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Abstract. The prediction of large-scale hydrodynamic events such as tsunami
spread and run-up, dam break, flood, or landslide run-out is a challenging and
important problem of applied mathematics and scientific computing. The paper
presents a computational approach based on free surface flow models for fluids
of complex rheology to simulate such events and phenomena with detail and pre-
diction confidence typically not achievable by simplified models. Using nonlinear
defining relations for stress and rate of strain tensors allows a unified approach
to simulate events described by both the Newtonian model (tsunami, dam break)
and non-Newtonian models (landslide, snow avalanches, lava flood, mud flow). The
computational efficiency of the numerical approach owes to the level-set method for
free surface capturing and to an accurate and stable FV/FD method on dynam-
ically adapted octree meshes for discretization of flow and level set equations. In
this paper we briefly describe the numerical method and present results of several
simulations of hydrodynamic events: a dam break, a landslide and tsunami spread
and run-up.

1 Introduction

Numerical simulations became a standard tool for the study and prediction
of disasters and events involving water and mud flows, landslides, avalanches
and other phenomena described by equations of continuous medium. Since
the computational complexity of full-scale simulations of such events is highly
demanding for computer resources, it is common to describe phenomena by
reduced-order approaches, for example, based on 2D and even 1D equations
and simplified rheological models. A few examples are the use of the shal-
low water equations [13,18] to simulate the spread of tsunami or modified
hydrodynamics equations to compute landslide and debris flows [4].

In this paper, we describe a computational approach that allows one to
simulate many of complex hydrodynamic events using fewer simplifying as-
sumptions to describe the physics of flows and accounting for their three-
dimensional nature and real environment. Instead of models based on shal-
low water theory or other approaches using simplified physics, we use the full
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system of incompressible Navier-Stokes equations for flows with free surface.
The necessary model order reduction is then happen on the numerical method
stage of simulations and is essentially due to the use of accurate discretiza-
tion schemes on dynamically adapted octree meshes. The phenomenological
diversity of the processes we are interested in is accounted by the choice of
proper nonlinear relations between the stress and the strain rate tensors. We
consider both Newtonian model to describe dam break and ocean tsunami
flows and visco-plastic Hershel-Bulkley model for landslides. However, the
developed numerical technology makes it easy for a researcher to incorporate
different, even more complicated, defining relations.

In all flows considered here, finding free surface dynamics is critical. To
capture the free surface evolution, we apply the level set method [15]. We
discretize flow and level set equations using octree meshes. Discretizations
on octree meshes benefit from their regular orthogonal structure on one
hand and the embedded hierarchy on the other hand, which make the re-
construction and adaptation process as well as data access fast and easy.
Nowadays such grids are widely used in simulations and visualization, see,
e.g., [5,7,8,10,14,17]. However, building accurate and stable discretizations on
such grids is a challenging task. For the fluid equations we use the second or-
der accurate finite difference/finite volume method with compact nodal sten-
cils developed in [11]. This method is a stable extension of the classical MAC
scheme on octree meshes. Semi-Lagrangian particle level set method [12] is
used to solve the transport equation for the level set function. To integrate in
time, we apply a second order splitting scheme of Chorin type. This scheme
decouples one time step on convection, diffusion and plasticity, pressure cor-
rection, and the level set function advection substeps. Numerical stability
and accuracy of the whole method were verified for the case of Newtonian
flows in [9,11] by computing analytical solutions and benchmark flows in a
cubic cavity and over a 3D cylinder. Computed results for a collapsing water
column perfectly match available experimental data. The efficiency of the
approach for non-Newtonian flows was accessed in [10,17], where the flow of
Hershel-Bulkley fluid from a reservoir over inclined planes was computed and
compared to documented experimental results with Carbopol Ultrez 10 gel.
These results let us believe that the entire approach is computationally effi-
cient, highly predictive and so is the reliable tool for simulation of large-scale
hydrodynamic events.

The remainder of the paper is organized as follows. The mathematical
model is given in section 2. In section 3, we sketch the basics of the numerical
approach. In section 4, we discuss our approach to the topography-specific
design of the computational domain. Section 5 presents results of numer-
ical simulations of three hypothetical scenarios: the break of the Sayano-
Shushenskaya dam, landslide in the Sayan mountains and tsunami run-up in
the Bay of Bengal. The computations were done using real topography and
bathymetry. It is remarkable that such different natural disaster scenarios
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can be simulated in a unified framework of computational non-Newtonian
fluid dynamics.

2 Mathematical model

Conservation of mass and momentum for an incompressible viscous fluid leads
to the Navier-Stokes equations for the unknown velocity field u and stress
tensor τ : 




ρ

(
∂u

∂t
+ (u · ∇)u

)
− div τ = f

∇ · u = 0

in Ω(t), (1)

where f are given mass forces, Ω(t) ∈ R
3 is a spatial domain occupied by

fluid and dependent on time, ρ is the density. For the strain rate tensor
Du = 1

2
[∇u+ (∇u)T ] and the stress tensor we consider the Hershel-Bulkley

defining relations [3]:

τ = −p I+
(
K |Du|n−1 + τs|Du|−1

)
Du ⇔ |τ | > τs,

Du = 0 ⇔ |τ | ≤ τs,
(2)

where K is the consistency parameter, τs is the yield stress parameter, n is
the fluid index, p is the pressure. Newtonian flows correspond to the choice
τs = 0, n = 1. In computations we use a regularized model [10,17].

A volume occupied by fluid and the velocity field at t = 0 are assumed to
be given:

Ω(0) = Ω0, u|t=0 = u0. (3)

Finding Ω(t) for t > 0 is a part of the problem which is solved together
with equations (1). To formulate this more precisely, let us divide the bound-
ary of the whole volume into the static boundary ΓD (for instance, the rigid
walls or the bottom of a bassin) and the free boundary Γ (t) (in practice it
usually models an interface between fluid and air), i.e. ∂Ω(t) = ΓD ∪ Γ (t).
Generally speaking, the static boundary ΓD depends on time.

We assume the non-penetration condition on ΓD and, depending on a
physical setup, the no-slip or slip with friction conditions. The free bound-
ary evolves with the normal velocity of fluid, which can be written as the
kinematic condition

vΓ = u · nΓ ,

where nΓ is the outer unit normal to the surface Γ (t), vΓ is the normal
velocity of the surface Γ (t). Normal stresses on the free surface are balanced
by the surface tension forces. This leads to the boundary condition

τnΓ = ςκnΓ − pextnΓ on Γ (t), (4)

where κ is the sum of the principal curvatures of the surface, ς is the surface
tension coefficient, pext is the external pressure. If the surface tension forces
are not taken into account, we may assume ς = 0.
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In order to find the position of the free boundary at each time moment
we use instead of the kinematic condition the implicit definition of Γ (t) as
the zero level set of the globally defined indicator function φ(t,x):

φ(t,x) =






< 0 if x ∈ Ω(t)

> 0 if x ∈ R
3 \Ω(t)

= 0 if x ∈ Γ (t)

for all t ∈ [0, T ].

The function φ is called the level set function. The level set function satisfies
the following transport equation [12]:

∂φ

∂t
+ ũ · ∇φ = 0 in R

3 × (0, T ], (5)

where ũ is the fluid velocity field extended outside Ω(t). Initial condition (3)
is used to define φ(0,x). one often imposes the additional restriction

|∇φ| = 1 (6)

onto the level set function to ensure numerical stability, i.e. φ is the signed
distance function. Given φ, the outer normal and the curvature of the free
boundary can be calculated from nΓ = ∇φ/|∇φ|, κ = ∇ · nΓ .

The mathematical model used in our calculations consists of equations
(1), (2), (3), (4), (5), (6) and appropriate boundary conditions on static
boundaries.

3 Numerical method

For the numerical time integration of (1)–(5) we use a second order splitting
scheme of Chorin type with the BDF2 approximation of time derivative. For
some given u(t), p(t), φ(t) at time t, one time step consists in finding u(t+∆t),
p(t+∆t), φ(t+∆t), where∆t is a time increment. This is done in few substeps.
First, using the second order semi-Lagrangian method [16], we integrate back
in time the level set transport equation (5) along characteristics interpolated
from previous time steps. At this step, one find the new volume occupied by
a fluid, Ω(t) → Ω(t+∆t). Approximation errors may lead to a non-physical
loss or gain of fluid volume, i.e. |Ω(t)| 6= |Ω(t +∆t)| even in the absence of
sources or sinks. To reduce this loss/gain of volume, we use the grid adap-
tation towards the free surface and the particle method [12]. This enhances
the conservation properties of the semi-Lagrangian method significantly. If a
further correction is still needed, one solves for δ the equation

meas{x : φ(x) ≤ δ} = V olreference

and correct φnew = φ − δ. The above equation is solved for δ by the secant
method for root finding and Monte-Carlo method to approximate meas{x :
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φ(x) < δ}. For stability reasons, the substep is accomplished be the re-
initialization of φnew such that (6) holds, see [9,10]. After Ω(t+∆t) is found,
we rebuild the octree mesh and re-interpolate all unknowns to the new mesh.
If an extension of velocity (or pressure) to the exterior of Ω(t) is needed
during the stages of re-interpolation or numerical integration of (5), then we
perform the extension of unknowns along normals to free surface, i.e. the
extension of velocity field satisfies (∇φ) · ∇u(t) = 0 in the exterior of Ω(t).

Further, one finds new values of hydrodynamic variables in Ω(t + ∆t):
{u(t), p(t)} → {u(t+∆t), p(t+∆t)}. This is done in the following substeps:
(i) The convective terms are approximated using the second order accurate
compact upwind method on octree grids from [11] and the momentum equa-
tion is solved for an intermediate velocity, while the plasticity terms are
treated explicitly [10]; (ii) The intermediate velocity field is projected onto
the subspace of discrete divergence free functions and the pressure is updated
by the solution of the discrete Poisson equation.

The time step is variable and controlled by a CFL type condition.

4 Design of computational domain

We use the Google SketchUp tool to generate a polygonal approximation of
the earth surface and facilities on it in the area of interest. Depending on the
problem the topographic data can be obtained from the Shuttle Radar Topog-
raphy Mission (NASA), or the Google Maps, or the Google Earth projects.
Ocean bathymetry can be retrieved from ETOPO data. As an example, the
left picture of figure 1 shows the modeled ‘broken’ dam in a real life topog-
raphy of Sayan mountains and Yenisei river. The scene of a rocky bay in the
right picture is purely hand-made.

Fig. 1. Design of the computational domain using Google SketchUp software: en-
vironment of a dam (left), a rocky bay (right) .
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5 Simulation of hydrodynamic events

In this section all variables are dimensional and given in the SI system.
First we present the results of simulations of the break of the Sayano-

Shushenskaya dam. The calculations presented do not necessarily show any
actual or feasible scenario for this hydro power plant. Rather, they show that
with the present approach a prediction is practically possible, if more detailed
geophysical data for the riverside area and the dam conditions are supplied.
The computational domain and the part of the dam simulated as ‘broken’ are
shown in green in figure 2 (left). The maximal number of active cells in the
computational octree meshes was about 520 thousand. The water rise levels
at given points are shown as graphs in figure 2 (right). The steplike graphs
of the water level reflect the appearance of waves which are clearly seen on
animation available from [19].

Fig. 2. Left: Mesh representation of the dam and the surrounding area. The mon-
itoring of the water level variation is performed in the marked points. Different
colors indicate the magnitude of the fluid velocity vector. Right: Dependence of
water level on time at points P1-P4.

Next, we simulate a rock landslide on the right-bank slope near the same
dam. Due to the absence of the rheological data for the considered slope,
we adopted the coefficients K, τs, n of the Hershel-Bulkley model from [1]
measured for rock landslides in the south of Italy. Figure 3 (left) shows the
top view of the landslide at intermediate time moment and the velocities of
the fluid. The graph of the maximal pressure acting on the dam structures
at the place of landslide is given in figure 3 (right). The maximal number of
cells in the computational meshes approached 560 thousand.

Finally, we simulate a tsunami run-up in two stages. At the first stage
we solve the shallow water equations [18] for horizontal velocity components
and water level defined in the World Ocean. The solution is based on the
mixed finite element method [2] on unstructured triangulation of the World
Ocean and the fractional time stepping scheme [6]. At the second stage,
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Fig. 3. Left: Migration of the landslide at time moment t = 100s. Different colors
mark the velocity vector magnitudes for the particles of the landslide. Right: The
pressure experienced by the dam at the place of the landslide.

when the tsunami wave approaches the shore, we adopt the elevation and
horizontal velocity in the boundary conditions of the 3D free surface flow
model presented in section 2. Figure 4 (left) demonstrates the tsunami wave

Fig. 4. Left: Tsunami elevation in 100 minutes after an earthquake in the Bay of
Bengal. Different colors mark the ocean elevation. Right: tsunami run-up in a bay
with rocky relief.

elevation in 100 minutes after a hypothetical earthquake with epicenter at
9◦40′ north latitude and 92◦30′ east longitude. The epicenter is located in
seismically active region between Andaman and Nicobar islands in the Bay
of Bengal. The colored field of ocean elevation is superposed on the Google
Earth images of the Bay of Bengal. The features of tsunami run-up depend
on the ocean bed and the terrain. The terrain shown in figure 1 (right) is
capable to produce wave breaking, which is dangerous for boats and facilities,
see figure 4 (right). Development and breaking of waves in the run-up can be
inspected in [19].
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