (4.15), Av BT

B 0

� �
, which arise

from the vorticity–helicity saddle point system, are similar in form
to the convection form of the linearized Navier–Stokes equation,
but the convection term is distributed in all nine blocks of Av due
to the definition of DðwÞ.

Observe that the coupled VVH system (4.15) is singular for the
Ethier–Steinman and step problem we consider in this paper. In
both problems, the Bernoulli pressure P and helical density g
are unique up to an additive constant, making the linear system
in (4.15) rank deficient by 2 (because B is rank deficient by one).
One may either remove these singularities by setting a single
Dirichlet degree of freedom for both P and g, but as is the case
for velocity–pressure systems as well, when using Krylov solvers
these singularities need not be removed provided the iterations
take place in an appropriate subspace [10]. Preconditioning tech-
niques for saddle point problems have been studied intensively
in recent years see, e.g., [1,2,4,9,11] as well as the systematic
treatment in [10]. Here we focus on augmented Lagrangian
preconditioning [2,4], which is especially well-suited when
grad-div stabilization is applied to the velocity and vorticity
equations.

To build a preconditioner for (4.15), assume we are given a gen-
eralized saddle point system of the form

A BT

B 0

 !
u

p

 !
¼

f

0

 !
; or Ax ¼ b: ð4:17Þ

The augmented Lagrangian (AL) approach from [2] consists first of
replacing the original system (4.17) with the equivalent one

Aþ cBT W�1B BT

B 0

 !
u

p

 !
¼

f

0

 !
; or Ac x ¼ b; ð4:18Þ

followed by preconditioning (4.18) with a block triangular precon-
ditioner of the form
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Pc ¼
bAc BT

0 �bSc

 !
: ð4:19Þ

Here and in the following bAc denotes a preconditioner for the veloc-
ity block Ac ¼ Aþ cBT W�1B and bSc is a preconditioner for the Schur
complement of the augmented system Sc ¼ BðAþ cBT W�1BÞ�1BT .
Based on the identity

S�1
c ¼ S�1

0 þ cW�1;

a reasonable choice of bSc is the scaled W matrix, e.g., bSc ¼ c�1 W ,
where W is typically a diagonal matrix, for example, an approxima-
tion of the pressure mass matrix in the case of a linearized Navier–
Stokes problem. Eigenvalue bounds for P�1

c Ac have been estab-
lished in [2,4], and field of values type bounds for P�1

c Ac, which lead
to rigorous convergence estimates for GMRES, have been proved in
[3].

In this paper we study the augmented Lagrangian precondition-
ing, when the augmentation is introduced on the differential level,
the so called ‘‘first augment, then discretize’’ approach. This ap-
proach allows us both to improve accuracy of the finite-element
solution (see Section 2.1) and to build an efficient preconditioner.
Indeed, the matrix Au can be decomposed as Au ¼ Aþ c1G, where
A corresponds to the discretization of �mDþw� operator, while
G discretizes �rr�. Thus adding c1G is similar from an algebraic
point of view to the addition of c1BT W�1B with W given by the
pressure mass matrix. The same observation is valid for the matrix
Av . Since (4.16) can be regarded as the augmented Lagrangian lin-
ear system, we consider the modified variant of the AL
preconditioner:

bAu �BT

0 �bSu

 !
¼

A11 A12 A13 �BT
1

0 A22 A23 �BT
2

0 0 A33 �BT
3

0 0 0 �bSu

0BBBB@
1CCCCA ð4:20Þ

where bS�1
u ¼ ðc1 þ mÞ bM�1

p and bMp is the main diagonal of the pres-
sure mass matrix Mp. The presence of the grad-div stabilization
terms in A11;A22 and A33 makes the preconditioner (4.20) of aug-
mented Lagrangian type. For the vorticity–helicity system, a similar
block upper-triangular preconditioner is used except that the grad-
div stabilization parameter is c2 instead of c1. To solve subproblems
with A11;A22 and A33 in the velocity and vorticity blocks, we con-
sider different inexact solvers.

For the coupled system (4.15), we define the following block
lower triangular approximation

bAu �BT 0 0
0 �bSu 0 0

N 0 bAv BT

0 0 0 �bSv

0BBBB@
1CCCCA; ð4:21Þ

as the global preconditioner, where bAu and bAv are corresponding
block upper triangular approximations of Au and Av . The reason
for using a block lower triangular matrix is that keeping N, a dis-
crete analogue of the 2DðWÞu operator, appeared to be superior
to including M, a discrete analogue of the w� U operator.

In (4.21), since Su and Sv are both diagonal, the major computa-
tion lies in solving linear systems with the diagonal blocks of Au

and Av . For these inner solves, we can use sparse direct methods,
but these become quickly prohibitive for the 3D problems of inter-
est here. Here we compare the incomplete LU factorization and the
algebraic multigrid method (AMG) implemented in IFISS 3.1 [12].
Note that the incomplete LU factorization has been optimized
and built into MATLAB (ilu function), so it is very efficient, while
AMG is written in MATLAB, and therefore it is slower than incom-
plete LU factorization in terms of execution time.

We also investigate an inner–outer Flexible GMRES (FGMRES)
scheme. For the latter we use the implementation based on the
simpler GMRES algorithm described in [19]. Here, to solve the lin-
ear systems with the velocity–pressure equation and the vorticity–
helicity equation, instead of applying one action of the AL-type
preconditioners, a few inner GMRES iterations with corresponding
preconditioners are used. This inevitably increases the cost, but we
find it significantly reduces the outer FGMRES iterations and thus
total iteration time. This method is found to be, by far, the most
efficient of those tested.

4.1. Numerical experiment: steady Ethier–Steinman flow

We now test the methods described above on two test prob-
lems, a steady analog of the Ethier–Steinman problem, and the
steady channel flow over a step problem with Re = 50. Here, we
suppose the solution is time-independent, which is done by simply
using the Ethier–Stienman solution with the e�md2t ’s in (3.11) re-
moved. This leads to a nonzero right hand side function, and we
compute using the solution for the inhomogeneous Dirichlet
boundary conditions. We take the Ethier–Steinman parameters
as a ¼ d ¼ 1, kinematic viscosity m ¼ 0:02, and c1 ¼ 0:2; c2 ¼ 0:5.

The results using these various solvers are given in Tables 2,3.
First, we show L2 norms of the velocity and vorticity errors. Further
Table 2 gives iteration counts and timings for FGMRES, with a few
ILU-preconditioned GMRES iterations for computing (4.16) and the
vorticity–helicity block in (4.15). Note that this results in a variable
(hence, non-linear) block triangular preconditioner. This table also
shows results for GMRES preconditioned by (4.21); no inner itera-
tions where executed. Finally, we repeat the same experiments
with ILU replaced by the AMG preconditioner. These results are
shown in Table 3. In all the tables, the first number in the ‘‘Itera-
tions’’ column is the number of Newton iterations, and the second
is the average (F)GMRES iterations. For the outer FGMRES, restarts
were done every 50 iterations, the maximum number of iterations
was set to 500, and the convergence tolerance to 1e�5. For the in-
ner GMRES, the maximum number of iterations was set to 10, and
the tolerance to 1e�3 (although this tolerance was never reached).
For the global preconditioner, GMRES with restarts every 50 itera-
tions, maximum number of iterations was set to 500, and the tol-
erance 1e�5 was used; for the associated inner solvers, ILU used a
drop tolerance of 1e�3. The AMG used is the IFISS 3.1 implemen-
tation with ILU smoother (this was found to be more effective than
damped point Jacobi and Gauss–Seidel), and the levels are auto-
matically created by the algorithm. In our problems, 13–19 levels
are generated.

Note that for this analytical example the L2 norms of the veloc-
ity and vorticity errors scale approximately as O(dof�1), which is
optimal for piecewise quadratic finite elements in 3D. The modi-
fied augmented Lagrangian preconditioner results in convergent
Krylov subspace iterations when ILU is used for approximating
the block solves. FGMRES with inner iterations appears to be some-
what more efficient in terms of timings than the plain GMRES with
block triangular linear (i.e., constant) preconditioner. It is interest-
ing to observe that the AMG method, known to be quite useful as
an inner auxiliary solver for the Oseen problem in convection form
(at least in 2D and for m not too small [10]), generally fails for the
vorticity systems.

4.2. Numerical experiment: steady channel flow over a step

We observed in the previous test that the inner–outer FGMRES
with ILU solver performed the best on the steady Ethier–Steinman
problem. We now test this solver on the physically motivated,



Table 2
Finite element errors; timings and iterations of inner–outer FGMRES with block triangular non-linear preconditioner (using ILU) and with block triangular linear preconditioner
(using ILU).

DOF FE error Non-linear preconditioner Linear preconditioner

ku� uhkL2 kw�whkL2 tsetup titer # Iter. tsetup titer # Iter.

30,936 1:1� 10�2 2:6� 10�2 1.5 9.5 3, 13.3 1.5 20.2 3, 176.3

225,448 1:1� 10�3 2:5� 10�3 62.1 78.9 3, 13.7 62.0 85.4 3, 96.3

432,048 4:9� 10�4 1:1� 10�3 231.1 156.6 3, 14.0 231.0 193.6 3, 108.3

737,144 2:5� 10�4 5:8� 10�4 624.4 293.1 3, 15.3 623.7 414.2 3, 127.3

Table 3
Timings and iterations of inner–outer FGMRES with block triangular non-linear preconditioner (using AMG) and with block triangular linear preconditioner (using AMG).

DOF Non-linear preconditioner Linear preconditioner

tsetup titer # Iter. tsetup titer # Iter.

30,936 39.4 1520.6 5, 500 Stagnates
225,448 Stagnates
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more complex test problem of 3D channel flow over a forward–
backward step. The problem we study is the steady analog of the
problem studied in Section 3, using m ¼ 0:05 and 0.02. Again we
choose grad-div stabilization parameters to be c1 ¼ 0:2 and
c2 ¼ 0:5. We test the solver on several meshes, and show the re-
sults in Table 4, and observe that the solver is quite effective on
this problem as well. To test the method, we compute solutions
on five different mesh levels. For the purpose of comparison we
also give timing of the direct sparse solver (Matlab’s ‘backslash’)
applied to the same problem.

Similar to the analytical test the inner–outer FGMRES with ILU
as the preconditioner for the inner iterations was the best of all the
methods we tried. Using AMG instead of ILU results in stagnation
for DOF = 18,922 and m ¼ 0:05. The global preconditioner with lin-
ear block triangular preconditioner stagnates for DOF = 58,656 and
m ¼ 0:05. In this later case, the reason is that FGMRES does not
reach the tolerance 10�3.

5. Conclusions and future directions

We studied a recently introduced vorticity based solver for the
incompressible Navier–Stokes equations. For two non-steady prob-
lems the solver was found to provide more accurate solutions than
the more common primitive variables formulation. The complexity
of both approaches is, however, comparable if one uses the natural
and stable splitting scheme to decouple time advances in velocity
and vorticity. Linear algebraic solvers for non-steady problems
were found to perform equally well for the vorticity based and
primitive variable formulations. In the steady case, however, the
Table 4
Timings and iteration counts of inner–outer FGMRES (ILU) and direct solve.

DOF Newton tsetup titer # Iter. tdirect

m ¼ 0:05
2394 8 0.01 10.6 123.4 0.1
18,922 5 0.4 6.6 18.8 3.8
58,656 4 3.1 23.4 20.8 28.0
286,360 4 55.8 148.1 21.8 722.8
490,240 4 162.0 303.7 23.5 2328.55

m ¼ 0:02
2394 8 0.01 10.6 123.4 0.1
18,922 5 0.4 6.4 18.8 3.7
58,656 4 3.2 23.4 20.8 29.1
286,360 4 54.8 148.3 21.8 742.4
490,240 4 167.0 295.8 23.5 2337.1
coupled VVH problem appears to pose a serious challenge from
the viewpoint of algebraic solvers. In this case, we found the ap-
proach based on augmented Lagrangian preconditioner and in-
ner–outer iterations to be the best among those we tried.

Many important questions remain open. Among them are find-
ing alternative simple (e.g., weak) vorticity boundary conditions,
looking for multiscale/stabilized formulations in w—u variables,
error analysis for unsteady problem, the study of error indicators
(e.g., based on wh �r� uh and gh � uh �wh quantities) and adap-
tive methods. We plan to address these questions in the future.
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