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a b s t r a c t 

The paper addresses the question if there exists a finite stopping time for an unforced motion of a yield 

stress fluid with free surface. A variational inequality formulation is deduced for the problem of yield 

stress fluid dynamics with a free surface. The free surface is assumed to evolve with a normal velocity 

of the flow. We also consider capillary forces acting along the free surface. Based on the variational in- 

equality formulation an energy equality is obtained, where kinetic and free energy rate of change is in 

a balance with the internal energy viscoplastic dissipation and the work of external forces. Further, the 

paper considers free small-amplitude oscillations of a droplet of Herschel-Bulkley fluid under the action 

of surface tension forces. Under certain assumptions it is shown that the finite stopping time T f of oscil- 

lations exists once the yield stress parameter is positive and the flow index α satisfies α ≥ 1. Results of 

several numerical experiments illustrate the analysis, reveal the dependence of T f on problem parameters 

and suggest an instantaneous transition of the whole drop from yielding state to the rigid one. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

There are many materials in nature and industry exhibiting the

iscoplastic behaviour. For example, these are fresh concrete, ge-

materials, colloid solutions, powder mixtures, lubricants, metals

nder pressure treatment, blood in a capillary, foodstuffs, tooth-

aste. Such a medium below a certain stress value behaves as a

igid body and above this level behaves as an incompressible fluid.

n many applications such as geophysical hazards (e.g., [3,21] ) or

he damping of water waves by a muddy bottom [46] , the com-

lex dynamics of viscoplastic fluids is coupled to the evolution a

ree surface. Recently there has been a significant increase of in-

erest in developing and analyzing mathematical models and nu-

erical methods for flows of yield stress fluids, flows with free

urfaces and a combination thereof. However, “yield stress fluids

lowly yield to analysis” [10] . This paper contributes to finding an

nswer to the following question: If there exists a finite stopping

ime T f for a free-surface flow of an isolated volume of a yield

tress fluid with surface tension forces? If the answer is positive,

ne is also interested in knowing an estimate of T f . 

The property of an unforced yield stress fluid flow to come to

 complete rest in a finite time is an intrinsic one and often con-
� Partially supported by NSF through the Division of Mathematical Sciences grants 

315993 and 1522252. 
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idered of keen importance [7] . For the yield-stress fluid flows in

ipes of a constant cross-section this property of a weak solution

o the variational formulation of the problem has been proved in

20,24] . Theoretical upper bounds for the finite stopping times of

everal simple one-dimensional flows can be found in [25,26,34] .

n the presence of a free surface, one may distinguish between the

xistence of a finite cessation time and the existence of a final ar-

ested state (the latter can be attained in a finite or infinite time).

lthough, there is a common belief that the yield stress should

ring an unforced free-surface flow to rest in a finite time, we

re not aware of a mathematical analysis of this phenomenon ex-

ept a few special flows. The question is intriguing since the theory

or viscoplastic films with a free surface suggests infinite stopping

imes [32] . This may be an artifact of the thin-film approximation. 

The problem of yield stress fluid dynamics with free surface has

een addressed also numerically. Since the full problem poses a

erious challenge for numerical simulations, it is common in the

iterature to consider simplified models of free-surface yield stress

uids. The shallow approximation is one of the most common re-

uced model for viscoplastic fluids flows over inclined planes and

ore complex 2D topographies, see [4,6,23] for recent reviews on

his subject and [1,9,18,27] for more recent advances. The previ-

us studies of free surface viscoplastic fluid flows also include ax-

symmetric squeezing flows, bubble Bingham type flows [2,29,46] ,

he free interface lattice Boltzmann model [19] , and the dam-break

roblem [35] . 

The present paper first considers a full 3D model of vicoplastic

uid flow with a free-surface and surface tension forces. We de-

http://dx.doi.org/10.1016/j.jnnfm.2016.12.001
http://www.ScienceDirect.com
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duce a suitable variational inequality formulation satisfied by any

sufficiently regular solution to the fluid model. As usual, the vari-

ational inequality provides us with an energy balance. However,

contrary to the wall-bounded flows, the free energy (due to sur-

face tension) enters the energy balance and makes the analysis

harder. This and the lack of the embedding of W 

1, 1 ( �) in L 2 ( �)

for � ∈ R 

3 do not permit us to give the affirmative answer to the

question raised above for a general free-surface viscoplastic fluid

flow (cf. Remark 4.1 ). To gain more insight into the phenomenon,

we further consider the problem of motion for a viscoplastic drop

for which the evolution is driven only by surface tension forces.

Droplet flows of yield stress fluids, such as molten metals or poly-

mers, arise in many engineering applications, including spray coat-

ing, 3D printing and arc welding [5,15,22] . In these and some other

applications, surface tension forces play essential role in the for-

mation and evolution of fluid droplets, see, e.g., [15,41] . Thus, the

oscillating viscoplastic droplet problem is also of its own interest

as a model problem for such industrial flows. 

Following the classical analysis of the Newtonian case

[31,33,39,40] , we assume that the initial shape of the drop is a

perturbation of a sphere. For the Newtonian fluid, a linear stabil-

ity analysis predicts that the drop oscillates, while an amplitude of

the oscillations decays exponentially to zero with a damping fac-

tor depending on the viscosity. To the best of our knowledge, this

problem has never been analyzed for a viscoplastic fluid. Under

certain assumptions the analysis in this paper shows that in the

presence of the yield stress the oscillations cease in a finite time

T f . In a series of numerical experiments we study the dependence

of T f on problem parameters: yield stress, flow index, and viscosity

coefficient. 

The rest of the paper is organized as follows. Section 2 re-

calls the mathematical model. The variational inequality formula-

tion is deduced in Section 3 . After some necessary preliminaries

Section 4 derives the energy balance for the problem. In Section 5 ,

we study free oscillations of a viscoplastic fluid droplet. Here we

restrict the analysis to the case of the Herschel-Bulkley fluid with

a fluid index α ≥ 1, which includes the classic Bingham fluid for

α = 1 . Results of several numerical experiments in Section 6 illus-

trate the analysis and reveal some further interesting properties of

the problem. In particular, it shows an instantaneous transition of

the whole drop from fluidic state to the rigid one, when the mo-

tion ceases. 

2. Mathematical model 

Consider the motion of an incompressible fluid with free sur-

face. Assume that the fluid occupies a bounded time dependent

domain �(t) ∈ R 

3 for t ∈ [0, ∞ ). Denote the boundary of do-

main �( t ) by �( t ). One can distinguish between the static bound-

ary (walls) �D and a free surface part �f ( t ) so that �(t) = �D ∪
� f (t) . In this paper, the whole boundary is assumed to be the

free surface, i.e. �(t) = � f (t) for all t ∈ [0, ∞ ). The analysis of

sections 3 and 4 can be easily extended to the case of �D � = 0.

The conservation of mass and momentum is given by the system

of equations ⎧ ⎨ ⎩ 

ρ

(
∂u 

∂t 
+ (u · ∇u ) 

)
− div σ = f 

∇ · u = 0 

in �(t) , (1)

where u is the fluid velocity field, σ is the stress tensor, f are given

external forces, ρ is the fluid density coefficient. 

The most important feature of a viscoplastic fluid is its yield

stress: Once the stresses exceed a positive threshold parame-

ter, the material flows like a fluid. Otherwise, it behaves like

a solid. To account for such a two-fold behaviour, one imposes
onditioned constitutive relations between the strain-rate tensor

u = 

1 
2 [ ∇u + (∇u ) T ] and τ , the deviatoric part of the stress ten-

or, σ i j = τ i j −pδi j , with pressure p . One common choice is the

erschel-Bulkley constitutive law: 

= (K| Du | α−1 + τs | Du | −1 ) Du ⇔ | τ| > τs 

Du = 0 ⇔ | τ| ≤ τs (2)

here τ s is the yield stress parameter, K is the consistency param-

ter, α > 0 is the flow index (for α < 1 the fluid exhibits shear-

hinning property, whereas for α > 1 it is shear-thickening; α = 1

orresponds to the classic case of the Bingham plastic). Further no-

ations introduced above are the following: For a tensor A , | A | de-

otes its Frobenius norm 

 A | = (A : A ) 
1 
2 = 

( ∑ 

1 ≤i, j≤3 

| A i j | 2 
) 

1 
2 

, 

iv denotes the vector divergence operator. Thus, the constitutive

elations (2) imply that the medium deforms and shows fluidic be-

avior for | τ| > τ s ; while for stresses not exceeding τ s the medium

ither moves as a rigid body or is at rest. 

At the initial time t = 0 the domain and the velocity field are

nown, 

(0) = �0 , u | t=0 = u 0 , ∇ · u 0 = 0 . (3)

or t > 0 we assume that the free surface �( t ) is passively ad-

ected by the fluid, i.e. the following kinematic condition is satis-

ed: 

 � = u · n on �(t) , (4)

here n is the unit external normal vector on �( t ) and v � is the

ormal velocity of �( t ). Another boundary condition on �( t ) re-

ults from balancing the surface tension forces and the fluid stress

orces: 

n | � = −γ κn − p ext n on �(t) , (5)

here κ is the sum of principal curvatures, γ is the surface tension

oefficient, p ext is an exterior pressure which we set to be zero for

he rest of the paper, p ext = 0 . 

The system of equations, boundary and initial conditions (1) –

5) constitutes a mathematical formulation of the problem of the

erschel-Bulkley incompressible fluid flow with free-surface. The

roblem is challenging for analysis and only partial results are

nown regarding its well-posedness, see, e.g. [11,17] and the refer-

nce therein for analysis of wall-bounded Herschel-Bulkley flows.

n the next section we show that any solution to (1) –(5) (if it pos-

esses certain smoothness) satisfies a variational inequality. 

. Variational inequality 

For arbitrary smooth divergence-free vector field v , we first take

he scalar product of the first equation in (1) with v − u . This gives

he relation 

ρ

(
∂u 

∂t 
+ (u · ∇u ) 

)
· ( v − u ) − div σ · ( v − u ) 

= f · ( v − u ) on �(t) , (6)

or all t > 0. Further we integrate (6) over �( t ) and obtain after

ntegration by parts the identity ∫ 
�(t) 

{
ρ

(
∂u 

∂t 
+ (u · ∇u ) 

)
( v −u ) + σ : ∇( v − u ) − f · ( v − u ) 

}
d x 

= 

∫ 
�(t) 

σ( v − u ) · n d s . 
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ow we employ free boundary condition (5) and note that

he symmetry of the Cauchy tensor leads to the identity σ :

( v − u ) = σ : ( Dv − Du ) . This brings us to the equality ∫ 
�(t) 

{
ρ

(
∂u 

∂t 
+ (u · ∇u ) 

)
( v −u ) + σ : ( Dv − Du ) −f · ( v −u ) 

}
d x 

= −
∫ 
�(t) 

γ κn · ( v − u ) d s . (7) 

s the next step, we decompose the stress tensor into deviatoric

nd volumetric parts: σ = τ − pI (the decomposition is formal in

he plug region). We treat the stress term in (7) separately in the

ow and plug regions of �( t ). For the flow region �f ( t ), we em-

loy the first constitutive relation from (2) and further apply the

auchy-Schwarz inequality Du : Dv ≤ | Du || Dv |. We get ∫ 
� f (t) 

σ : ( Dv − Du ) d x 

= 

∫ 
� f (t) 

(
K| Du | α−1 + τs | Du | −1 

)
Du : ( Dv − Du ) d x 

= 

∫ 
� f (t) 

{
K| Du | α−1 Du : ( Dv − Du ) 

+ τs 

( | Du | −1 ( Du : Dv ) − | Du | )}d x 

≤
∫ 
� f (t) 

{
K| Du | α−1 Du : ( Dv − Du ) + τs (| Dv | − | Du | ) }d x . (8) 

he pressure term disappears above since both v and u are diver-

ence free. The same arguments and the second constitutive rela-

ion from (2) give for the plug region �p (t) = �(t) \ � f (t) : ∫ 
�p (t) 

σ : ( Dv − Du ) d x 

= 

∫ 
�p (t) 

τ : Dv d x ≤ sup 

�p (t) 

| τ| 
∫ 
�p (t) 

| Dv | d x ≤ τs 

∫ 
�p (t) 

| Dv | d x 

( since | Du | = 0) 

= 

∫ 
�p (t) 

{
K| Du | α−1 Du : ( Dv − Du ) + τs (| Dv | − | Du | ) }d x . (9) 

ubstituting (8) and (9) back into (7) gives the inequality ∫ 
�(t) 

{
ρ

(
∂u 

∂t 
+ u · ∇u 

)
· ( v − u ) + K| Du | α−1 Du : ( Dv − Du ) 

+ τs (| Dv | − | Du | ) 
}

d x 

−
∫ 
�(t) 

f · ( v − u ) d x + 

∫ 
�(t) 

γ κn · ( v − u ) d s ≥ 0 . (10) 

The arguments in this section are valid if a solution u is suf-

ciently smooth. The sufficient regularity assumptions would be

 ∈ W 

1 ,α+1 (�(t)) , ∂u 
∂t 

∈ L 2 (�(t)) , and �( t ) is bounded and has C 2 

oundary for almost all t > 0. For the case of general boundary

ondition on the normal stress tensor, inequality (10) is found in

24] . 

We summarize the result of this section: A sufficiently smooth

olution u to ( 1 )–( 5 ) satisfies the variational inequality ( 10 ) for almost

ll t > 0 and for any v ∈ H 

1 ( �( t )) such that div v = 0 . 

. Energy balance 

The energy balance for the solution to the free-surface flow

roblem (1) –(5) follows from the variational inequality (10) . To

how this, we first recall a few helpful identities. We shall assume

hat �( t ) is sufficiently smooth and closed for all t ∈ [0, T ]. For a

mooth function g defined on 

⋃ 

t∈ [0 ,T ] 
�(t) × { t} , the Reynolds trans-
ort theorem gives the relation 

d 

dt 

∫ 
�(t) 

g d x = 

∫ 
�(t) 

∂g 

∂t 
d x + 

∫ 
�(t) 

v �g d s . (11)

hanks to the kinematic condition (4) on the normal velocity of �

nd div u = 0 , (11) yields the identity 

d 

dt 

∫ 
�(t) 

g d x = 

∫ 
�(t) 

(
∂g 

∂t 
+ (u · ∇) g 

)
d x . (12)

Recall the definition of the surface gradient and divergence

perators: ∇ �q = ∇q − (n · ∇q ) n and div �g = tr (∇ �g ) , which are

he intrinsic surface quantities and do not depend on extensions

f a scalar function q and a vector function g off the surface. The

ntegration by parts formula over a closed smooth surface � reads

 

�
( q ( div �g ) + g · ∇ �q ) d s = 

∫ 
�
κ(g · n ) q d s , (13)

here κ denotes the (doubled) surface mean curvature as in (10) .

inally, for �( t ) passively advected by a flow field u , the Leibniz

ormula gives 

d 

dt 

∫ 
�(t) 

g d s = 

∫ 
�(t) 

(
∂g 

∂t 
+ (u · ∇) g + g div �u 

)
d s . (14)

Now we are prepared to deduce the problem energy balance

rom (10) . As the first step, we test (10) with v = 0 and v = 2 u .

omparing two resulting inequalities, we obtain the equality ∫ 
�( t ) 

{
ρ

(
∂u 

∂t 
· u + ( u · ∇u ) · u 

)
+ K | Du | α+1 + τs | Du | 

}
d x 

+ 

∫ 
�( t ) 

γ κn · u d s = 

∫ 
�( t ) 

f · u d x . 

e rewrite the first two terms as 1 
2 

∫ 
�(t) ρ( ∂ | u | 2 

∂ t 
+ u · ∇| u | 2 ) d x

nd apply the Reynolds transport formula. This gives the identity 

d 

dt 

∫ 
�(t) 

ρ| u | 2 
2 

d x + 

∫ 
�(t) 

(
K| Du | α+1 + τs | Du | )d x 

+ 

∫ 
�(t) 

γ κn · u d s = 

∫ 
�(t) 

f · u d x . (15) 

With the help of integration by parts (13) over � = �(t) and

he Leibniz formula we calculate: 
 

�(t) 
κ(n · u ) d s = 

∫ 
�(t) 

div �u d s = 

d 

dt 

∫ 
�(t) 

1d s = 

d 

dt 
| �(t) | , 

here | �( t )| denotes the area of the free surface. Employing these

elations in (15) leads to the following energy balance for the solu-

ion of ( 1 )–( 5 ): 

d 

dt 

(∫ 
�(t) 

ρ| u | 2 
2 

d x + γ | �(t) | 
)

+ 

∫ 
�(t) 

(
K| Du | α+1 + τs | Du | )d x 

= 

∫ 
�(t) 

f · u d x . (16) 

he energy balance (16) has the form 

d 

dt 
E total (t) = −D (t) + W ext (t) , 

here the total energy E total ( t ) is the sum of kinetic energy

 kin (t) = 

∫ 
�(t) 

ρ| u | 2 
2 d x and potential energy E free (t) = γ | �(t) | +

onst . The rate of change of E total is balanced by the internal en-

rgy dissipation 

 (t) = 

∫ 
�(t) 

(
K| Du | α+1 + τs | Du | )d x (17)

nd the work of external forces 

 ext (t) = 

∫ 
�(t) 

f · u d x . 
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Remark 4.1. Since there is no explicit dissipation mechanism for

the free surface energy E free ( t ) in (16) , it is not easy to obtain di-

rectly from (16) a priori estimates for the solution which would

be sufficient for showing the (local) well-posedness of the prob-

lem. Solonnikov in [43] was the first to study the solvability of

the Newtonian fluid free-surface flow problem subject to surface

tension forces. His proof does not directly rely on energy esti-

mates, but rather on Fourier-Laplace transform techniques, which

required the use of exponentially weighted anisotropic Sobolev–

Slobodeskii spaces with fractional-order spatial derivatives. Fur-

ther, energy methods to establish new space-time estimates for the

Newtonian flows were developed in [16] and semigroup approach

to establish the existence was used in [42] . None of these analy-

ses are known to extend to viscoplastic fluid flow problems with

free surfaces and surface tension forces. If one is interested in the

existence of the arrested state or the finite stopping time, then the

available analysis requires a lower bound for the plastic dissipation

term of the form ( 
∫ 
�(t) | u | 2 d x ) 

1 
2 ≤ C bd (t) 

∫ 
�(t) τs | Du | d x . The bound

is feasible for certain one-dimensional flows and for the flow in

a long pipe of a constant cross-section [20,24,30,45] . However, in

a more general case of � ∈ R 

d , the estimate implies the embed-

ding W 

1, 1 ( �) ↪→ L 2 ( �) , which is known to be valid only for d ≤ 2.

We note that this fundamental difficulty arises within the existing

framework regardless of the form of exterior forces and also for

the fixed (time-independent) domain. For free-surface flows, one

also needs to control the constant C bd ( t ) for all possible ( a priori

unknown) shapes of �( t ). 

For the reasons outlined in Remark 4.1 above, it is not clear

what can be concluded about the energy decay or the existence

of a finite cessation time for the problem (1) –(5) solely from the

energy balance (16) . Further in this paper, we look closely at the

problem of the existence of T f using the example of a freely os-

cillating viscoplastic droplet rather than considering a general flow

solving (1) –(5) . The classical problem of oscillating droplet of vis-

cous incompressible fluid with surface tension forces was treated

by Lamb in [31] . Lamb assumed an irrotational velocity field and

used the dissipation method to evaluate the effect of the viscosity

on the decay of the oscillations. An exact solution of this prob-

lem for the Newtonian case is found in the analysis by Miller

and Scriven [33] of the oscillations of a fluid droplet immersed

in another fluid. The viscous effects on the perturbed spherical

flows were further studied in [39] . Those studies indicated that

the no-slip condition on the interface between two fluids is a ma-

jor source of vorticity production in the problem, while the irro-

tational velocity field is an adequate approximation in the viscous

case, if the interface is free and one of two fluids is a gas of negli-

gible density and viscosity. In the present study, the exterior is vac-

uum and we enforce no condition on tangential velocities. Hence

for the analysis we accept the irrotational velocity field assump-

tion. In Section 6 we include the results of a few numerical ex-

periments, which illustrate the plausibility of this assumption. For

the extended discussion of the plausibility of the vorticity-free ap-

proximation for the oscillating viscous droplet problem we refer to

[28,38] . In the next section, we shall see that for the vorticity-free

approximation, the energy balance (16) yields the existence of a

finite cessation time T f . 

5. Free oscillations of a viscoplastic drop 

In this section, we study free oscillations of a viscoplastic

droplet near its equilibrium state. Assuming rotational symmetry 1 ,
1 The rotational symmetry is assumed for the clarity of presentation. The argu- 

ments can be extended to more general perturbations. 

F

κ

he initial shape of the droplet is given by a perturbation of the

phere 

 = r 0 

( 

1 + ˜ ε 
∑ 

n ≥1 

c n H n (θ, ϕ) 

) 

, (18)

here ( r, θ , ϕ) are spherical coordinates, H n , n = 1 , 2 , . . . , is the

 th spherical harmonic and ˜ ε is small, ˜ ε � 1 . We denote by S 0 the

nperturbed sphere of radius r 0 and without loss of generality as-

ume that H n are normalized, i.e. ‖H n ‖ L 2 (S 0 ) 
= 1 , and 

∑ 

n ≥1 c 
2 
n = 1 .

he fluid is assumed to be at rest at time t = 0 and f = 0 for all t ≥
. At t = 0 the mean curvature of the surface is not constant, and

n unbalanced surface tension force causes the droplet oscillation.

ollowing [31] , we consider the evolution of the droplet surface

iven by 

 = r 0 + 

∑ 

n ≥1 

A n (t) H n (θ, ϕ) =: r 0 + 

∑ 

n ≥1 

ξn . (19)

n the absence of dissipation, Lamb showed that A n =
 0 c n ̃  ε sin (σn t + αn ) , where the period of oscillations depends

n surface tension, fluid density, the harmonic’s index n , and r 0 .

ur plan for the analysis is the following: For the droplet evolving

ccording to (19) we find the velocity potential and compute E free ,

 kin , and the viscous energy dissipation from (16) in terms of A n ( t )

nd its derivatives. Examining the resulting system of ODEs for

 n ( t ) we recover the classical results of Lamb about the period and

ecay of oscillations for the Newtonian droplet. This result is of

urther help when we treat the yield stress case. The viscoplastic

issipation in (16) is estimated from below. This provides us with

 differential inequality for A n ( t ) for all t > 0. Analysis of this

ifferential inequality yields the existence of a finite stopping

ime, i.e. A n (t) = 0 for all t ≥ T f and n ≥ 1. 

The velocity potential φ of irrotational flow of incompressible

uid is a harmonic function for all t > 0. We seek φ in the form

f volume spherical harmonics series 

= 

∑ 

n ≥1 

B n (t) 
r n 

r n 
0 

H n 

et ξ := �n ≥ 1 ξ n . The kinematic boundary condition (4) can be

ritten as 

∂φ

∂r 
= 

∂ξ

∂t 
on S 0 . (20)

his gives 

n 

r 0 
B n (t) = 

dA n (t) 

dt 
. (21)

urther in the paper, we always assume that A n and B n are func-

ions of time. In most instances, we shall write A n and B n instead

f A n ( t ) and B n (t). 

With the help of �φ = 0 and dropping higher order with re-

pect to ˜ ε terms one computes the kinetic energy: 

 kin (t) = 

ρ

2 

∫ 
�(t) 

|∇φ| 2 d x = 

ρ

2 

∫ 
�(t) 

φ
∂φ

∂n 

d s � 

ρ

2 

∫ 
S 0 

φ
∂φ

∂r 
d s 

= 

ρ

2 r 0 

∑ 

n ≥1 

nB 

2 
n 

∫ 
S 0 

H 

2 
n d s . (22)

ecall that 
∫ 

S 0 
H n H m 

d s = δn 
m 

. Employing (21) , we find the rate of

hange of E kin : 

d 

dt 
E kin (t) = 

ρ

r 0 

∑ 

n ≥1 

n 

dB n 

dt 
B n = ρ

∑ 

n ≥1 

r 0 
n 

d 2 A n 

dt 2 
dA n 

dt 
. (23)

or the potential energy, we first calculate 

= 

1 

R 1 

+ 

1 

R 2 
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Â

σ

a  

c  

h∫

N

B  

1  

t  

s

S

T  

A

W  

>  

t  

t  

s

A  

w  

e  

o

w

a  

p

|  

w  

l

 

t  

b

N  

m  

p

L  

d

‖
A  

s

 

 

= 

2 

r 0 
− 2 ξ

r 2 
0 

− 1 

r 2 
0 

{
1 

sin 

2 θ

∂ 2 ξ

∂φ2 
+ 

1 

sin θ

∂ 

∂θ

(
sin θ

∂ξ

∂θ

)}
= 

2 

r 0 
−

∑ 

n ≥1 

{
2 A n H n 

r 2 
0 

− n (n + 1) 

r 2 
0 

A n H n 

}
= 

2 

r 0 
+ 

∑ 

n ≥1 

A n 

r 2 
0 

(n (n + 1) − 2) H n . 

here R 1 , R 2 are the radii of principal of curvature of the surface.

oting 
∫ 

S 0 
H n = 0 , n ≥ 1, we get for the rate of change of the po-

ential energy 

d 

dt 
E free (t) = γ

∫ 
�(t) 

κ(n · u ) d s � γ

∫ 
S 0 

κ
∂φ

∂r 
d s 

= 

∑ 

n ≥1 

γ (n − 1)(n + 2) n 

r 3 
0 

B n A n 

∫ 
S 0 

H 

2 
n d s 

= 

∑ 

n ≥1 

γ (n − 1)(n + 2) 

r 2 
0 

dA n 

dt 
A n . 

his and (23) gives the rate of change of the total energy 

d 

dt 
E total (t) = 

∑ 

n ≥1 

{
r 0 ρ

n 

d 2 A n 

dt 2 
dA n 

dt 
+ 

γ (n − 1)(n + 2) 

r 2 
0 

dA n 

dt 
A n 

}
. 

(24) 

or the ideal fluid setting d 
dt 

E total (t) = 0 one finds A n (t) =
 

 0 sin (σn t + αn ) with the frequency 

n = 

√ 

γ n (n − 1)(n + 2) 

r 
3 
2 

0 
ρ

1 
2 

(25) 

s in [31] . For the Bingham fluid, one should account for vis-

ous and plastic dissipation. Thanks to ∇ · u = 0 and ∇ × u = 0 , we

ave 
 

�(t) 
| Du | 2 d x = 

∫ 
�(t) 

|∇u | 2 d x = 

∫ 
�(t) 

u · ∂u 

∂n 

d s 

= 

1 

2 

∫ 
�(t) 

∂| u | 2 
∂n 

d s � 

1 

2 

∫ 
S 0 

∂|∇φ| 2 
∂r 

d s . 

ote that ∂φn 

∂r 
= 

n 
r φn , with φn = B n 

r n 

r n 
0 
H n , and for the Laplace–

eltrami operator on a sphere of radius r , it holds ��φn = −n (n +
) r −2 φn . With the help of these identities and the surface integra-

ion by parts formula (13) , we handle the integral on the righthand

ide as follows: ∫ 
S 0 

∂|∇φ| 2 
∂r 

d s = 

∫ 
S 0 

∂ 

∂r 

( 

|∇ �φ| 2 + 

∣∣∣∣∂φ

∂r 

∣∣∣∣2 
) 

d s 

= 

∫ 
S 0 

∂ 

∂r 

( 

−φ��φ + 

∣∣∣∣∂φ

∂r 

∣∣∣∣2 
) 

d s 

= 

∑ 

n ≥1 

∫ 
S 0 

∂ 

∂r 

(
n (n + 1) r −2 φ2 

n + n 

2 r −2 φ2 
n 

)
d s . 

ubstituting φn = B n (r/r 0 ) 
n H n , we find ∫ 

�(t) 
| Du | 2 d x = 

∑ 

n ≥1 

n (n − 1)(2 n + 1) r −3 
0 [ B n ] 

2 

∫ 
S 0 

H 

2 
n d s 

= 

∑ 

n ≥1 

(n − 1)(2 n + 1) 

nr 0 

∣∣∣∣dA n 

dt 

∣∣∣∣2 

. 

(26) 

hus, for the Newtonian fluid, we get from (16), (24) and (26) that

 n satisfy 

d 2 A n 

dt 2 
+ 

K (n − 1)(2 n + 1) 

r 2 
0 
ρ

dA n 

dt 
+ 

γ n (n − 1)(n + 2) 

r 3 ρ
A n = 0 , 
0 
for n = 2 , 3 , . . . . (27) 

hen the determinant of the characteristic equation for some n

 1 is non-negative (viscosity dominates over surface tension),

hen the corresponding harmonic does not contribute to oscilla-

ions and, using the initial condition 

dA n 
dt 

= 0 (since the fluid is as-

umed at rest at initial time, i.e. φ = 0 ), one finds 

 n (t) = A n (0) 
λ1 

n exp (λ2 
n t) − λ2 

n exp (λ1 
n t) 

λ1 
n − λ2 

n 

, (28)

here λ1 , 2 
n < 0 are corresponding real eigenvalues. For complex

igenvalues, we observe oscillatory behavior. The amplitude of the

scillations for n th harmonic decays exponentially: 

A n ( t ) = 

ˆ A n ( 0 ) exp ( −d n t ) sin ( σn t + αn ) , 

ith d n = −Re 
(
λ1 

n 

)
= 

K ( n − 1 ) ( 2 n + 1 ) 

2 r 2 
0 
ρ

nd σ n from (25) , ̂  A n (0) = A n (0) / sin αn . We note that for any fixed

ositive problem parameters r 0 , ρ , γ , K , it holds 

 A n | ≤ A (0) exp (−c d n 

2 t) , (29)

ith a constant c d depending only on the parameters of the prob-

em. 

Further we consider the effect of the plastic dissipation. To

his end, we need the following trace inequality for functions of

ounded variation in an N -dimensional ball [14] : 

‖ u − | ∂B | −1 

∫ 
∂B 

u d s ‖ L 1 (∂B ) 

≤ N 

√ 

π �( 1 
2 
(N + 1)) 

2�( 1 
2 
(N + 2)) 

‖∇ u ‖ L 1 (B ) 
N=3 = 2 ‖∇ u ‖ L 1 (B ) . 

oting that for irrotational flow Du = ∇u and due to axial sym-

etries 
∫ 

S 0 
u i = 0 , i = 1 , 2 , 3 , we apply the above inequality com-

onentwise and we estimate the plastic dissipation to be at least 

τs 

∫ 
�(t) 

| Du | d x 

= τs 

∫ 
�(t) 

|∇u | d x � τs 

∫ 
�0 

|∇u | d x ≥ τs 

3 

∫ 
�0 

|∇u | � 1 d x 

≥ τs 

6 

∫ 
S 0 

| u | � 1 d s = 

τs 

6 

∫ 
S 0 

|∇φ| � 1 d s ≥ τs 

6 

∫ 
S 0 

|∇φ| � 2 d s 

= 

τs 

6 

∫ 
S 0 

( 

|∇ �φ| 2 + 

∣∣∣∣∂φ

∂r 

∣∣∣∣2 
) 

1 
2 

d s . (30) 

et C emb be optimal constant from the following Sobolev embed-

ing inequality for the two-dimensional sphere S 0 : 

 u ‖ L 2 (S 0 ) ≤ C emb ‖ u ‖ W 

1 , 1 (S 0 ) for u ∈ W 

1 , 1 (S 0 ) , s.t. 

∫ 
S 0 

u = 0 . 

pplying this result, we proceed with the estimate on plastic dis-

ipation from below as follows. 

τs 

∫ 
�(t) 

| Du | d x ≥ τs 

6 

∫ 
S 0 

|∇ �φ| d s ≥ τs 

6 C emb 

(∫ 
S 0 

| φ| 2 d s 

) 1 
2 

= 

τs 

6 C emb 

( ∫ 
S 0 

| ∑ 

n ≥1 

B n H n | 2 d s 

) 

1 
2 

= 

τs 

6 C emb 

( ∑ 

n ≥1 

B 

2 
n 

) 

1
2

= 

τs r 0 
6 C emb 

( ∑ 

n ≥1 

n 

−2 

∣∣∣∣dA n 

dt 

∣∣∣∣2 
) 

1 
2 

. 

(31) 
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5.1. Finite stopping time for Bingham drop 

We first treat the case of the flow index α = 1 (Bingham fluid).

From (26) and (31) one gets the lower bound for the total internal

energy dissipation (17) of the viscoplastic droplet 

D (t) = 

∫ 
�(t) 

(
K| Du | 2 + τs | Du | )d x 

≥
∑ 

n ≥1 

K(n − 1)(2 n + 1) 

nr 0 

∣∣∣∣dA n 

dt 

∣∣∣∣2 

+ 

τs r 0 
6 C emb 

( ∑ 

n ≥1 

n 

−2 

∣∣∣∣dA n 

dt 

∣∣∣∣2 
) 

1 
2 

(32)

Substituting this estimate to the total energy balance relation one

obtains the following differential inequalities for A n : ∑ 

n ≥1 

{ 

ρ

2 n 

d 

dt 

∣∣∣∣dA n 

dt 

∣∣∣∣2 

+ 

K (n − 1)(2 n + 1) 

n r 2 
0 

∣∣∣∣dA n 

dt 

∣∣∣∣2 

+ 

γ (n − 1)(n + 2) 

2 r 3 
0 

d| A n | 2 
dt 

}
+ 

τs 

6 πC emb 

∣∣∣∣∣∑ 

n ≥1 

n 

−2 

∣∣∣∣dA n 

dt 

∣∣∣∣2 
∣∣∣∣∣

1 
2 

≤ 0 . 

(33)

Based on (33) and the previous analysis, we show that there

exists such finite T f that A n = 0 for all n ≥ 1 and t > T f . To this end,

we first estimate the third (surface tension) term with the help of

the Cauchy inequality: ∑ 

n ≥1 

γ (n − 1)(n + 2) 

2 r 3 
0 

d| A n | 2 
dt 

= 

∑ 

n ≥1 

γ (n − 1)(n + 2) 

r 3 
0 

dA n 

dt 
A n 

≤ γ

r 3 
0 

( ∑ 

n ≥1 

(n − 1) 2 (n + 2) 2 n 

2 A 

2 
n 

) 

1 
2 
( ∑ 

n ≥1 

n 

−2 

∣∣∣∣dA n 

dt 

∣∣∣∣2 
) 

1 
2 

. (34)

From the study of purely viscous case, when there is no additional

plastic dissipation, we know that A n decay at least exponentially

with the decay factors not less than −c d n 
2 , see (29) . If we assume

that adding the plastic dissipation can only contribute to the en-

ergy decay in a given harmonic, we conclude that there exists such

finite time T 1 that 

γ

r 3 
0 

( ∑ 

n ≥1 

(n − 1) 2 (n + 2) 2 n 

2 A 

2 
n 

) 

1 
2 

≤ τs 

12 C emb 

for t ≥ T 1 . (35)

Using this and (34) in (33) , we get ∑ 

n ≥1 

{
ρn 

2 

d 

dt 
B 

2 
n + 

K (n − 1)(2 n + 1) n 

r 2 
0 

B 

2 
n 

}

+ 

τs r 0 
12 C emb 

∣∣∣∣∣∑ 

n ≥1 

B 

2 
n 

∣∣∣∣∣
1 
2 

≤ 0 for t ≥ T 1 . (36)

For the sake of convenient notation we also make the substitution
dA n 
dt 

= 

n 
r 0 

B n . Further we use the Hölder inequality to estimate the

plastic dissipation term from below: 

∑ 

n ≥1 

nB 

2 
n ≤

( ∑ 

n ≥1 

n 

p B 

(2 −α) p 
n 

) 

1 
p 
( ∑ 

n ≥1 

B 

αq 
n 

) 

1 
q 

p= 3 2 , q =3 , α= 2 3 = 

( ∑ 

n ≥1 

n 

3 
2 B 

2 
n 

) 

2 
3 
( ∑ 

n ≥1 

B 

2 
n 

) 

1 
3 

. 
hanks to the Young inequality we have 

 ∑ 

n ≥1 

nB 

2 
n 

) 

3 
4 

≤ 1 

2 δ

( ∑ 

n ≥1 

B 

2 
n 

) 

1 
2 

+ 

δ

2 

∑ 

n ≥1 

n 

3 
2 B 

2 
n ∀ δ > 0 , 

r after obvious rearrangement of terms 

 δ

( ∑ 

n ≥1 

nB 

2 
n 

) 

3 
4 

− δ2 
∑ 

n ≥1 

n 

3 
2 B 

2 
n ≤

( ∑ 

n ≥1 

B 

2 
n 

) 

1 
2 

∀ δ > 0 , (37)

hanks to the kinetic energy decay, we may always assume that T 1 
s such that E kin (t) ≤ ρ

2 for t ≥ T 1 and so B 2 
1 

≤ 2 
ρ E kin ≤ 1 for t ≥ T 1 .

ence for δ ∈ (0, 1] it holds δ2 B 2 
1 

≤ δ
(∑ 

n ≥1 nB 2 n 

) 3 
4 . Now (37) yields( ∑ 

n ≥1 

nB 

2 
n 

) 

3 
4 

− δ2 
∑ 

n ≥2 

n 

3 
2 B 

2 
n ≤

( ∑ 

n ≥1 

B 

2 
n 

) 

1 
2 

∀ δ > 0 , (38)

f we substitute (38) in (36) with δ satisfying 

 < δ2 ≤ 5 K 

r 2 
0 

√ 

2 

, (39)

hen 

1 
2 of the viscous term kills the negative term on the left hand

ide of (38) . Further, for the viscous term in (36) , the following

olds trivially 

 

n ≥1 

K (n − 1)(2 n + 1) n 

2 r 2 
0 

B 

2 
n ≥

5 K 

2 r 2 
0 

∑ 

n ≥2 

nB 

2 
n . (40)

inally, we get control of 5 K 

2 r 2 
0 

B 2 1 with the help of the viscoplastic

erm. Again, thanks to the kinetic energy decay, we may assume

hat T 1 is sufficiently large such that for t ≥ T 1 the coefficient B 1 is

mall to satisfy the inequality 

5 K 

2 r 2 
0 

B 

2 
1 ≤

τs r 0 δ

24 C emb 

( ∑ 

n ≥1 

nB 

2 
n 

) 

3 
4 

. 

hus, using (38), (40) in (36) and choosing δ satisfying (39) , we

rrive at the following differential inequality for the quantity ̂ B :=
 

n ≥1 nB 2 n : 

ρ

2 

d ̂  B 

dt 
+ 

5 K 

2 r 2 
0 ̂

 B + 

τs r 0 δ

24 C emb ̂

 B 

3 
4 ≤ 0 for t ≥ T 1 . 

he ODE y ′ + c 1 y + c 2 y 
s = 0 is solved by y 1 −s = (y 1 −s (0) +

 2 c 
−1 
1 

) e −(1 −s ) c 1 t − c 2 c 
−1 
1 

for t ≥ 0, s � = 1. Hence, the compari-

on theorem provides us with the bound ̂ 

 

1 
4 ≤ ( ̂  B 

1 
4 (T 1 ) + c 2 c 

−1 
1 ) e −

c 1 (t−T 1 ) 

4 − c 2 c 
−1 
1 , for all t ≥ T 1 , 

ith c 1 = 

5 K 

r 2 
0 
ρ

, c 2 = 

τs r 0 δ
12 ρC emb 

. We conclude that ̂  B = 0 for t ≥ T f , with

 finite stopping time T f . 

emark 5.1. The analysis above can be simplified for d = 2 , i.e. for

he problem of 2D oscillating drop. Indeed, in this case one can use

he continuous embedding W 

1, 1 ( �) ↪→ L 2 ( �), � ⊂ R 

2 , and estimate

he plastic dissipation terms from below as follows (compare to

30) - (31) and arguments below (36) ): 

τs 

∫ 
�(t) 

| Du | d x 

= τs 

∫ 
�(t) 

|∇u | d x � τs 

∫ 
�0 

|∇u | d x ≥ ̂ C emb 

(∫ 
�0 

| u | 2 d x 

) 1 
2 

= 

√ 

2 ̂

 C emb E 
1 
2 

kin 
(t) = ̂

 C emb 

( 

ρ

r 0 

∑ 

n ≥1 

nB 

2 
n 

) 

1 
2 

. 
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Table 1 

Approximate number of total active degrees of freedom and the error 

in viscosity (numerical dissipation) introduced by the method for the 

ideal fluid. 

h min 
� 

16 
� 

32 
� 

64 
� 

128 

≈ # d.o.f. 111,333 142405 452681 1,772,340 

Error visc 0.0032 9.5750e-04 7.2761e-04 4.8750e-04 
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Table 2 

Computed and ‘predicted’ final stopping times for various values of 

K and τ s , with α = 1 , n = 2 (for initial perturbation). 

τ s K = 0.005 K = 0.01 K = 0.025 

T f T pred T f T pred T f T pred 

0 .02 10 .29 9 .940 10 .27 8 .873 9 .182 7 .760 

0 .03 8 .274 6 .647 6 .847 6 .629 7 .125 5 .543 

0 .04 5 .712 4 .439 5 .722 4 .434 4 .568 4 .434 

0 .05 4 .573 4 .416 4 .577 4 .361 4 .688 3 .326 

0 .1 2 .279 2 .213 2 .279 2 .213 2 .289 2 .213 

0 .2 1 .135 1 .099 1 .130 1 .099 1 .130 1 .099 

0 .4 1 .260 – 1 .265 – 1 .237 –
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.2. Shear thickening case 

The fluid with the index α ≥ 1 fits the framework of the Bing-

am fluid if one notes the inequality 

| Du | 1+ α + τs | Du | ≥ min 

{ 

K, 
τs 

2 

} 

| Du | 2 + 

τs 

2 

| Du | for α ≥ 1 . 

herefore, the above analysis applies with the viscosity coefficient

in { K, τs 
2 } and yield stress τs 

2 . The analysis of the shear thinning

ase α < 1 is lacking at present. 

. Numerical experiments 

In this section we present the results of several numerical ex-

eriments, which illustrate the analysis of this paper. These ex-

eriments also study the dependence of the finite stopping time

or the 3D droplet problem on various parameters. For the com-

uter simulations we use the numerical approach developed in

35–37] for free-surface incompressible viscous flows. The numeri-

al method is built on a staggered grid finite difference octree dis-

retization of momentum, mass conservation and level set equa-

ions. The latter is used to model the evolution of the free surface

n a bulk computational domain. The plasticity term is regularized

y the Bercovier-Engelman method [8] ( | Du | −1 → 

(| Du | 2 + ε 2 
)− 1 

2 

n (2) ) with the regularization parameter ε = 10 −6 . We note that

egularized problem may not inherit an existence of arrested

tate from the original problem. However, numerical experiments

emonstrate the convergent results of flow statistics for this level

f values of ε. This indicates that the modelling error due to the

egularization for ε = 10 −6 is minor compared to discretization er-

ors. The regularization allows us to overcome computational diffi-

ulties associated with the non-differentiability of the constitutive

elations and hence to perform 3D computations using dynamically

efined grids towards the free surface, i.e. the refinement follows

he evolution of the free surface. Such a refinement is of crucial

mportance for the sufficiently accurate computations of the sur-

ace tension forces. Only those cells of the background octree mesh

re active in computations, which are intersected by the surface

r belong to the interior of the droplet, so no auxiliary conditions

re needed on the boundary of the bulk domain. A second order

ersion of the Chorin-Temam splitting method was used for time

dvancing and the variable time step is used subject to certain sta-

ility conditions, see details in [35,36] . 

The computational domain in this and all further experiments

s the cube (0, � ) 3 , � = 

10 
3 ; an initially perturbed sphere of radius

 0 = 1 is placed in the center of �. Everywhere in computations

e set ρ = 1 and γ = 1 (density and surface tension parameters),

hile varying K, τ s , α, and n (consistency, yield stress, flow index

arameters and the number n of spherical harmonic H n used to

et the initial perturbation). The perturbation parameter in (18) is

hosen to be ˜ ε = 0 . 3 . Further we use a sequence of descritiza-

ions with the following parameters: The maximal mesh size is

 max = 

� 
16 ; the mesh is aggressively refined towards the free sur-

ace, where the mesh size equals h min . Table 1 shows the approx-

mate number of the degrees of freedom in the resulting descriti-

ations (this number slightly varies when the free surface evolves)

or different h . 
min 
First we perform a series of experiments for the Newtonian os-

illating droplet. Although the numerical method was previously

erified on a number of benchmark problems for Newtonian and

iscoplastic fluids flows, the purpose of this experiment is to as-

ess the accuracy of the numerical method and to study the con-

ergence of flow statistics in this case to those given by the analy-

is in [31,33] and recovered in (25) and (28) . Thus, a droplet of the

deal fluid ( K = 0 , τs = 0 ) oscillates infinitely with constant ampli-

ude. The deviation of the numerical solution from this behaviour

llows us to estimate (by fitting an exponential function to maxi-

um values of the kinetic energy over periods) the numerical dis-

ipation of the method, which is reported in Table 1 . We see that

he numerical dissipation is low and decreases when the mesh is

efined. All further experiments are done with h min = 

� 
64 . Fig. 1

hows the evolution of the kinetic energy and the kinetic energy

eaks for several values of the viscosity parameter. For reference,

e plot the exponent functions from (28) (there graphs are straight

ines in the log scale). The slopes show the theoretically predicted

symptotic energy decay rates. Note that in the viscous case the

ate (28) is valid for large enough time or sufficiently small pertur-

ation ˜ ε , see [39] , and so a deviation at the initial stage of oscil-

ations may be expected. The asymptotic rate is well predicted by

he results of simulations. Therefore, we now turn to the numerical

tudy of the yield stress case. 

First we experiment with the Bingham fluid (fluid index α = 1 ).

s in the experiments with the Newtonian fluid, the initial per-

urbation is defined by (18) with A 2 (0) = 1 and A n (0) = 0 for n � =
, ˜ ε = 0 . 3 . Now Figs. 2 –3 show the evolution of the total kinetic

nergy and the trajectory of the north tip computed for viscosity

oefficients K = 0 . 01 and K = 0 . 025 and different yield stress pa-

ameters τ s , with τs = 0 obviously showing the Newtonian case.

oth from the kinetic energy evolution and the trajectory of the

rop tip we clearly see the complete cessation of the motion in a

nite time for all τ s > 0. It is interesting to note from the north tip

rajectories that the final arrested state is not necessarily the orig-

nal unperturbed sphere. The quasi-period of the oscillations looks

ndependent of the K and τ s values. The decay rate and the final

topping time, otherwise, depend on K and τ s . The final stopping

imes presented in Table 2 were estimated from the computed ki-

etic energy applying the following formula: 

 f = arg min 

t> 0 
max 

s ≥0 
{ E kin (t + s ) ≤ 10 

−7 } . (41)

s can be expected T f , in general, decreases for larger values of

 and τ s . It is interesting to note that for the range of modest,

.e., not too large, yield stress parameter values, the final stoping

ime demonstrates the dependence on τ s close to T f = O (τ−1 
s ) . The

iscosity coefficient for this problem appears to have less influence

n the variation of the finite cessation time. 

It follows from the analysis in Section 5 , and was noticed al-

eady in [31] , that for the Newtonian case the drop oscillations are

he linear superposition of individual oscillations of each spher-

cal harmonics, satisfying equations (27) . For the non-Newtonian
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Fig. 1. Evolution of E kin ( t ) and decay of the maximum (over a period) kinetic energy for the simulation of a Newtonian ( τs = 0 , α = 1 ) fluid droplet for several values of the 

viscosity parameter. 

Fig. 2. The evolution of the kinetic energy (upper plots) and the trajectory of the north tip (bottom plots) computed for K = 0 . 01 , different τ s and the second spherical 

harmonic ( n = 2 ) to define initial perturbation. 

 

 

 

 

 

 

τ  

f  

s

case, we do not see why a similar superposition principle should

be valid in general. However, if for a prediction purpose one

could assume that there is no transfer of energy between dif-

ferent scales, then one can write an ODE for the time evolu-

tion of each harmonic separately. In addition to the terms in

(27) one computes for the plastic dissipation: τs 

∫ 
�(t) | Du | d x �
 

s n 
−1 r 1 −n 

0 

∣∣ dA n 
dt 

∣∣ ∫ 
�0 

| D 

2 (r n H n ) | d x , where D 

2 ( f ) is the Hessian matrix

or f . For example, for the second spherical harmonic the corre-

ponding ODE reads 

d 2 A 2 

dt 2 
+ 

5 K 

r 2 
0 
ρ

dA 2 

dt 
+ 

8 τ

r 3 
0 
ρ

A 2 + 

τs 

r 0 ρ

10 √ 

6 

sign 

(
dA 2 

dt 

)
= 0 . (42)
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Fig. 3. The evolution of the kinetic energy (upper plots) and the trajectory of the north tip (bottom plots) computed for K = 0 . 025 , different τ s and the second spherical 

harmonic ( n = 2 ) to define initial perturbation. 
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Table 3 

Estimated final stopping times for various val- 

ues of α and n ∈ {2, 4} (for initial perturbation), 

with K = 0 . 01 , τs = 0 . 02 . 

α n = 2 n = 4 

0 7 .96 5 .55 

0 .5 9 .09 5 .53 

1 10 .27 5 .46 

2 11 .40 4 .92 

t  

0

 

t  

s  

e  

t  

[  

c  

t  

t  

s  

w  

n  

a  
his ODE can be numerically solved with a high accuracy. The first

ime T pred such that A n (t) = 0 for all t > T pred may serve as a pre-

iction to the actual stopping time if the initial perturbation is de-

ned only by the second harmonic (similar with other harmonics).

e solve (42) by the 4th order Runge-Kutta method and report

he computed T pred in Table 2 . The obtained T pred are close to T f 
ecovered by full 3D simulations. This suggests that the transfer of

nergy between the scales (from lower to higher) does not play an

ssential role in this problem and gives an additional support to

he assumption leading to (35) . The “—” sign in Table 2 indicates

hat for τs = 0 . 4 according to the ODE the drop motion is halted at

 = 0 . 

We next experiment with different initial perturbations of the

rop. In this experiment, we set A 4 (0) = 1 and A n (0) = 0 for n � = 4,

˜  = 0 . 3 in (18) . For this setup, Fig. 4 shows the evolution of the to-

al kinetic energy and the trajectory of the north tip computed for

iscosity coefficient K = 0 . 01 and different yield stress parameters

s . Again we observe the complete cessation of the motion in a fi-

ite time for all τ s > 0. As expected from the analysis, the decay

f the oscillations for the spherical harmonic with larger number

appens faster and the computed stopping time T f is smaller. 

Further, we simulate the droplet oscillations for different val-

es of the fluid index α. The computed evolution of the to-

al kinetic energy and the trajectory of the north tip for K =
 . 01 and τs = 0 . 02 are shown in Fig. 5 . The estimated final stop-

ing times are shown in Table 3 . The results indicate that shear-

hinning/thickening variation has some affect on the stopping

t  
imes of the oscillations in general leading to faster decay as α →
. At the same time, the results for n = 4 are inconclusive. 

We are also interested in the evolution of unyielded zones prior

o the final cessation of the drop motion. Note that numerical

tudies of the pipe and enclosed flows typically demonstrate an

arlier formation and further growth of the unyielded zones un-

il they occupy the whole domain and halt the motion, see, e.g.,

12,13,44] . However, for the oscillating drop problem, if we ac-

ept the approach of Lamb and seek the solution in the form of

he series (19) , then we conclude that the whole droplet comes

o the full stop at T f without prior formation of rigid zones. The

olution in (19) is an approximation, and it is interesting to see

hich scenario the fluid motion follows in practice. Results of the

umerical experiments suggest that Lamb’s approach is remark-

bly predictive. Fig. 6 shows the unyielded regions computed with

he help of von Mises criterion around the final stopping time
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Fig. 4. The evolution of the kinetic energy (left) and the trajectory of the north tip (right) computed for K = 0 . 01 and various τ s , with n = 4 (for initial perturbation). 

Fig. 5. The evolution of the kinetic energy (left) and the trajectory of the north tip (right) computed for K = 0 . 01 , τs = 0 . 02 , and different flow indexes α. 

Fig. 6. The visualization of the rigid zones near the final stopping time for τs = 0 . 04 (upper plots) and τs = 0 . 05 (bottom plots), with other parameters K = 0 . 01 , α = 1 , 

n = 2 . The cutaway by the xz-midplane is shown. The unyielded regions by von Mises criterion are colored black. Full cells are shown, but cut cells ensuring O ( h 2 ) boundary 

approximation are used in computations. 
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Fig. 7. The evolution of ∫ �( t ) | Du | 2 d x and of the enstrophy, ∫ �( t ) | w | 2 d x , with w = 

1 √ 
2 
∇ × u . All results are computed for n = 2 and different values of τ s . For τ s > 0 the figure 

also shows ∫ �( t ) | Du |d x . 
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or the Bingham fluid and with other parameters K = 0 . 01 , τ ∈
0.04, 0.05}. The regions are visualized at three consecutive time

teps. We see the (almost) immediate transition from fluidic to

igid phases in the entire droplet. Small unyielded regions near

he droplet tips right before the complete stop can be a numeri-

al phenomenon. We recall that the numerical method makes no

se of the expansion in (19) or any other assumptions, including

otational symmetry, made in the framework of Section 5 ; rather,

t obtains the 3D solution of (1) –(5) directly. Postprocessing of the

umerical results for other values of τ s showed very similar be-

avior of the rigid zones to those shown in Fig. 6 , so we skip

ncluding these plots. It also occurs that the von Mises criterion

ields the final stopping times very close to those computed from

41) . 

Finally, we illustrate numerically the irrotational velocity field

ssumption (see discussion at the end of Section 4 ). To this

nd, we compare the skew-symmetric part of the velocity gradi-

nt tensor against its symmetric part for several computed solu-

ions. For the skew-symmetric part we have 
∫ 
�(t) |∇ scew 

u | 2 d x =
1 
2 

∫ 
�(t) |∇ × u | 2 d x . Thus, Fig. 7 shows the evolution of ∫ �( t ) | Du | 2 d x

nd of the enstrophy for the Newtonian droplet and for the yield

tress case with two values of parameter τ s . For the yield stress

uid, we also plot ∫ �( t ) | Du |d x , since this statistic enters the energy

alance. In all cases, the produced vorticity appears to be minor

ompared to symmetric rate of strain tensor. 
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