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a b s t r a c t 

In this paper we analyze and investigate numerically a monolithic finite element method for the in- 

compressible Navier–Stokes equations coupled to the Saint Venant–Kirchhoff hyperelastic model. The ap- 

proach strongly enforces the coupling conditions on the fluid–structure interface and treats both solid 

and fluid equations in a reference domain accounting for geometric motion through time-dependent co- 

efficients. The paper derives an energy balance for the fully discrete system and proves that the finite 

element method is numerically stable. The performance of the method is further assessed by validating 

numerical results for the pressure impulse prorogation test and against the results of a recently proposed 

experimental 3D fluid-structure interaction benchmark problem. 
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. Introduction 

Many practically interesting problems of fluid dynamics involve

utual interaction of a fluid and an elastic structure: Fluid flow

epends on the structure displacement, while structure motion is

nfluenced by the fluid dynamics. In mathematical modeling such

etup is known as a fluid–structure interaction (FSI) problem. Ex-

mples of FSI problems arise in structural and fluid mechanics,

erodynamics, and cardiovascular system modeling [8,16,20] . Nu-

erical simulation plays an increasingly important role in under-

tanding and prediction of fluid–structure interaction phenomena

n many engineering and life science applications [6,29,51] . 

A typical FSI model includes equations governing the fluid dy-

amics and the motion of elastic materials together with coupling

onditions at the fluid–structure interface. The Navier-Stokes equa-

ions of fluid dynamics are nonlinear parabolic and are commonly

iven in the Eulerian coordinates, while for solids motion one usu-

lly considers Lagrangian description, which results in a hyperbolic

quation for the displacement variable. Thus, an FSI problem poses

he numerical challenge of handling a coupled system of nonlinear

quations of mixed type given in Eulerian and Lagrangian frames

f references. 
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The numerical method studied in this paper falls into the cate-

ory of monolithic approaches [22,29–31,40,42,45,53] that treat the

uid and the structure as a single continuum. In a monolithic ap-

roach, the coupling conditions at interface are implicit to the so-

ution procedure. This is opposite to the alternative partitioned ap-

roach [3,12,13,35,41,44,52] , when the fluid and the structure are

reated separately, and one consequently solves fluid and structure

ubproblems in the course of simulation. In general, monolithic

ethods are known to be more robust and stable, especially for

nsteady FSI problems. This robustness comes with the expense of

ore computationally demanding algebraic systems to be solved;

ee, e.g. [25] for comparison. One of the popular approaches to

eal with the discrepancy between Eulerian and Lagrangian for-

ulations for fluid and solid is the Arbitrary Lagrangian-Eulerian

ALE) method [15,28,32] . In the scope of ALE method, the structure

s presented in Lagrangian coordinates whereas the fluid flow is

onsidered in an artificial coordinate system. This system is given

y an auxiliary mapping from the reference fluid domain to the

hysical one. Further, in the ALE method one handles the time

erivative in the reference domain, but often treats all other terms

f the fluid equations in the physical domain. We note that ALE

ormulation is not the only possible choice for a monolithic ap-

roach. One may adopt a pure Eulerian description of the fluid and

tructure motion [17] or treat both in a fully Lagrangian way [45] .

mong the most recent studies of monolithic FSI methods we

ention [4] , which applies the ALE description for the fluid but

llows for large displacements of 1D coupled structures, [46] and

55] , where monolithic methods with fully Lagrangian descrip-

ion of fluid and structure motion were applied for incompressible
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Fig. 1. Mapping of the reference solid and fluid domains to the currrent configura- 

tion. 
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and quasi-compressible fluids, respectively, and [2] that focused on

building an efficient algebraic solver for ALE/Lagrangian formula-

tion for incompressible fluids and elasticity. 

To solve the FSI problem, we use an ALE formulation for

the discretization of equations in the reference time-independent

domain. The geometry evolution is accounted for by the time-

dependent coefficients. For this formulation, the paper introduces a

finite element method. Thus we effectively have a method of lines

for the coupled system with a finite difference approach to handle

time dependence. Other options available in the literature include

space–time finite element monolithic [31,49] or hybrid [40] formu-

lations. We carry out full stability analysis for the case of the im-

plicit Euler time discretization. We note that numerical analysis of

a finite element method for the FSI problem is challenging due to

the non-linearity of the system and its mixed hyperbolic–parabolic

type. Several stability analyses are known from the literature often

in simplified settings; see, e.g., [9,19,24,37,43,47,54] . In the present

paper, we show the correct energy balance and prove the uncondi-

tional (without a time-step restriction) stability of a fully discrete

method. We note that no full error analysis is known for FSI prob-

lems, the full error analysis of the quasi-Lagrangian (mesh nodes

do not follow fluid particles) FE method for fluid equations in a

time-dependent domain (no elasticity model is included) became

available in [38] only recently. 

The FSI FE method is further validated numerically on a set of

two benchmark problems. The first one is the well-known pres-

sure wave propagation in an elastic cylindrical tube filled with vis-

cous incompressible fluid [21] . The second one is the recently in-

troduced challenging benchmark test [26] that involves steady and

periodic interactions between a viscous incompressible fluid and

a nonlinear solid filament in a 3D setting. For this test, numeri-

cal results are assessed against experimental data collected using

phase-contrast magnetic resonance imaging. 

The outline of the remainder of the paper is the follow-

ing. Section 2 introduces governing equations, suitable interface

and boundary conditions and recalls the fundamental energy bal-

ance equality satisfied by all smooth solutions to the system. In

Section 3 we present the discretization method. The method is an-

alyzed in Section 4 , where suitable a priori energy estimates for

numerical solutions are shown. Section 5 collects the results of nu-

merical experiments and compares them to available experimental

data. The method is implemented using the open source package

Ani3D [36] . 

2. Problem formulation 

Consider a time-dependent domain �(t) ⊂ R 

3 , partitioned into

subdomains �f ( t ) and �s ( t ) occupied by fluid and solid, respec-

tively. Let �fs ( t ) := ∂�f ( t ) ∩ ∂�s ( t ) be the interface where the in-

teraction of the fluid and solid takes place. Denote the reference

domains by 

� f = � f (0) , �s = �s (0) , � f s = � f s (0) , 

and the deformation of the solid medium by 

ξ
s 

: �s × [0 , t] → 

⋃ 

t∈ [0 ,T ] 
�s (t) , 

with the corresponding displacement u 

s given by u 

s (x , t) :=
ξ

s 
(x , t) − x and velocity v s := ∂ t u 

s = ∂ t ξ
s 
(x , t) . 

For the fluid, we adopt an ALE formulation by introducing an

auxiliary mapping 

ξ
f 

: � f × [0 , t] → 

⋃ 

t∈ [0 ,T ] 
� f (t) 

such that ξ
s = ξ

f 
on �fs . The mapping is defined by a continuous

extension of the displacement field u 

s to the flow reference do-
ain 

 

f := Ext (u 

s ) = ξ
f 
(x , t) − x in � f × [0 , t] . (1)

he extension Ext( u 

s ) can be provided by a PDE solution in �f × [0,

 ]. Mapping ξf is not Lagrangian since it does not follow fluid par-

icles trajectories. Fig. 1 illustrates the mapping. 

The fluid dynamics is described by the velocity vector field v f 

nd the pressure scalar field p f defined in current domain �f ( t ) for

 ∈ [0, T ]. From now on, for notational simplicity, we will be using

he same notation for these fields redefined on the reference con-

guration as v f ( x , t ) := v f ( ξf ( x , t ), t ) and p f ( x , t ) := p f ( ξf ( x , t ), t ). 

Following [30] we consider a monolithic numerical approach

sing the continuous globally defined displacement and velocity

elds 

 = 

{
u 

s in �s , 

u 

f in � f , 
v = 

{
v s in �s , 

v f in � f . 

he corresponding globally defined deformation gradient is F = I +
u . Its determinant will be denoted by J := det( F ). 

Denote by ρs and ρ f = const the densities of solid and fluid,

nd by σs , σ f the Cauchy stress tensors, so that J( σs ◦ ξ
s 
) F −T is the

iola-Kirchhoff tensor in the structure, with σs ◦ξs ( x ) := σs ( ξs ( x )). 
The conservation of momentum equations for the solid and

uid written in the Lagrangian and ALE coordinates, respectively,
akes the form 

∂v 

∂t 
= 

⎧ ⎨ 

⎩ 

ρ−1 
s div (J( σs ◦ ξ

s 
) F −T ) in �s , 

(Jρ f ) 
−1 

div (J( σ f ◦ ξ
f 
) F −T ) − (∇v ) 

(
F −1 

(
v − ∂u 

∂t 

))
in � f . 

(2)

he definition of v in the solid domain gives 

∂u 

∂t 
= v in �s . (3)

or incompressible fluid, the conservation of mass equation in the

eference domain reads: 

iv (JF −1 v ) = 0 in � f . (4)

n the fluid–structure interface, we assume no-slip no-penetration

f fluid and the balance of normal stresses, 

 

s = v f and σ f F 
−T n = σs F 

−T n on � f s , (5)

here n is the unit normal vector on �fs . 

To prescribe boundary conditions on ∂�(0), we distinguish be-

ween the structure boundary �s 0 := ∂�(0) ∩ ∂�s , fluid Dirichlet

nd outflow boundaries: ∂�(0) ∩ ∂� f = � f 0 ∪ �out . Depending on

he type of the boundary, the following conditions are imposed: 

 = g D on � f 0 , σ f F 
−T n = g N + 

ρ f κ
2 

(v · n ) −v on �out , 

 = 0 on �s 0 ∪ � f 0 ∪ �out , 
(6)

here ( f ) ± := 

1 
2 ( f ± | f | ) , n is the outward unit normal vector

n �out , and κ ∈ [0, 1] is a parameter introduced to stabilize the
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ystem against nonphysical energy increase produced by backflow

henomenon on �out ; see, e.g., [7] . Stabilized outflow conditions

re found in many places in the literature, e.g. [5] . For κ = 1 , they

ere analyzed as “directional do-nothing condition” in [10] . Their

tabilizing effect will become clear from the energy balance (12) ,

here κ close to 1 is seen to ensure decay of the numerical energy.

he governing equations are complemented with initial conditions

 (x , 0) = 0 , v (x , 0) = v 0 (x ) on �(0) . (7)

We assume the fluid to be Newtonian, with the viscosity pa-

ameter μf . In the ALE coordinates, the Cauchy tensor of Newto-

ian fluid is given by 

f = −p f I + μ f (∇vF −1 + F −T (∇v ) 
T 
) in � f . (8)

or the structure we consider the compressible geometrically non-

inear Saint Venant–Kirchhoff material with 

s = 

1 

J 
F (λs tr (E ) I + 2 μs E ) F T , (9)

here E = 

1 
2 

(
F T F − I 

)
is the Lagrange-Green strain tensor and λs ,

s are the Lame constants. Both analysis and numerical experi-

ents in this paper are restricted to the Saint Venant–Kirchhoff

aterial since material parameters in 3D benchmark problems ad-

ressed in Section 5 are given for this material. The method, how-

ver, can be easily extended to neo-Hookean materials [37] . 

For the notation convenience, we set p s = 0 in �s and define

he global pressure variable by 

p = 

{
p f in � f , 

p s in �s . 

Thus, the FSI problem consists in finding pressure distribution

 and continuous velocity and displacement fields v, u satisfying

he set of equations, interface and boundary conditions (2) –(9) and

ubject to a provided extension rule (1) . 

We note a few identities that are useful for the design of a nu-

erical method and its analysis. In the fluid region the mass bal-

nce yields the equation 

∂ J 

∂t 
+ div 

(
JF −1 

(
v − ∂u 

∂t 

))
= 0 in � f . (10) 

urthermore, the Piola identity div (JF −1 ) = 0 implies the following

quality 

iv (JF −1 v ) = J(∇v ) : F −T in � f , (11)

here A : B := 

∑ N 
i, j=1 A i j B i j . 

For homogeneous boundary conditions, one shows with the
elp of (10) –(11) that any smooth solution to (2) –(9) satisfies the
nergy equality, cf. [37] , 

1 

2 

d 

dt 

( ∫ 
�s 

ρs 

∣∣∣∣∂u 

∂t 

∣∣∣∣
2 

d x + ρ f 

∫ 
� f 

J | v | 2 d x + 

∫ 
�s 

(λs tr (E ) 
2 + 2 μs | E | 2 F ) d x 

) 

+2 μ f 

∫ 
� f 

J| D u (v ) | 2 F d x + 

ρ f 

2 

∫ 
�out 

{ (v · n ) + 

+(1 − κ)(v · n ) −}| v | 2 d s = 0 , (12) 

here D u v := 

1 
2 

(
(∇v ) F −1 (u ) + F −T (u ) (∇v ) T 

)
and | . . . | F denotes

he matrix Frobenius norm. In the energy equality (12) the vari-

tion of the total system energy is balanced by the fluid viscous

issipation and the energy rate at the open boundary. Note that

or κ = 1 the last term is non-negative. 
. Discretization 

In this section we introduce both time and space discretization

f the FSI problem. Treating the problem in the reference domain

llows us to avoid triangulations and finite element function spaces

ependent on time. For an alternative approach based on space-

ime finite element methods see, for example, [49,50] . We consider

 collection of tetrahedra, which form a consistent regular tessel-

ation of the reference domain �(0) = �s ∪ � f . In the monolithic

pproach we consider conforming FE spaces V h ⊂ H 

1 (�(0)) 3 and

 h ⊂ L 2 (�(0)) for trial functions and the following two subspaces 

or the test functions: V 

0 
h 

= { v ∈ V h : v | �s 0 ∪ � f 0 
= 0 } and V 

00 
h 

= { v ∈
 

0 
h 

: v | �s f 
= 0 } . We assume that V 

0 
h 

and Q h form the LBB-stable

nite element pair: There exists a mesh-independent constant c 0 ,

uch that 

inf 
 h ∈ Q h 

sup 

v h ∈ V 0 h 

(q h , div v h ) 

‖∇v h ‖‖ q h ‖ 

≥ c 0 > 0 . 

ssuming a constant time step �t , we use the notation

 

k ( x ) ≈ u ( k �t , x ). The backward finite difference approximation of

he time derivative at t = k �t is denoted by 

∂u 

∂t 

]k 

= 

u 

k − u 

k −1 

�t 
. 

imilar notation is used for v , p and other time-dependent quanti-

ies. 

To formulate the discretization method, we need some further

otations. For F (u ) = I + ∇u , E (u ) = 

1 
2 

(
F (u ) T F (u ) − I 

)
we de-

ne S (u ) = λs tr (E (u )) I + 2 μs E (u ) , F k = F (u 

k ) , J k = det (F k ) , E k =
 (u 

k ) , S k = S (u 

k ) , D k = D u k , and F 
k + 1 

2 
= 

1 
2 (F k + F k +1 ) . 

The finite element method for the ALE monolithic FSI formu-

ation reads: Given { u 

k −1 , v k −1 } ∈ V 

0 
h 

× V h find { u 

k , v k , p k } ∈ V 

0 
h 

×
 h × Q h such that v k = g D (·, k �t) on �f 0 and the following equa-

ions hold: ∫ 
�s 

ρs 

[
∂v 

∂t 

]k 

ψ d x + 

∫ 
�s 

F k − 1 
2 
S k : ∇ ψ d x 

+ 

∫ 
� f 

ρ f J k −1 

[
∂v 

∂t 

]k 

ψ d x + 

∫ 
� f 

ρ f J k (∇v k ) F −1 
k 

(
v k −

[
∂u 

∂t 

]k )
ψ d x 

+ 

∫ 
� f 

2 μ f J k D k v 
k : D k ψ d x −

∫ 
� f 

p k J k F 
−T 
k 

: ∇ ψ d x 

+ 

∫ 
� f 

ρ f 

2 

( [
∂ J 

∂t 

]k 

+ div 

( 

J k F 
−1 
k 

( 

v k −
[
∂u 

∂t 

]k 
) ) ) 

ψ d x 

= 

∫ 
�out 

(g N + 

ρ f κ

2 

(v k · n ) −v k ) · ψ d s (13) 

or all ψ ∈ V 

0 
h 
, 

 

�s 

[
∂u 

∂t 

]k 

φ d x −
∫ 
�s 

v k φ d x = 0 (14)

or all φ ∈ V 

00 
h 

, and 

 

� f 

J k (∇v k ) : F −T 
k 

q d x = 0 (15)

or all q ∈ Q h . The integrals over the interface in (13) cancel out

ue to the interface condition (5) . The coupling condition on �sf is

nforced strongly, 

∂u 

∂t 

]k 

= v k on �s f . (16) 
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In other words, for all degrees of freedom corresponding to the in-

terface nodes, we add equations 1 
�t 

u k − v k = 

1 
�t 

u k −1 to the total

algebraic system for the unknowns u k and v k . Hence, (16) is satis-

fied up to the accuracy of our algebraic solver. This together with

(14) implies the equality 
[

∂u 
∂t 

]k = v k is satisfied pointwise in �s . 

Eqs. (13) –(16) subject to initial conditions and a choice of con-

tinuous extension of u 

k from �s onto �f ensuring u 

k ∈ V 

0 
h 

define

the discrete problem. We shall use an extension based on auxiliary

elasticity equation, see Section 5 . 

Remark 1. The last term in the left-hand side of (13) is consis-

tent due to the identity (10) and is added in the FE formulation

to enforce the conservation property of the discretization. While

computations show that in practice this term can be skipped, sta-

bility analysis benefits from including it. In the analysis of FEM

for incompressible Navier-Stokes equations in the Eulerian descrip-

tion, including this term corresponds to the Temam’s [48] skew-

symmetric form of the convective terms. 

4. Numerical stability 

In this section, we show energy balance and stability estimate

for the solution to (13) –(16) . As common in the stability analy-

sis, we consider the homogeneous boundary conditions on �f 0 , i.e.

g D = 0 in (6) . 

Note the following identities: 

2 F T 
k − 1 

2 

(∇ u 

k − ∇ u 

k −1 ) = 2 F T 
k − 1 

2 

( F k − F k −1 ) 

= F T k F k − F T k −1 F k −1 + 

(
F T k −1 F k − F T k F k −1 

)
= 2(E k − E k −1 ) + N , (17)

where N is skew-symmetric. For arbitrary real square matrices A,

B, C , it follows from the definition of trace that AB : C = tr (ABC T ) =
tr (BC T A ) = B : A 

T C. Thus, it holds 

F k − 1 
2 
S k : (∇ u 

k − ∇ u 

k −1 ) = S k : F 
T 
k − 1 

2 

(∇ u 

k − ∇ u 

k −1 ) . 

Due to the symmetry of S k it holds S k : N = 0 and we get from

(17) 

F k − 1 
2 
S k : (∇ u 

k − ∇ u 

k −1 ) = S k : (E k − E k −1 ) . (18)

Now we set in (13) 

ψ = 

{[
∂u 
∂t 

]k 
in �s , 

v k in � f . 

Thanks to (16) , ψ is a suitable test function, i.e. ψ ∈ V 

0 
h 
. We han-

dle each resulting term separately and start with the first term in

(13) : ∫ 
�s 

ρs 

[
∂v 

∂t 

]k 

ψ d x = 

∫ 
�s 

ρs 

(
v k − v k −1 

�t 

)(
u 

k − u 

k −1 

�t 

)
d x 

= 

∫ 
�s 

ρs 

(
v k − v k −1 

�t 

)
v k d x 

= 

1 

2�t 

(
‖ ρ

1 
2 

s v k ‖ 

2 
�s 

− ‖ ρ
1 
2 

s v k −1 ‖ 

2 
�s 

)

+ 

| �t| 
2 

∥∥∥∥∥ρ 1 
2 

s 

[
∂v 

∂t 

]k 
∥∥∥∥∥

2 

�s 

. (19)

Here and further ‖ · ‖ �s 
denotes the L 2 ( �s ) norm. Thanks to

(17) and (18) we obtain for the second term in (13) : ∫ 
�s 

F k − 1 
2 
S k : ∇ ψ d x = 

1 

�t 

∫ 
�s 

S k : (E k − E k −1 ) d x 

= 

λs 

2�t 

(‖ tr (E k ) ‖ 

2 
�s 

− ‖ tr (E k −1 ) ‖ 

2 
�s 

)

κ  
+ 

μs 

�t 

(‖ E k ‖ 

2 
�s 

− ‖ E k −1 ‖ 

2 
�s 

)
+ 

λs �t 

2 

∥∥∥∥∥
[
∂ tr (E ) 

∂t 

]k 
∥∥∥∥∥

2 

�s 

+ μs �t 

∥∥∥∥∥
[
∂E 

∂t 

]k 
∥∥∥∥∥

2 

�s 

. (20)

traightforward computations show for the third term in (13) : 

∫ 
� f 

ρ f J k −1 

[
∂v 

∂t 

]k 

ψ d x = 

∫ 
� f 

ρ f 

2 

J k | v k | 2 − J k −1 | v k −1 | 2 
�t 

d x 

−
∫ 
� f 

ρ f | v k | 2 
2 

[
∂ J 

∂t 

]k 

d x + 

∫ 
� f 

�t ρ f J k −1 

2 

∣∣∣∣∣
[
∂v 

∂t 

]k 
∣∣∣∣∣

2 

d x . (21)

pplying integration by parts to the fourth (inertia) term in

13) gives 

∫ 
� f 

ρ f J k (∇v k ) F −1 
k 

( 

v k −
[
∂u 

∂t 

]k 
) 

ψ d x 

= −
∫ 
� f 

ρ f 

2 

div 

( 

J k F 
−1 
k 

( 

v k −
[
∂u 

∂t 

]k 
) ) 

| v k | 2 d x 

+ 

∫ 
�out 

ρ f 

2 

v k · n | v k | 2 d s . (22)

ere we used boundary and interface conditions. The fifth term in

13) gives 
 

� f 

2 μ f J k D k v 
k : D k ψ d x = 

∫ 
� f 

2 μ f J k 
∣∣D k v 

k 
∣∣2 

F 
d x , 

nd the next pressure term vanishes due to the incompressibil-

ty condition (15) . Finally, the last term cancels with similar terms

ith opposite sign which appear in (21) and (22) . Substituting all

qualities back into (13) , we obtain after some cancellations the

ollowing energy balance for the finite element FSI problem with

he first order discretization in time: 

1 

2�t 

(
‖ ρ 1 

2 
s v k ‖ 2 �s 

− ‖ ρ 1 
2 

s v k −1 ‖ 2 �s 

)
+ 

ρ f 

2 | �t| 
∫ 
� f 

(
J k | v k | 2 − J k −1 | v k −1 | 2 )d x 

}
variation of 

kinetic energy

+ 

λs 

2�t 

(‖ tr (E k ) ‖ 2 �s 
− ‖ tr (E k −1 ) ‖ 2 �s 

)
+ 

μs 

�t 

(‖ E k ‖ 2 �s 
− ‖ E k −1 ‖ 2 �s 

)} variation of 

potential energy

+ 2 μ f 

∫ 
� f 

J k 
∣∣D k (v k ) 

∣∣2 
F 

d x 

}
energy dissipation 

in fluid 

+ 

λs �t 

2 

∥∥∥∥∥
[

∂ tr (E ) 

∂t 

]k 
∥∥∥∥∥

2 

�s 

+ μs �t 

∥∥∥∥∥
[

∂E 

∂t 

]k 
∥∥∥∥∥

2 

�s 

+ 

ρ f (�t) 

2 

∫ 
� f 

J k −1 

∣∣∣∣∣
[

∂v 

∂t 

]k 
∣∣∣∣∣

2 

d x + 

| �t| 
2 

∥∥∥∥∥ρ 1 
2 

s 

[
∂v 

∂t 

]k 
∥∥∥∥∥

2 

�s 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

O (�t) dissipative 

terms 

= − ρ f 

2 

∫ 
�out 

{ (v k · n ) + + (1 − κ)(v k · n ) −}| v k | 2 d s . 
}

energy flux through 

open boundary 

ne notes that the above equality resembles the energy balance

12) of the original FSI problem up to several O ( �t ) terms. In the

tructure these extra terms are always dissipative. For the fluid we

eed the following assumption on the ALE displacement field. As-

ume that the extension of displacements to the fluid domain is such

hat for all k it holds J k > 0 in �f , i.e. the displacements do not tan-

le the mesh. For the sake of notation simplicity we shall also use

 · ‖ 
�k 

f 

:= 

(∫ 
� f 

J k | · | 2 d x 

) 1 
2 
, which defines a k -dependent norm for

 k > 0. The terms in the fourth group on the left-hand side are non-

egative and dropping them changes the equality to inequality. If

= 1 , then the outflow term is non-negative and standing with
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inus sign it can be also dropped. We end up with the inequal-

ty: 

1 

2 

∥∥∥∥∥ρ 1 
2 

s 

[
∂u 

∂t 

]k 
∥∥∥∥∥

2 

�s 

+ 

ρ f 

2 

‖ v k ‖ 

2 
�k 

f 

+ 

λs 

2 

‖ tr (E k ) ‖ 

2 
�s 

+ μs ‖ E k ‖ 

2 
�s 

+ 2 μ f (�t) ‖ D k v 
k ‖ 

2 
�k 

f 

≤ 1 

2 

∥∥∥∥∥ρ 1 
2 

s 

[
∂u 

∂t 

]k −1 
∥∥∥∥∥

2 

�s 

+ 

ρ f 

2 

‖ v k −1 ‖ 

2 
�k −1 

f 

+ 

λs 

2 

‖ tr (E k −1 ) ‖ 

2 
�s 

+ μs ‖ E k −1 ‖ 

2 
�s 

. 

he energy estimate follows if we sum up the above inequalities

or k = 0 , . . . , N − 1 : 

1 

2 

∥∥∥∥∥ρ 1 
2 

s 

[
∂u 

∂t 

]N 
∥∥∥∥∥

2 

�s 

+ 

λs 

2 

‖ tr (E N ) ‖ 

2 
�s 

+ μs ‖ E N ‖ 

2 
�s 

+ 

ρ f 

2 

‖ v N ‖ 

2 
�N 

f 

+ 2 μ f 

N ∑ 

k =1 

�t‖ D k v 
k ‖ 

2 
�k 

f 

≤ ‖ ρ
1 
2 

s v 0 ‖ 

2 
�s 

+ 

ρ f 

2 

‖ v 0 ‖ 

2 
�0 

f 

+ 

λs 

2 

‖ tr (E 0 ) ‖ 

2 
�s 

+ μs ‖ E 0 ‖ 

2 
�s 

. (23)

We summarize the results in the following theorem. 

heorem 1. Assume that the extension of the finite element displace-

ent field to �f is such that J k > 0 for all k = 1 , . . . , N − 1 , and κ = 1 .

hen the solution to the finite element method (13) –(16) satisfies the

 priori estimate (23) . 

. Numerical experiments 

This section assesses the performance of the monolithic FSI FE

ethod on two benchmark problems: the propagation of a pres-

ure impulse in a flexible tube and the interaction of a three-

imensional clamped beam with a fluid flowing in a pipe, the

enchmark tests suggested in [21] and [26] , respectively. The first

est problem is related to the blood flow through a compliant

rtery, and it has been extensively considered in the literature for

alidating the performance of FSI solvers, e.g. [14,18,22,23,34,39] .

ince the problem is an idealization of a practical setup, no ex-

erimental data is available and the test serves to validate mesh

onvergence and the physical plausibility of the computed solu-

ions. For the clamped beam in a pipe flow problem, experimental

easurements are available and documented in [26] with the in-

ention to provide a challenging FSI test case for the rigorous test-

ng of FSI algorithms. This test case utilizes the geometry obtained

rom computer-aided design, but is also motivated by biomedi-

al applications. Flow and structure statistics were measured for

oth steady-state and transient laminar flows at maximal Reynolds

umbers of 651 and 1283, reflecting Re numbers found for the car-

iovascular flows. The benchmark has been recently used to vali-

ate numerical FSI solvers in [11,27,35] . 

For all experiments we use P2-P1 (Taylor–Hood) elements for

elocity and pressure variables and P2 elements for displacements.

he scheme (13) –(16) is implemented on the basis of the open

ource package Ani3D [36] . To handle the nonlinear system on

ach time step, we linearly extrapolate all geometric terms and

he advection velocity in the inertia term from two previous time

teps. The resulting linear system is solved by the multifrontal

parse direct solver MUMPS [1] . Application of the direct solver is

easible, since in all numerical tests the number of degrees of free-

om is moderate (about 10 5 d.o.f.). The latter is achieved thanks

o the higher than the second order accuracy of the method com-

ined with 3D mesh adaptation. For finer meshes, one would need
o solve the linear systems iteratively. Parallel preconditioning for

uch FSI systems has been addressed, e.g., in [33] . 

For the continuous extension of the displacement field u in (1) ,

e use the following elasticity equation [35] for the velocity of

he displacement: 

−div 

[ 

J 

( 

λm 

tr 

( 

∇ 

[
∂u 

∂t 

]k 

F −1 

) 

I 

+ μm 

⎛ 

⎝ ∇ 

[
∂u 

∂t 

]k 

F −1 + 

( 

∇ 

[
∂u 

∂t 

]k 

F −1 

) T 
⎞ 

⎠ 

⎞ 

⎠ F −T 

⎤ 

⎦ 

= 0 in � f . (24) 

he boundary condition 

[
∂u 
∂t 

]k = v k is used on the interface. The

pace dependent auxiliary parameters were chosen as shown: 

m 

= μs | �e | −1 . 2 , λm 

= 16 μm 

, 

here | �e | denotes the physical volume of a mesh tetrahedron �e 

ubjected to displacement from the previous time step. 

.1. Pressure wave in flexible tube 

The problem configuration consists of an incompressible vis-

ous flow through an elastic tube with circular cross-section. The

ube is 50mm long, it has inner diameter of 10mm and the wall is

mm thick. The fluid density is 10 −3 g/mm 

3 and kinematic viscosity

s 3mm 

2 /s. The wall has density ρs = 1 . 2 · 10 −3 g/mm 

3 . The Saint

enant–Kirchhof hyperelastic model is used with elastic modulus

 = 3 · 10 5 g/mm/s 2 and Poisson’s ratio ν = 0 . 3 . Initially the fluid is

t rest and the tube is non-deformed. The tube is fixed at both

nds. On the left open boundary of the tube, the external pressure

 ext is set to 1.333 · 10 3 Pa for t ∈ (0 , 3 · 10 −3 ) s and zero afterwards,

hile on the right open boundary the external pressure p ext is zero

hroughout the experiment. This generates a pressure impulse that

ravels along the tube. The external pressure is incorporated into

13) –(16) through the open boundary condition σ f F 
−T n = p ext n . 

We built three computational meshes (coarse, fine and finer)

or this experiment. On each level of refinement the mesh size

as decreased by approximately a factor of 
√ 

2 . The resulting num-

ers of tetrahedra in the fluid and solid subdomains, respectively,

re 13,200 and 6336 for coarse, 29,202 and 11,904 for fine, and

9,232 and 38,016 for finer. We set �t = 10 −4 s. For this problem,

e do not use outflow boundary stabilization, i.e. κ = 0 on both

pen boundaries. 

Fig. 2 depicts the computed velocity field in the middle cross-

ection and wall displacement exaggerated by a factor of 10 for

larity. The results are similar to those found in other publications

ited. Fig. 3 shows the time variations of the radial and axial com-

onents of the displacement of the inner tube wall at half the

ength of the pipe. Both graphs suggest that the finer mesh results

re close to convergence. The maximum relative deviation between

oarse and fine mesh displacement 2.1% in the axial component

nd 2.7% in the radial component, which decreases to maximum

elative deviation between fine and finer mesh to 0.7% in the axial

omponent and 2.3% in the radial component. Both plots are con-

istent with the results reported in [18] . 

Finally, we demonstrate stability bound (23) for this particular

roblem. Since the problem setup involves specification of non-

ero pressure on the inflow for the first 30 time steps, for checking

23) we consider the computed velocity at t = 0 . 003 s as the initial

ondition, and evaluate all quantities in (23) for t ∈ [0.003 s , 0.02 s ].

or the right-hand side of (23) , the computed value was 1197.7 μJ ,

hile for the left-hand side it was 247.62 μJ . 
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Fig. 2. Pressure wave: middle cross-section velocity field, pressure distribution, velocity vectors and 10-fold enlarged structure displacement for several time instances. 

Fig. 3. Pressure wave: The axial and radial components of displacement of the inner tube wall at half the length of the pipe. Solutions are shown for three mesh sequentially 

refined meshes (see the text). The plots are almost indistinguishable. 
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5.2. Clamped beam in a pipe flow 

The flow chamber is a cylindrical domain aligned with z -axis

with length 173.55mm, and diameter 76.2mm, see Fig. 4 . Two in-

let pipes of diameter 21.9mm and length 29.5mm merge smoothly

into a single outlet. The inlet cross-sections are circles with cen-

ters at (0,27.15,-29.5) and (0,-27.15,-29.5). A silicon filament is at-

tached to the wall in the merging section z = 0 . The filament (solid

body) has dimensions 2 × 11 × 65mm. According to [26] , the den-

sity of the silicone filament is ρs = 1063 kg/m 

3 . Uniaxial traction

data from [26] yield the Young modulus E = 2 . 1626 10 5 Pa and Pois-

son ratio ν = 0 . 3151 [35] . The gravity force 9.81m/s 2 acts along the

y -direction. For Phase I and Phase II of the experiment, the fluid
ensity is 1163.3kg/m 

3 and 1164kg/m 

3 , respectively, and the kine-

atic viscosity is 10.75mm 

2 /s and 11.49mm 

2 /s, respectively. 

For Phase I experiment, the parabolic flow profiles are pre-

cribed on both inflow boundaries with a smooth increase of the

eak velocity values ( z -component) from 0 to 615mm/s in the top

ection and 630mm/s in the bottom one and further stay constant.

or Phase II, the inflow condition is periodic with the frequency

/6s −1 . The inflow velocity profiles are parabolic in each compo-

ent with peak velocities recovered from the experimental data.

hese measured peak inflow velocities are shown in Fig. 5 . There

s a difference between y -velocity components profiles at top and

ottom cross-sections; following [26] we set v y = 0 at the inflow

f the bottom pipe. 
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Fig. 4. FSI benchmark domain (top); Computational mesh for fluid and structure domains (bottom). 

Fig. 5. Measured peak velocity for parabolic inflow used for the boundary condition 

in the computations (Phase II). 
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fi  

Fig. 6. An equilibrium position of the elastic beam in the hydrostatic equilibrium. 

t  

e  

n

 

d  

t

The computational mesh is built for the stress-free configura-

ion, cf. Fig. 4 . The tetrahedral mesh is fitted to the fluid–solid

oundary and uses two layers of tetrahedra to resolve the silicon

lament. The fluid domain is tesselated into 28,712 tetrahedra, and
he number of tetrahedra in the solid domain is 733. For P2-P2-P1

lements (displacement–velocity–pressure) this results in the total

umber of 254,439 unknowns. 

On the outflow boundary we prescribe directional outflow con-

ition as in (6) with κ = 1 and g N = g y n , where g is the accelera-

ion of gravity. 
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Fig. 7. Evolution of the beam from the neutral position to the hydrostatic equilib- 

rium. Position of the middle line for the beam is shown at times t = 1 . 65 · k sec, 

k = 1 , . . . , 5 . 

Fig. 8. Visualization of the flow in Phase I. The figure shows streamlines colored by 

the velocity magnitude (mm/s). 

 

 

 

Fig. 9. Displacement of the beam middle line on its upper surface in Phase I. 
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5.3. Hydrostatic equilibrium 

We first compute the hydrostatic equilibrium solution under

the action of the gravity force. The fluid density and viscosity were

taken the same as for Phase I. To avoid unnecessary fluctuations
Fig. 10. Fluid velocity components in Phase I. Comparison of the experimental
nd accelerate convergence to equilibrium, we added a damping

erm for the solid in the form of the friction force −αv , where

= 10 −4 kg/mm 

3 /s. The final position of the filament and snap-

hots of its position in different time moments are illustrated in

igs. 6 , 7 respectively. We further use this equilibrium solution as

he initial condition in Phases I and II. 

.4. Phase I 

We run calculations up to T = 23 . 5 s with time step �t = 10 −2

. After a short transition phase, the solution attains an equilib-

ium, which can be slightly perturbed by flow dynamics. Fig. 8 il-

ustrates the final position of the deformed elastic beam and a

assing flow. We note the formation of recirculation zone behind

he z = 0 wall where the filament is attached. 

Fig. 9 compares the computed displacement of the silicon beam

o the data recorded in the experiment. We see that the nu-

erical results underestimate the experimental data, although the

verall agreement is good and the discrepancy is comparable to

he deviation between numerical and experimental results found

n references [27,35] . In [11] the authors reported the perfect

atching of experimental and numerical results, which we are

nable to achieve. The discrepancy in results might be caused

y the existence of multiple steady states for this problem or

y the treatment of outflow boundary, which is set not suffi-

iently far from the beam. We next compare in Fig. 10 the com-

uted fluid velocity y and z components at cross-sections z =
0 and z = 30 with those acquired by MRI techniques and re-
 data and the numerical solution at the cross-sections z = 10 and z = 30 . 
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Fig. 11. Snapshots of the flow at Phase II. The figure shows streamlines colored by the velocity magnitude (mm/s). 
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orted in [26] . Some mismatch of numerical and experimental

eam positions seem to produce the discrepancy in y -component

f numerical and experimental fluid velocities. At the same time,

 -component demonstrates good agreement with experimental

ata. 

The MUMPS algebraic solver was executed with 8 MPI pro-

esses, using 10 CPU cores for each process for parallel BLAS op-

rations. The entire computation in Phase I took 14.7 hours in to-

al (12.7 hours spent for linear solvers and 1.93 hours for matrix

nd right-hand side assembly). One time step took 22.5 seconds in

verage to complete. 
.5. Phase II 

In this experiment, a pulsatile inflow results in the periodic so-

ution. We run calculations for two periods, up to T = 12 s with

ime step �t = 10 −2 s. Below we use the computed data for the

rst period to ease the comparison with [11,27,35] , where only the

rst period results are shown. 

Fig. 11 illustrates the predicted flow in Phase II. We note some

nsteady vortical structures passing the beam and forming in the

ake. These structures interact with the filament and may influ-

nce its motion. 
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Fig. 12. Phase II: Computed and experimentally recorded y -displacement of the beam centerline at x = 0 for several time instances. 

Fig. 13. Phase II: Track of the computed y -displacement of the point in the struc- 

ture with coordinate z ≈ 53, x = 0 for t ∈ [0, 6] and recorded experimental data. 
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Figs. 12 and 13 present the comparison of the recorded and

predicted displacements of the silicon beam over one period. The

experimental data is only provided for 6 positions as shown in

Fig. 12 . The numerical method is able to perfectly predict the max-

imum deflection of the beam. The dynamics of the beam in this

experiment with unsteady flow is driven by the competition be-

tween normal stresses exerted on the beam by upcoming flow jet

and the buoyancy force. The basic features of the beam motion in-
s

s

Fig. 14. Fluid velocity components in Phase II. Comparison of the experim
luding the swing and time when the beam has minimal and max-

mal deflections are well captured by the numerical method, see

ig. 13 . 

Fig. 14 compares experimental measurements and predicted

esults of the fluid velocity components at different time steps

or cross-section z = 33 . 5 . This is the most remote from the in-

et cross-section with recorded data for three velocity compo-

ents and so the hardest for numerical prediction. The velocity z -

omponent is somewhat underresolved, suggesting that the com-

uted solution is slightly diffusive. However the main patterns of

he flow are well captured. 

Similarly to Phase I, we used 8 MPI processes for the MUMPS

olver, but with 12 CPU cores per each process. This resulted in 6

ours of the overall computation (5.2 hours spent for linear solvers

nd 0.8 hours for matrix and right-hand side assembly), with 18.1

econds per time step. 

. Conclusions 

In the paper we addressed stability and performance of a

onolithic finite element method for incompressible fluid – hy-

erelastic structure interaction problems. We demonstrated that

he method of lines for the ALE/Lagrangian formulation of

uid/structure equations in a reference domain is a feasible ap-
s

s

ental data and the numerical solution on the cross-section z = 33 . 5 . 
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roach, and time-dependent coefficients can be time-lagged with-

ut undermining stability. In fact, numerical experiments demon-

trated that in practice the size of time step is dictated by accu-

acy consideration rather than any stability condition. The com-

uted kinetic, potential energy and energy dissipation were found

o satisfy the theoretically predicted bound. Although the method

s completely formulated in the reference triangulated domain, it

as found to share limitations with those FE ALE formulations that

pdate mesh in a physical domain. Namely, finding a suitable ex-

ension of the displacement field to the fluid domain is crucial for

he stability of computations and becomes an increasingly chal-

enging task when structural displacements are large. If a suitable

rolongation technique is available (in this paper (24) was found to

ork well), then the presented method is stable and predictive in

ealistic 3D settings even with a modest overall number of degrees

f freedom. 
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