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We study conservation properties of Galerkin methods for the incompressible Navier–
Stokes equations, without the divergence constraint strongly enforced. In typical discretiza-
tions such as the mixed finite element method, the conservation of mass is enforced only 
weakly, and this leads to discrete solutions which may not conserve energy, momentum, 
angular momentum, helicity, or vorticity, even though the physics of the Navier–Stokes 
equations dictate that they should. We aim in this work to construct discrete formulations 
that conserve as many physical laws as possible without utilizing a strong enforcement of 
the divergence constraint, and doing so leads us to a new formulation that conserves each 
of energy, momentum, angular momentum, enstrophy in 2D, helicity and vorticity (for 
reference, the usual convective formulation does not conserve most of these quantities). 
Several numerical experiments are performed, which verify the theory and test the new 
formulation.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider formulations of the incompressible Navier–Stokes equations (NSE), which are given in a domain � ⊂ Rd , 
d = 2 or 3, and for t > 0 by

ut + (u · ∇)u + ∇p − ν�u = f, (1)

div u = 0, (2)

u(0) = u0, (3)

where u and p represent velocity and pressure, f is an external forcing, u0 is the initial velocity, and ν is the kinematic 
viscosity. To solve this system, it must also be equipped with boundary conditions, and herein we consider no-slip, no 
penetration for velocity on the boundary: u|∂� = 0. The NSE model the evolution of water, oil, and air flow (air under 
220 m.p.h.), and therefore the ability to solve them is important in a wide array of engineering design problems. Finding 
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analytical solutions is known to be extremely difficult, and thus practitioners instead typically approximate solutions using 
numerical methods.

The purpose of this paper is to study conservation laws of solutions arising from discretizations of the NSE by Galerkin 
methods such as finite element methods, isogeometric analysis, or spectral element methods. In typical discretizations, e.g., 
with Taylor–Hood finite elements, the conservation of mass is only weakly enforced, leading to discrete solutions uh which 
have div uh �= 0. While convergence of the H1 error can often be proven, leading to the bound ‖ div uh‖ ≤ Ch2, the divergence 
error can still be significant on practical meshes (here h is a characteristic step of an underlying mesh; in practice, there is 
a minimum h that can produce solutions in reasonable time). With the loss of mass conservation, it turns out that many 
other important conservation laws are also lost, including energy, momentum, angular momentum, and others, if steps are 
not taken in the development of the numerical discretization to make sure these quantities are conserved. The fact that 
energy conservation is lost in Galerkin discretizations of the NSE is well-known, and a fix for this problem by using the 
skew-symmetric or rotation forms of the nonlinearity has been known for many years [37]. A finite element formulation 
for energy and helicity conservation was proposed in [28], and in [26] it was discussed how an alternate (but equally valid) 
definition of helicity could be conserved by skew-symmetric formulations. Similar phenomena happen with other types of 
discretization methods, and some clever discretizations have been developed which ‘bring back’ conservation laws lost in 
standard discretizations, beginning decades ago by Arakawa, Fix, and others, for NSE and related equations [1–3,10,12,23,27,
32,35]. A common theme for all ‘enhanced-physics’ based schemes is that the more physics is built into the discretization, the 
more accurate and stable the discrete solutions are, especially over longer time intervals.

In the present work, we aim to develop numerical schemes/formulations that preserve even more conservation laws 
for the full NSE, beyond just energy. By noticing that the key to discrete conservation properties is the formulation of the 
nonlinear term, we are able to find a formulation of the NSE seemingly unconsidered in the literature, which conserves all 
of energy, momentum, and angular momentum; we call it the Energy, Momentum, and Angular Momentum (EMA) conserving
formulation. We propose this formulation in section 3, and formally show these conservation properties hold. We also show 
that the usual convective, skew-symmetric and rotational formulations all fail to conserve momentum and angular mo-
mentum. Additionally, we show that the EMA-conserving formulation also conserves suitable definitions of vorticity, helicity, 
and 2D enstrophy. Of course, if a Galerkin solution happens to be pointwise divergence-free, then all of the formulations 
are equivalent and each of them would conserve all of these quantities in an appropriate sense. However, the use of such 
special element choices that provide pointwise divergence-free solutions (e.g. [4,11,16,17,38]) is not widespread, as they 
require constraints on the mesh and approximating polynomial degrees, and are not typically available in open source FE 
software for large scale computing [6].

This paper is arranged as follows. Section 2 presents notation and mathematical preliminaries that will allow for 
smoother analysis in later sections. Section 3 presents the EMA-conserving formulation, and studies its conservation prop-
erties along with those of the convective, skew-symmetric, conservative, and rotational formulations. Section 4 performs 
several numerical experiments, which test the conservation properties and accuracy of the various schemes.

2. Notation and preliminaries

Consider the domain � ⊂ Rd , d = 2 or 3, and denote (·, ·) and ‖ · ‖ to be the L2(�) inner product and norm on �.
Consider u, v, w ∈ H1(�), and note that we do not enforce that any of these quantities are solenoidal except for the 

last two equations of this section. Define the trilinear form b : H1(�) × H1(�) × H1(�) → R by

b(u,v,w) = (u · ∇v,w). (4)

We recall the following properties of b. The first two follow immediately from integration by parts, provided u ∈ H1
0(�):

b(u,v,w) = −b(u,w,v) − ((div u)v,w), (5)

b(u,w,w) = −1

2
((div u)w,w) , (6)

b(u,v,w) = ((∇v)u,w) = ((∇v)T w,u). (7)

We denote the symmetric part of ∇u by ∇su := D(u) = ∇u+(∇u)T

2 , and the skew-symmetric part by ∇nu := ∇u−(∇u)T

2 . For 
any u, v ∈ H1(�) one readily checks red that

(∇nu)v = 1

2
(curl u) × v. (8)

Note that we define curl u in 2d in the usual way, as the 3d curl of u extended by 0 in the third component.
Straight-forward calculations provide the following vector identities for functions u, v ∈ H1(�):

(u · ∇)u = (curl u) × u + ∇ 1

2
|u|2 =: (curl u) × u + ∇q, (9)

(∇u)u = (∇su)u + (∇nu)u = D(u)u + 1

2
(curl u) × u, (10)



S. Charnyi et al. / Journal of Computational Physics 337 (2017) 289–308 291
where q := |u|2
2 . Also note that identity (10) implies that

(D(u)u,u) = ((∇u)u,u) = b(u,u,u). (11)

From (8)–(10) we obtain the following representation of the inertia term from the momentum equations:

(u · ∇)u = 2D(u)u − ∇q. (12)

The identity (12) is key to the new formulation we propose in the next section, which leads to improved discrete conserva-
tion properties.

2.1. A parameterized vorticity equation

Our study in section 3 of conservation laws for vorticity and helicity involves different formulations of the vorticity 
equation. We derive now a parameterized vorticity equation, which provides a family of formulations which are equivalent 
when the velocity and vorticity are divergence-free. Below, we denote vorticity by w := curl u.

From (8) with v = w, we find that (∇nu)w = 0, which implies (∇u)w = (∇u)T w. The vorticity stretching term (w · ∇)u
can thus be written as

(w · ∇)u = (∇u)w = (∇u)T w. (13)

Similarly, the gradient of the helical density ∇(u · w) can be written as

∇(u · w) = (∇u)T w + (∇w)T u = (w · ∇)u + (∇w)T u.

Hence, we can write the combination of the vorticity transport and stretching, as it appears in the equation’s nonlinearity, 
for any real parameter β2 as

(u · ∇)w − (w · ∇)u

= (u · ∇)w − (∇u)w

= (u · ∇)w − β2(∇u)T w − (1 − β2)(∇u)w

= (u · ∇)w − β2

(
∇(u · w) − (∇w)T u

)
− (1 − β2)(∇u)w. (14)

Again using that (∇u)w = (∇u)T w, we can also write

(∇u)w = β1(∇u)w + (1 − β1)(∇u)T w,

for any real number β1. Denoting η := u ·w, and using this together with (14) and that div u = div w = 0 (we have not made 
any divergence-free assumptions up to now), we obtain

(u · ∇)w − (w · ∇)u = (u · ∇)w + β2(∇T w)u − (1 − β2)
(
β1(∇u) + (1 − β1)∇T u

)
w

− β2∇η + β3(div u)w + β4(div w)u, (15)

for real parameters βi , i = 1, 2, 3, 4. The identities above lead us to the following vorticity equation, where the particular 
form of the nonlinearity depends on the choice of parameters:

wt + (u · ∇)w + β2(∇T w)u − (1 − β2)
(
β1(∇u) + (1 − β1)∇T u

)
w (16)

−∇η + β3(div u)w + β4(div w)u − ν�w = curl f,

div w = 0. (17)

Note that the gradient term in (16) is not scaled with β2. Hence, for β2 �= 0 the variable η has the physical meaning of the 
scaled helical density, while for β2 = 0 it is a Lagrange multiplier corresponding to the divergence free constraint and can 
be non-zero in the discrete setting. We shall use discrete vorticity in the definition of certain conserved quantities. We will 
choose parameters βi in such a way that the discrete vorticity solving the discrete counterpart of (16)–(17) delivers some 
desired conservation properties.
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3. Conservation properties under div u �= 0 and the EMA formulation for Navier–Stokes

We now consider subspaces X ⊂ [
H1

0(�)
]d

, Q ⊂ L2(�) of finite dimensions. To be more specific, we further assume that 
X and Q are finite element velocity and pressure spaces corresponding to an admissible triangulation of �. For simplicity 
we assume X and Q satisfy inf-sup compatibility conditions [13]; non-inf-sup stable pairs require stabilization terms that 
will affect conservation properties, and should be studied separately and on a case-by-case basis. We note our analysis can 
be easily extended to other Galerkin methods.

In most common discretizations of Navier–Stokes and related systems, the divergence-free constraint div u = 0 is only 
weakly enforced. What holds instead of the pointwise constraint is that a numerical solution u from X satisfies

(div u,q) = 0 ∀ q ∈ Q ,

where Q is a finite dimensional pressure space, for example piecewise linears which are globally continuous. Even though 
convergence theory of mixed finite element methods exists that guarantees ‖ div u‖ converges to 0 with optimal rate, in 
practical computations the divergence error can be large due to the associated constants being larger than the minimum 
practical meshwidth [8]. Enlarging the pressure space Q to ensure div X ⊂ Q is usually not possible, since it would violate 
(apart of a few exceptional cases) the inf-sup compatibility condition and make the method numerically unstable.

We now consider conservation properties of several common NSE formulations, along with a new one based on the 
identity (12). To this end, we write the NSE momentum equation in the generic form:

ut + N L(u) + ∇p − ν�u = f, (18)

with the nonlinear terms defined for each formulation by

convective : N Lconv(u) = u · ∇u

skew − symmetric : N Lskew(u) = u · ∇u + 1

2
(div u)u

rotational : N Lrot(u) = (curl u) × u

conservative : N Lcons(u) = ∇ · (u ⊗ u) = u · ∇u + (div u)u.

The convective, skew-symmetric, and rotational forms above are commonly used in computational fluid dynamics and nu-
merical analysis of fluid equations, see, e.g., [14,37], with the convective form being, probably, the most frequent choice in 
computation practice.

We propose now a new formulation, which we will show conserves energy, momentum and angular momentum, as well 
as helicity, vorticity, and 2D enstrophy, which we call the energy momentum and angular momentum (EMA) conserving form. It 
is based on the following choice:

E M A conserving : N Lemac(u) = 2D(u)u + (div u)u.

We remark that if we did assume the divergence constraint div u = 0 holds pointwise, then all above formulations are 
equivalent; for the EMA conserving scheme, this follows from (12).

The Galerkin method corresponding to various forms of inertia term reads: Find {u, p} ∈ X × Q satisfying(
∂u

∂t
+ N L(u),v

)
− (p,div v) + (q,div u) + ν(∇u,∇v) = (f,v) (19)

for all v ∈ X, q ∈ Q .
For both the rotational and EMA-conserving formulations, the pressure p is modified and includes a velocity contribu-

tion. For the rotational formulation, the modified pressure is the Bernoulli pressure prot = pkin + 1
2 |u|2, where pkin is the 

kinematic pressure. For the EMA-conserving formulation, the pressure is modified in a similar way, but with a negative 
sign: pemac = pkin − 1

2 |u|2. To our knowledge, the EMA-conserving formulation has yet to be considered in the literature, 
and our motivation for using it comes from Proposition 3.1 below, which says that of these five formulations, only the 
EMA-conserving formulation exactly conserves energy, momentum and angular momentum when the divergence constraint 
is not strongly enforced. Furthermore, Proposition 3.2 in section 3.2 shows that this new formulation also exactly conserves 
suitably defined helicity, vorticity and 2D enstrophy.

3.1. Energy, momentum and angular momentum

We now prove a result regarding conservation laws for (19). Our interest first is the conservation of energy, momentum 
and angular momentum:

Kinetic energy E = 1

2
(u,u) := 1

2

∫
|u|2dx;
�
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Linear momentum M :=
∫
�

u dx;

Angular momentum Mx :=
∫
�

u × x dx.

Most useful boundary conditions alter the balance of these quantities, as they should in the presence of walls and 
interfaces. Moreover, the numerical treatment of boundaries, e.g. by enforcing conditions strongly or in a weak form, also 
affect this balance. In this study, we isolate the affect of the treatment of the nonlinearity on the quantities of interest from 
the contribution of the boundary conditions. For this reason, we assume in section 4 that the finite element solution u and p
is supported in some subset ̂��� of the computational domain �, i.e., there is a strip S = � \ �̂ along ∂� where u is zero. The 
same is assumed for the source term f. We note this implies there is a strip of elements along the boundary where u, p, 
and f vanish. The prototypical scenario is the evolution of an isolated vortex in a self-induced flow.

Proposition 3.1. Assuming (div u, q) = 0 for all q ∈ Q , but div u �= 0, the skew-symmetric, rotational, and EMA-conserving formula-
tions conserve kinetic energy (for ν = 0, f = 0), and only the EMA-conserving and conservative formulations conserve momentum (for 
f with zero linear momentum) and angular momentum (for f with zero angular momentum). Hence, the EMA-conserving is the only 
one of the formulations that conserves all three quantities.

We divide the proof of this proposition into several subsections.

3.1.1. Kinetic energy
For energy conservation, testing (19) with v = u, q = p gives

1

2

d

dt
‖u‖2 + (N L(u),u) + ν‖∇u‖2 = (f,u).

Thus, kinetic energy will be preserved for ν = 0, f = 0 if (N L(u), u) = 0. For the skew-symmetric formulation, we use (6) to 
get

(N Lskew(u),u) = b(u,u,u) + 1

2
((div u)u,u) = 0,

and for the rot formulation we use that the cross of two vectors is perpendicular to each of them,

(N Lrot(u),u) = ((curl u) × u,u) = 0.

For the EMA-conserving formulation, we use (11) and then (6) to obtain

(N Lemac(u),u) = 2(D(u)u,u) + ((div u)u,u) = 2b(u,u,u) + ((div u)u,u) = 0.

For the convective formulation, the nonlinear term does not vanish in general:

(N Lconv(u),u) = b(u,u,u) = −1

2
((div u)u,u),

and thus kinetic energy will not be typically conserved by the convective formulation whenever div u �= 0. Lastly, for the 
conservative formulation, we use the same identity as in the convective case, and find that

(N Lcons(u),u) = b(u,u,u) + ((div u)u,u) = 1

2
((div u)u,u),

and thus this formulation will not conserve kinetic energy in general.

3.1.2. Momentum
Next, we consider momentum conservation in the formulations. We cannot test (19) with v = ei since this function is 

not in X. Thanks to the assumption that u �= 0 only in some strictly interior subdomain �̂, we can define the restriction 
χ(g) ∈ X of an arbitrary function g by setting χ(g) = g in �̂ and χ(g) arbitrary defined on S = � \ �̂ to satisfy zero 
boundary conditions. We test (19) with v = χ(ei) ∈ X and q = 0, which gives

d

dt
(u,ei) + (N L(u),ei) = (f,ei),

because the solution is zero on S . Thus, momentum conservation is obtained if (f, ei) = 0 and (N L(u), ei) = 0. Thus we 
consider the latter for the different formulations. In the convective formulation, we use (5) and that ei is constant to find 
that
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(N Lconv(u),ei) = b(u,u,ei) = −b(u,ei,u) − ((div u)u,ei) = −((div u)u,ei),

and for the skew-symmetric form we get

(N Lskew(u),ei) = b(u,u,ei) + 1

2
((div u)u,ei) = −1

2
((div u)u,ei).

For rotational form, we use the vector identity u · ∇u = (curl u) × u + 1
2 ∇|u|2 to obtain

(N Lrot(u),ei) = ((curl u) × u,ei) = b(u,u,ei) − 1

2
(∇|u|2,ei) = (u · ∇u,ei) = −((div u)u,ei).

For the EMA-conserving formulation, however, the nonlinear term does vanish. By expanding the rate of deformation tensor 
and using (u · ∇u, ei) = −((div u)u, ei) and then (7), we find that

(N Lemac(u),ei) = 2(D(u)u,ei) + ((div u)u,ei)

= b(u,u,ei) + b(ei,u,u) + ((div u)u,ei)

= b(ei,u,u)

= 0

since ei is divergence-free.
The conservative form also conserves momentum, as using the same identity as in the convective case, we obtain

(N Lcons(u),ei) = b(u,u,ei) + ((div u)u,ei) = −((div u)u,ei) + ((div u)u,ei) = 0.

3.1.3. Angular momentum
We consider next angular momentum conservation in the formulations; that is, whether or not they conserve (Mx)i :=

(u, φi), φi := x × ei, i = 1, 2, 3. Note that div φi = 0 and �φi = 0. Setting v = χ(φi), q = 0 in (19) gives(
∂u

∂t
,φi

)
+ (N L(u),φi) + ν(∇u,∇φ i) = (f,φ i).

Whether angular momentum is conserved comes down, once again, to whether it is preserved by the nonlinear term, i.e., 
whether or not (N L(u), φi) = 0. For the EMA-conserving formulation, since div φi = 0 we have that

(N Lemac(u),φi) = 2(D(u)u,φ i) + ((div u)u,φ i)

= b(u,u,φ i) + b(φi,u,u) + ((div u)u,φ i)

= b(u,u,φ i) + ((div u)u,φ i)

= −b(u,φi,u),

with the last step coming from (5). From here, expanding out the terms immediately reveals that b(u, φ i, u) = 0, and thus 
the EMA-conserving formulation does conserve angular momentum.

Similarly for the conservative formulation,

(N Lcons(u),φi) = b(u,u,φ i) + ((div u)u,φ i)

= −b(u,φ i,u)

= 0.

For the convective formulation, similar identities reveal

(N Lconv(u),φi) = b(u,u,φ i) = −((div u)u,φ i) �= 0

in general, and for the skew-symmetric formulation we use these same identities to obtain

(N Lskew(u),φi) = b(u,u,φ i) + 1

2
((div u)u,φ i) = −1

2
((div u)u,φ i),

which will not be zero in general either. For the rotational formulation, we again use the vector identity u · ∇u = (curl u) ×
u + 1

2 ∇|u|2, which provides since div φi = 0,

(N Lrot(u),φi) = ((curl u) × u,φi) = (u · ∇u,φ i) = −((div u)u,φ i),

which is the same as for the convective formulation.
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3.2. Vorticity, helicity and 2D enstrophy

Denote by u∗ the exact Navier–Stokes solution and w∗ = ∇ × u∗ . The following quantities are conserved for ν = 0 and 
suitable assumptions on the right-hand side f and boundary conditions:

Helicity H = (u∗,w∗) :=
∫
�

u∗ · w∗dx;

2D Enstrophy H2D = 1

2
(w∗,w∗) := 1

2

∫
�

w∗ · w∗dx (for a 2D flow);

Total vorticity W i = (w∗,ei) :=
∫
�

w∗
i dx, i = 1, . . . ,d.

One verifies that none of the finite element methods discussed above conserve helicity, enstrophy or vorticity, see [26]. 
It was further noted in [26] that a more suitable definition of these quantities is based on the finite element solution to 
the vorticity equation rather than the curl of finite element velocity. This discrete vorticity still depends on the computed 
velocity u, but more implicitly, through the equation coefficients. Further, varying the coefficients βi in (16) we find the 
form of the finite element vorticity equation such that the recovered solution delivers conservation laws. We note that 
curl u does not necessarily ensure conservation of helicity, enstrophy or total vorticity even if the discrete solution u is pointwise 
divergence free. Defining discrete counterparts of these conserved quantities with the help of companion discrete vorticity 
equation is appropriate also in this case, see the analysis of divergence-conforming B-splines for the unsteady Navier–Stokes 
equations in [10].

Consider the Navier–Stokes vorticity equation, which is found by taking the curl of the NSE:

w∗
t + (u∗ · ∇)w∗ − (w∗ · ∇)u∗ − ν�w∗ = curl f. (20)

We consider now alternative discrete formulations that are equivalent to (20) when the velocity and vorticity are 
divergence-free, but which differ in discretizations. A parametrized vorticity equation is given in (16)–(17), which allows 
for such alternatives by the choice of (β1, β2, β3, β4). In the following discrete formulations, the velocity field u ∈ X is 
the finite element solution to (19) and not the true NSE velocity u∗ . Note that homogeneous Dirichlet boundary conditions 
are not appropriate for w for general flow. However, since we assume u vanishes in a neighborhood of ∂�, then we assume
vorticity is also zero on and near the boundary.

For our first formulation of interest, we set β1 = 1, β2 = 0, β3 = 0, β4 = 0. This leads to the finite element formulation: 
find w ∈ X and Lagrange multiplier η ∈ Q solving(

∂w

∂t
,v

)
+ b(u,w,v) − b(w,u,v) + ν(∇w,∇v) + (η,div v) − (q,div w) = (curl f,v) (21)

for v ∈ X and q ∈ Q . Alternatively, if we set β1 = 1, β2 = 0, β3 = 1, β4 = −1, we arrive at the finite element formulation: 
find w ∈ X and Lagrange multiplier η ∈ Q solving(

∂w

∂t
,v

)
+ b(u,w,v) − b(w,u,v) + ((div u)w,v) − ((div w)u,v)

+ ν(∇w,∇v) + (η,div v) − (q,div w) = (curl f,v) (22)

for v ∈ X and q ∈ Q .
For 2D flows, we consider the reduction to two dimensions after choosing β1 = 1, β2 = 0, β3 = 1

2 , β4 = 0, which provides 
the discrete formulation: find w ∈ X satisfying for all v ∈ X ,

(wt, v) + ((u · ∇)w, v) + ν(∇w,∇v) + 1

2
((div u)w, v) = (curl f, v). (23)

Proposition 3.2. Assume u ∈ X solves (19) with the EMA-conserving form N(u) = Nemac(u), and w1 ∈ X, w2 ∈ X, (0, 0, w)T ∈ X are 
finite element vorticity solutions to (21), (22), (23), respectively. The EMA-conserving formulation also conserves helicity (for f = 0, 
ν = 0), 2D enstrophy (for curl f = 0, ν = 0), and total vorticity in the sense of the following preserved quantities: H = (u, w1), 
H2D = 1

2 ‖w‖2 , and W i = (w2, ei).

Remark 3.1. For the other NSE formulations, conserved invariants involving vorticity also can be suitably defined.
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3.2.1. Vorticity
We start with the conservation of total vorticity and set v = χ(ei), q = 0 in (22). Integration by parts immediately shows 

that (curl f, ei) = (f, curl ei) = 0, and since ei is constant, the η term and the viscous term also drop, leaving(
∂w2

∂t
,ei

)
+ b(u,w2,ei) − b(w2,u,ei) + ((div u)w2,ei) − ((div w2)u,ei) = 0. (24)

Since ei is constant (and thus divergence-free), we have that b(u, w2, ei) = −((div u)w2,ei), and b(w2, u, ei) =
−((div w2)u,ei), which reduces (24) immediately to(

∂w2

∂t
,ei

)
= 0,

and thus the total vorticity W i will be conserved for i = 1, 2, 3.

3.2.2. 2D Enstrophy
For enstrophy conservation, take v = w in (23) and set curl f = 0 and ν = 0, which provides the equation

1

2

d

dt
‖w‖2 + b(u, w, w) + 1

2
((div u)w, w) = 0. (25)

Since b(u, w, w) = − 1
2 ((div u)w, w), we have that H2D is conserved.

3.2.3. Helicity
For the conservation of H , set v = w1, q = 0 in (19) with N = Nemac , where w1 solves (21). This vanishes the pressure 

term, and setting f = 0 and ν = 0 yields(
∂u

∂t
,w1

)
+ 2(D(u)u,w1) + ((div u)u,w1) = 0. (26)

Since (D(u)u, w1) = 1
2 b(u, u, w1) + 1

2 b(w1, u, u), we write (26) as(
∂u

∂t
,w1

)
+ b(u,u,w1) + b(w1,u,u) + ((div u)u,w1) = 0. (27)

Next, take v = u, q = 0 in (21), and with f = 0 and ν = 0 this provides(
∂w1

∂t
,v

)
+ b(u,w1,u) − b(w1,u,u) = 0. (28)

Adding (27) and (28) gives the equation

d

dt
(u,w1) + b(u,u,w1) + ((div u)u,w1) + b(u,w1,u) = 0. (29)

Using vector identity (5), we have that b(u, u, w1) = −b(u, w1, u) − ((div u)u, w1), which from (29) implies that (u, w1) is 
conserved.

3.3. Conservation properties of EMA-conserving formulation with Crank–Nicolson timestepping

The analysis for the discrete conservation laws and balances performed above is for the semi-discrete case, i.e. without 
a temporal discretization. If a temporal discretization is applied, these balances can potentially be altered, as for example 
backward Euler and BDF2 are known to dissipate kinetic energy by their treatment of the time derivative terms. We consider 
here the EMA-conserving Galerkin formulation together with Crank–Nicolson timestepping. The Crank–Nicolson scheme is 
known to be energy conserving, and so seems a natural choice to study in this context. We find that all the conservation 
properties that hold in the semi-discrete case also hold when Crank–Nicolson timestepping is used.

Proposition 3.3. Solutions of the Crank–Nicolson EMA-conserving scheme (30)–(31) exactly conserve kinetic energy, momentum, 
angular momentum, helicity, vorticity, and 2D enstrophy (assuming no forcing or viscosity).

Denoting half-steps of variables by vn+ 1
2 := 1

2

(
vn+1 + vn

)
, the scheme reads at each time step: Given un satisfying 

(q, div un) = 0 for every q ∈ Q , find {un+1, pn+ 1
2 } ∈ X × Q satisfying
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(
un+1 − un

�t
,v

)
+

(
N Lemac(un+ 1

2 ),v
)

− (pn+ 1
2 ,div v) + ν(∇un+ 1

2 ,∇v) = (fn+ 1
2 ,v), (30)

(q,div un+1) = 0, (31)

for all v ∈ X, q ∈ Q . Note that one solves directly for pn+ 1
2 . We will now analyze the conservation properties of (30)–(31). 

Just as above, we assume for the momentum and angular momentum that u �= 0 only in a strictly interior subdomain 
�̂ ⊂ �.

As part of the semi-discrete analysis above, we have already established that for any velocity field u ∈ X it holds

(N Lemac(u),u) = (N Lemac(u),ei) = (
N Lemac(u),φi

) = 0.

Thus immediately we have that(
N Lemac(un+ 1

2 ),un+ 1
2

)
=

(
N Lemac(un+ 1

2 ),ei

)
=

(
N Lemac(un+ 1

2 ),φi

)
= 0.

Furthermore, since un+ 1
2 is discretely divergence-free, i.e. (q, div un+1/2) = 0 for every q ∈ Q , and both ei and φi are diver-

gence free, we also have that

(pn+ 1
2 ,∇ · un+ 1

2 ) = (pn+ 1
2 ,∇ · ei) = (pn+ 1

2 ,∇ · φi) = 0.

With these identities at hand, we proceed with the analysis, which shows that the Crank–Nicolson EMAC scheme conserves 
energy, momentum and angular momentum.

For conservation of energy, set v = un+ 1
2 , which from our identities above vanishes the nonlinear and pressure terms, 

leaving

1

2�t

(
‖un+1‖2 − ‖un‖2

)
+ ν‖∇un+ 1

2 ‖2 = (fn+ 1
2 ,un+ 1

2 ).

Multiplying both sides by �t and summing over M time steps provides

1

2
‖uM‖2 + ν�t

M−1∑
n=0

‖∇un+ 1
2 ‖2 = 1

2
‖u0‖2 + �t

M−1∑
n=0

(fn+ 1
2 ,un+ 1

2 ),

which is precisely the temporally discrete analog of the continuous-in-time energy balance (with integrals in time replaced 
by the composite midpoint approximation with rectangle width �t). Thus, if ν = 0 and f = 0, energy is exactly conserved.

For conservation of momentum, we take v = χ(ei), which vanishes the nonlinear and pressure terms, thanks to the iden-

tities above and the assumption that un+ 1
2 vanishes on a strip along the boundary. Since (∇un+ 1

2 , ∇χ(ei)) = (∇un+ 1
2 , ∇ei) =

0, the viscous term also vanishes. This leaves

1

�t

(
un+1 − un,ei

)
= (fn+ 1

2 ,χ(ei)),

and so with the assumption that f has zero momentum and vanishes outside of �̂, exact momentum conservation is 
obtained: for i = 1, 2, 3,(

un,ei
) =

(
u0,ei

)
.

Similarly for angular momentum, after choosing v = χ(φi), φi = x × ei , i = 1, 2, 3, immediately we get the nonlinear and 
pressure terms to vanish, and the assumptions on f make the forcing term vanish as well. This leaves

1

�t

(
un+1 − un,φi

)
+ ν(∇un+ 1

2 ,∇φ i) = 0.

Hence if ν = 0, angular momentum is exactly conserved.
For helicity conservation, define wn+1 to be the solution of: Given wn ∈ X satisfying (q, div w) = 0 for every q ∈ Q , 

and un+1, un solutions from the Crank–Nicolson EMAC scheme (30)–(31), find wn+1 ∈ X and Lagrange multiplier ηn+1 ∈ Q
solving for v ∈ X and q ∈ Q ,

1

�t

(
wn+1 − wn,v

)
+ b(un+ 1

2 ,wn+ 1
2 ,v) − b(wn+ 1

2 ,un+ 1
2 ,v)

+ν(∇wn+ 1
2 ,∇v) + (ηn+1,div v) = (curl fn+ 1

2 ,v), (32)

(q,div w) = 0. (33)
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Note that this vorticity need not be computed, and only its existence is required for the helicity conservation analysis. 
Choose v = un+ 1

2 in (32) and v = wn+ 1
2 in (30), and add these two equations. Taking ν = 0, and f = 0, and noting that the 

pressure and η terms drop, we are left with

1

�t

(
wn+1 − wn,un+ 1

2

)
+ 1

�t

(
un+1 − un,wn+ 1

2

)
+ b(un+ 1

2 ,wn+ 1
2 ,un+ 1

2 )

− b(wn+ 1
2 ,un+ 1

2 ,un+ 1
2 ) + (N Lemac(un+ 1

2 )un+ 1
2 ,wn+ 1

2 ) = 0.

Now by identical arguments as the semi-discrete case (use un+ 1
2 for u and wn+ 1

2 for w), the nonlinear terms drop, leaving

1

�t

(
wn+1 − wn,un+ 1

2

)
+ 1

�t

(
un+1 − un,wn+ 1

2

)
= 0,

which reduces to an exact conservation of helicity:(
un+1,wn+1

)
= (

un,wn) ⇒ (
un,wn) =

(
u0,w0

)
∀n = 1,2, . . . .

For vorticity conservation, define wn+1 to be the solution of: Given w0 ∈ X satisfying (q, div w) = 0 for every q ∈ Q , and 
un (n = 0, 1, 2, ..., n + 1) solutions from the Crank–Nicolson EMA-conserving scheme (30)–(31), find wn+1 ∈ X and Lagrange 
multiplier ηn+1 ∈ Q solving for v ∈ X and q ∈ Q ,

1

�t

(
wn+1 − wn,v

)
+ b(un+ 1

2 ,wn+ 1
2 ,v) − b(wn+ 1

2 ,un+ 1
2 ,v)

+ ((div un+ 1
2 )wn+ 1

2 ,v) − ((div wn+ 1
2 )un+ 1

2 ,v) + ν(∇wn+ 1
2 ,∇v) = (curl fn+ 1

2 ,v).

Similar to the helicity case, this vorticity also need not be computed, and only its existence is required for the vorticity 
conservation analysis. Taking v = χ(ei), ν = 0, using the assumptions on f and that ei is constant in �̂, we obtain

1

�t

(
wn+1 − wn,ei

)
+ b(un+ 1

2 ,wn+ 1
2 ,ei) − b(wn+ 1

2 ,un+ 1
2 ,ei)

+((div un+ 1
2 )wn+ 1

2 ,ei) − ((div wn+ 1
2 )un+ 1

2 ,ei) = 0.

Now by identical arguments as for vorticity conservation in the semi-discrete case, the nonlinear terms vanish, leaving exact 
momentum conservation: for i = 1, 2, 3,

(wn+1,ei) = (wn,ei).

Lastly, for 2D enstrophy conservation, let w ∈ X satisfy for all v ∈ X ,

1

�t
(wn+1 − wn, v) + ((un+ 1

2 · ∇)wn+ 1
2 , v) + ν(∇wn+ 1

2 ,∇v) + 1

2
((div un+ 1

2 )wn+ 1
2 , v) = (curl fn+ 1

2 , v).

The choice v = wn+ 1
2 immediately reveals conservation of 2D enstrophy.

3.4. Convergence of the EMA-conserving scheme

Since the EMA-conserving scheme is new, it is important to check that it converges to the true solution, and with opti-
mal rate. Indeed, the analysis for the skew-symmetric case from [20] can be immediately extended to the EMA-conserving 
scheme, both for the semi-discrete case and the fully discrete case with Crank–Nicolson time stepping. The key fact that al-
lows the analysis to extend is the property of the nonlinearity that (N Lemac(u), u) = 0. Since this holds, the proofs from [20]
of the skew-symmetric case can be completely mimicked. For example, following the proof in [20] for the Crank–Nicolson, 
(Pk, Pk−1) velocity-pressure finite element discretization using the skew-symmetric form of the nonlinearity, one proves 
that under the usual assumptions,

max
1≤n≤M

‖un − unse(t
n)‖ +

(
ν�t

M−1∑
n=0

‖∇(un+ 1
2 − unse(t

n+ 1
2 ))‖2

)1/2

≤ C(hk + �t2),

where unse is a true solution to the Navier–Stokes equations. Proofs for other time stepping methods for the Navier–Stokes 
equations with skew-symmetric formulation can also be immediately adapted for the EMA-conserving formulation.
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3.5. Discussion

We have now established that the EMA-conserving formulation does indeed conserve energy, momentum, angular mo-
mentum, and suitable definitions of enstrophy (in 2D), helicity, and vorticity. One may question if the EMA-conserving
formulation is the only one or the ‘simplest’ one which conserves all quantities listed above. We do not have an ultimate 
answer to these questions. Nevertheless, attempting to address it let us comment on the way we deduce this formulation: 
Similar to the vorticity equation (16)–(17), we can write the momentum equation with linear combinations of different 
forms of the inertia terms from (4), (9), (10) and additional divergence terms. The EMA-conserving formulation is then 
found to be the unique combination that conserves discrete kinetic energy, momentum, and angular momentum. As already 
discussed, the conservation of the discrete helicity, 2D enstrophy and vorticity are further understood with the help of the 
companion finite element vorticity equations. We stress that the vorticity equation is not a part of the finite element method 
here. It is introduced only to suitably define discrete conserved quantities. Nevertheless, the finite element vorticity equation 
can be used for postprocessing the finite element velocity in order to recover physically ‘correct’ vorticity, if desired.

4. Numerical experiments

We now provide results of several numerical experiments that test and compare the different NSE formulations. The 
specific formulations we test are (for the case of homogeneous Dirichlet boundary conditions): Find (uh, ph) ∈ (Xh, Q h)

such that for every (vh, qh) ∈ (Xh, Q h),

Convective formulation (CONV)

((uh)t,vh) + (uh · ∇uh,vh) − (ph,div vh) + ν(∇uh,∇vh) = (f,vh),

(div uh,qh) = 0.

Skew-symmetric formulation (SKEW)

((uh)t,vh) + (uh · ∇uh,vh) + 1

2
((div uh)uh,vh) − (ph,div vh) + ν(∇uh,∇vh) = (f,vh),

(div uh,qh) = 0.

Conservative formulation (CONS)

((uh)t,vh) + (uh · ∇uh,vh) + ((div uh)uh,vh) − (ph,div vh) + ν(∇uh,∇vh) = (f,vh),

(div uh,qh) = 0.

Rotational formulation (ROT)

((uh)t,vh) + ((curl uh) × uh,v) − (ph,div vh) + ν(∇uh,∇vh) = (f,vh),

(div uh,qh) = 0.

Energy, momentum, and angular momentum conserving formulation (EMAC)

((uh)t,vh) + 2(D(uh)uh,vh) + ((div uh)uh,vh) − (ph,div vh) + ν(∇uh,∇vh) = (f,vh),

(div uh,qh) = 0.

For the temporal discretizations, our tests employ several temporal discretizations, including Crank–Nicolson method for 
the Gresho problem described below (since here we test for integral invariants), BDF2, and BDF3. The choice of Taylor–
Hood velocity-pressure elements is used throughout, which is (P2, P1) on triangular meshes, and (Q 2, Q 1) on quadrilateral 
meshes. In the latter case, the deal.II finite element library ([6]) was used. No stabilization was used in any of the 2D 
simulations, however for the (Q 2, Q 1) computations, grad-div stabilization [24] with a small parameter (γ = 0.1) was used 
since it is an integral part of the preconditioner used for the linear solves. We recognize that different element choices 
and different stabilizations can improve these schemes to varying degrees; future studies certainly could include various 
stabilization and element choices.

The nonlinear problem in each time step is solved using Newton’s method with a tolerance of 10−8, usually requiring 
only 1 or 2 iterations. The corresponding linear systems are solved in parallel using the grad-div based block preconditioner 
based on [18]: We solve the linear system Mx = b with

M =
(

A BT

B 0

)
using FGMRES [29] with right preconditioning. The preconditioner P−1 has the form

P−1 =
(

Â BT

0 Ŝ

)−1

.
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Here Â−1 is defined through an inner iterative process with the matrix A. For this purpose we used the GMRES method 
preconditioned with an algebraic multigrid V-cycle and a relative tolerance of 1e–3. The matrix Ŝ−1, approximating the 
inverse of the Schur complement S , is defined by the sum

Ŝ−1 = S−1
1 + S−1

2 ,

where S1 = 1/(ν + γ )Mp and S2 = 1.0/cLp . Here, Mp and Lp are pressure mass and Laplace matrices and 1/c is the 
timestep size. The action for S−1

1 and S−1
2 are approximated by separate inner GMRES solves preconditioned with block 

ILU(0).
For the channel flow problems with an outflow, we weakly enforce the zero-traction boundary condition (−ν∇u + pI) ·

n|
out = 0. For the CONV and CONS formulations, this becomes a ‘do-nothing’ condition. For the rest of the formulations, it 
requires a nonlinear boundary integral at the outflow.

To illustrate the conservation properties of the various formulations, we choose several test problems: For the first one, 
the quantities of interest are exactly conserved, while other test cases represent more realistic scenarios of viscous fluid 
flows passing streamlined or bluff bodies. In the latter case, viscous and boundary effects perturb all conservation laws. We 
include these test cases in the attempt to give the first assessment of other properties of the EMAC form such as numerical 
stability and accuracy.

4.1. Gresho problem

We consider first the Gresho problem, which is often referred to as the ‘standing vortex problem’ [14,22,36]. The problem 
is defined by starting with an initial condition u0 that is an exact solution of the steady Euler equations. On � = (−.5, .5)2, 
with r = √

x2 + y2, the velocity and pressure solutions are defined by

r ≤ 0.2 :

⎧⎪⎨⎪⎩ u =
( −5y

5x

)
p = 12.5r2 + C1

, r > 0.4 :

⎧⎪⎨⎪⎩ u =
(

0
0

)
p = 0

,

0.2 ≤ r ≤ 0.4 :

⎧⎪⎪⎨⎪⎪⎩
u =

(
2y
r + 5y
2x
r − 5x

)
p = 12.5r2 − 20r + 4 log(r) + C2

,

where

C2 = (−12.5)(0.4)2 + 20(0.4)2 − 4 log(0.4), C1 = C2 − 20(0.2) + 4 log(0.2).

The vorticity (w = u2x − u1 y) can be calculated to be w = 10 when r ≤ 0.2, w = 2/r − 10 on 0.2 ≤ r ≤ 0.4, and w = 0 when 
r > 0.4. This is an interesting problem because it is an exact solution of the steady Euler equations, i.e.

u · ∇u + ∇p = 0.

Since we choose the initial condition to be this steady Euler solution, an accurate scheme should preserve the solution 
in time. Moreover, it is also a good test for a numerical scheme’s ability to conserve certain quantities such as energy, 
momentum and angular momentum, since no viscosity or forcing is present, and the boundaries do not play a role (unless 
significant error causes nonzero velocity to creep out to the boundary). A plot of the true velocity solution is shown in 
Fig. 1.

We compute solutions to the Gresho problem using the different formulations, together with Crank–Nicolson time step-
ping (using Newton’s method to solve the nonlinear problem at each time step), with f = 0, ν = 0, and no-penetration 
boundary conditions up to T = 10. We computed using (P2, P1) Taylor–Hood elements on a 48 × 48 uniform mesh and a 
time step of �t = 0.01.

Plots of energy, momentum, angular momentum, and L2 velocity error versus time are shown in Fig. 2. The EMAC scheme 
gives the best results: it conserves energy and momentum, is the only scheme to conserve angular momentum, and has 
significantly better L2(�) error than all the other methods. The CONS scheme gives by far the worst results. The energy of 
the CONS solution is blowing up, which causes the nonlinear solver to fail before t = 0.20. CONV also blows up, although 
not until around t = 2.4; until it blows up, it gives errors similar to EMAC. ROT and SKEW are energy conserving and stable, 
but have poor accuracy compared to EMAC. We note that all the results for conserved quantities are consistent with the 
theory of the previous section, and in particular the EMAC scheme is the only one to conserve each of energy, momentum 
and angular momentum.
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Fig. 1. Shown above is the true velocity solution for the Gresho problem as a vector plot (left) and speed contour plot (right).

Fig. 2. Shown above are plots of time versus energy, momentum, angular momentum, and L2(�) velocity error, for the various formulations in the Gresho 
problem, using Taylor–Hood elements.

4.2. Channel flow around a cylinder

Our next experiment tests the algorithms above on the flow around a cylinder benchmark problem, taken from [19,34]. 
The domain for the problem is a 2.2 × 0.41 rectangular channel with a circle (cylinder) of radius 0.05 centered at (0.2, 0.2), 
see Fig. 3.

No slip boundary conditions are enforced on the walls and cylinder, and the time dependent inflow profile is taken to 
be

u1(0, y, t) = u1(2.2, y, t) = 6

0.412
sin(π t/8)y(0.41 − y) ,

u2(0, y, t) = u2(2.2, y, t) = 0,

and a zero-traction outflow condition is weakly enforced. The viscosity is set as ν = 10−3 and there is no external force, 
f = 0.

This problem is well studied, and it is known that as the flow rate increases, two vortices start to develop by T = 4
behind the cylinder. They then separate into the flow, and soon after a vortex street forms which can be visible through 
t = 8. Reference values for lift and drag coefficients, and for pressure drop across the cylinder at t = 8 are given in [19] as

cref
d,max = 2.95092, cref

l,max = 0.47795, �pref = −0.11160.



302 S. Charnyi et al. / Journal of Computational Physics 337 (2017) 289–308
Fig. 3. Shown above is the channel flow around a cylinder domain (top), and a resolved velocity field at t = 6.

Table 1
Max lift and drag coefficients, and pressure drop across the cylinder at t = 8, for the various formulations, using (P2, P1) elements.

Method dim(Xh) �t cmax
d |error| cmax

l |error| �p(8) |error|
ROT 34,762 0.005 2.94442 6.48E−3 0.412069 6.59E−2 −0.11168 8.20E−5
CONV 34,762 0.005 2.94672 4.18E−3 0.470062 7.94E−3 −0.11176 1.62E−4
SKEW 34,762 0.005 2.94678 4.12E−3 0.467538 1.05E−2 −0.11177 1.70E−4
CONS 34,762 0.005 2.94667 4.25E−3 0.450239 2.77E−2 −0.11179 1.90E−4
EMAC 34,762 0.005 2.94819 2.71E−3 0.525675 4.77E−2 −0.11166 5.68E−5

ROT 61,694 0.005 2.94638 4.52E−3 0.484486 6.49E−3 −0.11139 2.10E−4
CONV 61,694 0.005 2.94893 1.97E−3 0.478282 2.82E−4 −0.11159 1.13E−5
SKEW 61,694 0.005 2.94892 1.98E−3 0.477249 7.51E−4 −0.11158 2.15E−5
CONS 61,694 0.005 2.94891 1.99E−3 0.477013 9.37E−4 −0.11149 1.10E−4
EMAC 61,694 0.005 2.94961 1.29E−3 0.490655 1.27E−2 −0.11119 4.06E−4

ROT 95,738 0.005 2.94919 1.71E−3 0.480021 2.02E−3 −0.11186 2.64E−4
CONV 95,738 0.005 2.94966 1.24E−3 0.478567 5.67E−4 −0.11155 5.00E−5
SKEW 95,738 0.005 2.94966 1.24E−3 0.478106 1.06E−4 −0.11154 6.04E−5
CONS 95,738 0.005 2.94966 1.24E−3 0.477831 1.19E−4 −0.11155 5.00E−5
EMAC 95,738 0.005 2.94986 1.04E−3 0.484425 6.43E−3 −0.11141 1.93E−4

We computed solutions using several meshes with Taylor–Hood elements, BDF3 time stepping, and time step �t = 0.005
(we also used �t = 0.01 and obtained very similar results). Results for maximum lift and drag, as well as for the t = 8
pressure drop are shown in Table 1. For each mesh, the best errors are made bold for each statistic. We observe that in each 
case, the EMAC formulation provides the best prediction of the maximum drag coefficient, CONV and SKEW forms provide 
the best maximum lift coefficient prediction, and the EMAC, CONV and CONS provide the best predictions of pressure drop 
error. Overall, the methods give rather similar predictions, and it is fair to say the methods are comparable for this test 
problem with these discretizations.

4.3. Channel flow past a flat plate at Re = 100

Our next test is for channel flow past a flat plate with Re = 100, following [30,31]. The domain of this test problem is a 
[−7, 20] × [−10, 10] rectangle channel with a 0.125 × 1 flat plate placed 7 units into the channel, and vertically centered. 
The inflow velocity is set as uin = 〈1, 0〉, we use a zero-traction outflow, and there is no forcing, f = 0. No-slip conditions 
are enforced on the walls and plate. A diagram of the test setup is shown in Fig. 4.

We compute results using the CONV, CONS, SKEW, ROT, and EMAC formulations, with BDF3 time stepping. The sim-
ulations all used BDF3 time stepping, a Delaunay mesh with (P2, P1) elements (which provided 58,485 total degrees of 
freedom) for each simulation. This is a fairly coarse mesh, and we use it to observe differences between the formulations 
(since as h → 0, the formulations will all converge to each other). The simulations all used the same time step size of 
�t = 0.02, and were started from rest, ran until a periodic-in-time state was reached, and then ran for an additional 16 
periods. Periods were determined using the drag coefficient

Cd(t
m) = 2

ρLU 2
max

∫
S

(
ρν

∂utS (t
m)

∂n
ny − pm

h nx

)
ds.

Here, S is the plate, n = 〈nx, ny〉 is the outward normal vector, utS (t
m) is the tangential velocity of um

h , the density ρ = 1, 
the max velocity at the inlet Umax = 1, and L = 1 is the length of the plate.
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Fig. 4. Setup for the flow past a normal flat plate.

Table 2
Shown above are the average drag coefficient and x-coordinate of the recir-
culation point for simulations of flow past a flat plate with varying formu-
lations, together with reference values from a DNS and from [30,31].

Formulation Re Average Cd Recirculation point

CONV 100 2.5434 1.1577
EMAC 100 2.6598 1.1648
SKEW 100 2.5903 1.1565
ROT 100 failed: energy blows up at T = 25
CONS 100 failed: energy blows up at T = 78

Very fine discretization 100 2.6454 1.1373
Saha [31] 100 2.43 1.11
Saha [30] 100 2.60 (not given)

The statistics of interest are the average drag coefficient, and the recirculation point of the time averaged velocity; all 
averages were taken over the last 16 periods. Results for these statistics are shown in Table 2, along with results from a 
very fine discretization we obtained using the deal.II software [6] and (Q 2, Q 1) elements with the convective formulation 
and BDF2, using �t = 0.005 and 4,019,895 total degrees of freedom (for which we assume is a convergent result, since it 
was very similar to results computed with �t = 0.01 and about 2 million total degrees of freedom). For further comparison, 
we also give results of Saha from [30,31], who used a MAC scheme with 426 × 162 cells (16 × 50 grid points on the plate 
surface), and a typical time step size of 5E−4.

We note first that the ROT and CONS schemes did not run to completion: the ROT simulation became unstable around 
T = 25, and before T = 26 the energy grows to 1E+100; similarly, the CONS scheme gives energy blowup at about T = 78. 
The EMAC solution’s average drag most closely matches that of the very fine discretization, and is significantly closer than 
that of the CONV and SKEW solutions. For the recirculation point, the CONV, EMAC, and SKEW formulations give results 
with similar accuracy.

4.4. Channel flow past a forward–backward facing step

Our next experiment concerns flow past a forward–backward facing step. The domain is a 40 × 10 rectangle used to 
represent the channel, and a 1 ×1 ‘step’ placed at the bottom of the channel, 5 units in. The boundary conditions are no-slip 
on all the walls and step, zero-traction at the outflow, and a constant-in-time parabolic inflow with max inlet velocity of 1. 
The initial condition is a parabolic profile across the channel, and there is no forcing, f = 0. We set the viscosity ν = 1/600, 
and for this setup the correct behavior is for eddies to form behind the step, then detach, move down the channel, and then 
for new eddies to form, and the cycle repeats [15,21]. The tests are run to an end time of t = 60.

We ran simulations using the five formulations and (P2, P1) elements on a coarse mesh that provided 10,908 degrees of 
freedom, and a finer mesh that provided 19,671 degrees of freedom. Crank–Nicolson time stepping was used with a time 
step size of �t = 0.01. The CONS scheme failed to finish on both meshes; the energy (rather suddenly) blew up to infinity 
near t = 26 on the coarse mesh, and t = 29 on the fine mesh. The other four schemes all remained stable up to t = 60, 
although with varying accuracies. Results are shown in Fig. 5 as streamlines over speed contours. The plots on the right side 
for EMAC, CONV and SKEW all essentially match the solutions in the literature [21], but the ROT solution is quite poor. On 
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Fig. 5. Shown above are plots of streamlines over speed contours for the T = 60 velocity solutions for flow past a forward–backward step for the different 
formulations, with the coarser mesh solutions on the left side and the finer mesh solutions on the right. We note there is no plot for CONS since this 
simulation failed (energy blowup before T = 60).

the coarser mesh, the CONV approximation is the best, EMAC is a little worse at resolving the eddies behind the step, and 
the SKEW and ROT solutions are quite poor.

4.5. Driven cavity for Re = 10,000

In this experiment we consider the well-known 2D flow in a lid-driven square cavity, see [9] for example. We focus on 
a high Reynolds number of 10,000, which is above the first Hopf bifurcation for Re ≈ 8000, cf. [5,7]. Therefore, one expects 
a periodic flow pattern.

We first compute a stationary solution of the cavity problem for a lower Reynolds (below the Hopf bifurcation). Using 
this solution as the initial condition, we proceed by solving the unsteady problem with BDF2 time stepping until we reach 
a periodic regime. The EMAC scheme is conservative and so only physical dissipation acts to eliminate initial (spurious) 
frequencies. Therefore, reaching the periodic state takes a long time.

To resolve the boundary layers and singularities in the corners, we use a wall adapted mesh, as shown in Fig. 6. On 
this mesh the EMAC formulation was discretized with (Q 2, Q 1) finite elements. As in [7] we evaluate the velocity at the 
point (2/16, 13/16) near the inflow corner and plot the x component over time, see Fig. 6, and phase plots and Fourier 
transforms, see Fig. 7. Our statistics demonstrate mesh convergence and show that we resolve the problem using a timestep 
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Fig. 6. 2d Cavity with Re = 10,000. Left: adapted mesh and velocity streamlines. Right: Plot of x velocity at evaluation point (2/16, 13/16) in periodic 
regime.

Fig. 7. 2d Cavity with Re = 10,000. Left: Phase plot of velocity components at evaluation point (2/16, 13/16) in periodic regime. Right: FFT of velocity 
component showing the main frequencies.

of 0.02 and a mesh size of 1/256 (592, 387 DoFs). The computed statistics are in good agreement with [7] even with a 
much coarser mesh than the one used in that paper.

4.6. 3D flow around a square cylinder

As a final test, we include some 3d flow computations of the new EMAC formulation in order to validate that the scheme 
generates the correct periodic flow behavior for a flow in a channel past a square cylinder at Re = 100. The setup of the 
benchmark problem is taken from [33] (unsteady test case 3D-2Q) and we will compare with results from [33] and [25]. 
The Reynolds number of 100 is close to the critical one, where the transition from equilibrium to unsteady periodic solution 
takes place for this problem. This makes the test challenging for a NSE numerical solver, since the discretization method 
should ensure the right balance between inertia and viscous diffusion to produce solutions which are numerically stable 
and, at the same time, the development of unsteady behavior is not suppressed [25].

The computation is done for the time interval T = [0, 13] with step size 0.01 using BDF2 time discretization. As in the 
cavity problem, the nonlinear problem of the EMAC scheme in each time step is discretized using (Q 2, Q 1) finite elements 
on a fixed mesh, which is displayed in Fig. 8. The mesh has been refined manually to about 240k cells resulting in 6.4 
million DoFs. The linear systems are again solved like in the example before using a grad-div parameter of γ = 0.1.

The results in Table 3 show good agreement with the reference values from the literature even though the mesh is 
relatively coarse. Note that [33] does not give reference intervals for this problem, and we simply show the maximum and 
minimum values of lift, drag, and the Strouhal numbers for several DNS results included in [33] (see also Fig. 9). However, 
these intervals can be not very accurate. The visualizations in Fig. 8 show that 3d flow structures develop behind the 
cylinder as expected.
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Fig. 8. 3D flow around a square cylinder. Top: mesh through the midplane, coloring by pressure. Middle: slices of the mesh on various downstream planes. 
Bottom: q-criterion and vorticity magnitude contours at t = 12.0 that show the 3d structure of the solution. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

Table 3
Table of reference values of the flow around the 3d square cylinder.

max drag max lift Strouhal DoFs

EMAC results 4.890 0.0271 0.351 6.4 mill
[25] 4.484 0.0316 0.307 17 mill
[33] 4.32–4.67 0.015–0.05 0.27–0.35 Up to 6 mill

Fig. 9. Lift and drag coefficients of the flow around the 3d square cylinder plotted over time T .
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5. Conclusions and future directions

We have developed a new discrete formulation for incompressible Navier–Stokes equations, named the EMA-conserving
(EMAC) formulation herein, which conserves energy, momentum, angular momentum, and appropriately defined vorticity, 
helicity, and enstrophy, when the solenoidal constraint on the velocity is enforced only weakly. Moreover, we show that 
none of the commonly used convective, conservative, rotational, and skew-symmetric formulations conserve each of energy, 
momentum, and angular momentum. These properties together with the form of non-linear and potential terms are sum-
marized in the table below.

Name N L(u) Potential term Energy Momentum Ang. moment.

convective: u · ∇u p (kinematic)

skew-symm.: u · ∇u + 1
2 (div u)u p (kinematic) +

rotational: (∇ × u) × u p + 1
2 |u|2 (Bernoulli) +

conservative: ∇ · (u ⊗ u) p (kinematic) + +

EMAC: 2D(u)u + (div u)u p − 1
2 |u|2 (no name) + + +

Results of several numerical experiments have been provided which verify the discrete conservation properties of the EMAC 
scheme, and also show that it performs at least as good, or better, than the commonly used formulations.

Aside from further testing, one important future direction is to consider more efficient treatments of the EMA-conserving
formulation. That is, in this initial study, we consider schemes that solve the nonlinear problem at each timestep. However, 
it is typical with the more commonly used formulations to linearize the nonlinear term at each time step by approximating 
one of the velocities using previous time step solutions; such schemes need only one linear solve per time step, whereas 
schemes that resolve the full nonlinear problem with Newton’s method often require two or three.
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