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Abstract

We study stabilized FE approximations of SUPG type to the incompressible Navier–Stokes problem. Revisiting
theanalysis for the linearizedmodel,weshow that for conformingLBB-stableelements thedesignof thestabilization
parameters for many practical flows differs from that commonly suggested in literature and initially designed for
the case of equal-order approximation. Then we analyze a reduced SUPG scheme often used in practice for LBB-
stable elements. To provide the reduced scheme with appropriate stability estimates we introduce a modified LBB
condition which is proved for a family of FE approximations. The analysis is given for the linearized equations.
Numerical experiments for some linear and nonlinear benchmark problems support the theoretical results.
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1. Introduction

We consider the nonstationary incompressible Navier–Stokes problem: find a velocityu(t, x) and a
kinematic pressurep(t, x) from

�tu− ��u+ (u · ∇)u+ ∇p = f , divu= 0 in �× (0, T ] (1)

in a bounded domain� ∈ Rn, n= 2,3 with given force fieldf and viscosity�>0. Boundary and initial
conditions should be additionally supplied. Implicit time integration and linearization often lead to the
generalized Oseen problem

−��u+ �u+ (a · ∇)u+ ∇p = f̃ , divu= g in �, (2)

with a reaction term� ∼ 1/�t related to the time step�t .
Finite element (FE) methods for (1) and (2) may suffer from two sources of instabilities. One is a

possible incompatibility of pressure and velocity FE pairs. A remedy is a choice of FE spaces passing
the inf-sup or LBB condition or the use of pressure stabilizing techniques. Another source of instabilities
stems fromdominating advection for largeReynolds numbersRe.There exist several variants of stabilized
FEmethods of arbitrary order which combine stability and accuracy, e.g. the streamline upwind/pressure
stabilizing Petrov–Galerkin (SUPG/PSPG)method, theGalerkin/Least-squares (GLS) and algebraic sub-
grid scale (ASGS) techniques, see, e.g.,[7,10,20,22,23]. Thesemethods simultaneously suppress spurious
oscillations causedbyboth, dominatingadvectionandnonLBB-stableFEspaces. In particular, thepopular
equal-order velocity-pressure approximation is allowed.
At the same time the combination of LBB-stable velocity-pressure FE pairs with stabilization is often

used in practice, see e.g.[21,23]. However it is rarely considered in numerical analysis. The goal of
the present paper is to extend the analysis of[17] for conforming LBB-stable FE pairs and to provide
numerical results. Below we comment on the main observations and results.
We start withfully stabilizedschemes. For problem (2) it includes SUPG/PSPG and grad-div stabi-

lization. A rather general result by Tobiska/Verfürth in[22] is applicable to this case. Under reasonable
regularity assumptions on the solution (see[7,10,17,20]) the design of the stabilization parameters differs
for LBB-stable elements from that of equal-order (LBB-unstable) pairs. The resulting error estimate is
uniform with respect to� and�. It shows a quasi-optimal convergence order, whereas the standard choice
of parameters (optimal for equal-order pairs) leads to an order reduction of1

2.
For convenience we include here the analysis which simplifies the proofs in[22] and slightly improves

results for conforming LBB-stable elements. The analysis does not exploit any specific information
about�-dependence of the solution. Our numerical results perfectly match the theoretical predictions
for smooth,�-independent solutions. Moreover, numerical experiments on quasi-uniform meshes with
several typical flow problems (2) and (1) with�-dependent solutions are performed to verify conclusions
for more practical situations.
A natural question is whether pressure stabilization is necessary for LBB-stable FE pairs. So we

consider the SUPG scheme without PSPG stabilization. Thisreducedscheme produces less additional
terms; it is often used by practitioners. In our numerical experiments we found almost identical results for
the reduced and the fully stabilized schemes. However a convincing numerical analysis for the reduced
scheme is missing. The analysis in[17] follows the same framework of fully stabilized methods but
gives unsatisfactory stability estimates. Here we improve the analysis using amodifiedinf-sup (LBB)
condition, cf. Lemma 4.1. This condition was known for the simplest Taylor–Hood element, see[2]. We
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extend the result to a family of LBB-stable elements with additional assumption on domain regularity
and for quasi-uniform meshes. This result allows to prove uniform stability and robust error estimates
for the reduced SUPG scheme if� + �h2�h2 (cf. condition (28)). If this condition fails to be true, then
a robust convergence analysis for this scheme is still an open problem. Numerical experiments indicate
robustness of the proposed scheme for this case as well.
Problem (2) appears as auxiliary problem within an implicit time integration of the unsteady Navier–

Stokesequations (1).This approach is also feasible for aproblemwith a stationary solution. In experiments
we apply it to solve typical benchmark problems (driven cavity, backward facing step). These results
indicate that the approach to the linear case remains meaningful in the nonlinear case too. The case of
time-accurate solution of (1) will be considered elsewhere; see also elaborations for a stabilized equal-
order method in the recent paper[9].
The remainder of the paper is organized as follows: Section 2 presents various FE schemes for the

linearized equations. Section 3 is devoted to the case of fully stabilized schemes with LBB-stable pairs.
The analysis for reduced stabilized schemes is then presented in Section 4. Numerical results for the
linearized and nonlinear problems are given in Sections 5 and 6.

2. Stabilized FEM for the linearized model

We start with a variational formulation of (2) assuming homogeneous Dirichlet boundary conditions
for u . SetV := H 1

0 (�)
n andQ := L20(�). A variational formulation of (2) reads: givenf ∈ H−1(�),

g ∈ Q, findU := {u, p} ∈W := V ×Q such that

a(U, V )= f (V ) ∀V := {v, q} ∈W, (3)

a(U, V ) := �(∇u,∇v)+ (�u+ (a · ∇)u, v)− (p,div v)+ (q,divu),
f (V ) := 〈f , v〉 + (g, q).

Remark. Additionally we assumea ∈ L∞(�)n ∩ H 1
0 (�)

n, diva= 0. In the context of linearization of
the Navier–Stokes problem the smoothness assumptions are reasonable ifa is a FE velocity field. The
second condition ensures that((a · ∇)u, v) is skew-symmetric. For FE functions this condition is usually
valid in a weak sense only and the skew-symmetry of the bilinear form can be lost. The simplest way
is to use the skew-symmetric form12((a · ∇)u, v)− 1

2((a · ∇)v,u). This modification does not alter our
analysis.

LetTh := {K} be a regular family of simplicial triangulations of�̄. We denote byhK and�K the
diameter of the minimal ball circumscribed on an elementK, respectively the maximal ball inscribed
in K. Suppose thatTh is shape-regular such thathK/�K�c for all K with constantc �= c(h). This
condition allows local mesh refinement but excludes an anisotropic refinement of layers. Assume that an
Th is an exact triangulation of̄�. For any element� ∈Th the local inner product inL2(�) is denoted by
(·, ·)�. For the global scalar product and norm inL2(�) we simply write(·, ·) and‖ · ‖.
Let Vh ⊂ V andQh ⊂ Q be conforming FE spaces to approximate velocity and pressure, consist-

ing of piecewise polynomials of degreel = 1,2, . . . andk = 0,1, . . .. Later on we use local inverse
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inequalities[4] onVh andQh for all elements� ∈Th:

‖�vh‖���uh
−1
� ‖∇vh‖�, ‖∇vh‖���uh

−1
� ‖vh‖�, ‖∇qh‖���ph

−1
� ‖qh‖�. (4)

The basic Galerkin finite element method for (3) reads: findUh={uh, ph} ∈Wh=Vh×Qh such that
a(Uh, Vh)= f (Vh) ∀Vh = {vh, qh} ∈Wh. (5)

We consider velocity/pressure approximationsVh × Qh, which areLBB-stable, i.e. the following
Ladyzhenskaya–Babuška–Brezzi condition is valid: there exists a positiveh-independent constant�0
such that

inf
qh∈Qh

sup
Vh∈Vh

(qh,div vh)
‖∇vh‖ ‖qh‖��0. (6)

Henceforth supx and infx are taken forx �= 0 if ‖x‖ appears in the denominator. Typical examples are
thePk+1/Pk elements of the Taylor–Hood family withk�1 which will be used in Sections 5–6.
TheGalerkin scheme(5)mayexhibit spurioussolutions if themesh is toocoarse inorder to resolve insta-

bilities stemming from locally dominating advection, i.e. themeshReynolds numbers Re�=‖a‖∞,�h��−1
are large. This can be seen even for solutions without sharp layers and very small values of�>0.
The standard stabilization methods for problem (3) are of the following type: findUh={uh, ph} ∈Wh

such that

ah(Uh, Vh)= fh(Vh) ∀Vh = {vh, qh} ∈Wh, (7)

ah(U, V ) := a(U, V )+
∑

�

(	�divu,div v)� +
∑

�

(L(U), ��
(V ))�, (8)

fh(V ) := f (V )+
∑

�

((	�g,div v)� + (f , ��
(V ))�). (9)

HereL denotes the differential operator on the left-hand side of momentum equation in (2). We shall
comment on a choice of
(V ) below. Constants�� and	� are some stabilization parameters, in general
they can be problem dependent.
The stabilized scheme (7)–(9) is built of residual type, i.e. the sum of additional terms vanishes for a

smooth solution of (2). This implies the Galerkin orthogonality

ah(U − Uh, Vh)= 0 ∀Vh ∈Wh. (10)

The Galerkin scheme (5) is a special case of (7) with	� = �� = 0. Another special case�� = 0, 	�>0
will be called grad-div stabilization since, for a constant set	� = 	, the corresponding term acts as an
additional term−	∇divu in (2).

3. Fully stabilized schemes with LBB-stable elements

In this section we consider the scheme (7)–(9) with


(V )= (a · ∇)v + ∇q.
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This choice can also be found in[6,10,17,20,22]. Other possible (“expensive”) variants are the GLS
method with
(V ) = L(V ) and the Douglas–Wang or algebraic subgrid-scale methods with
(V ) =
−L∗(V ) with the adjoint operatorL∗, cf. [7]. These methods can be analyzed using the norm

?V?a := (|[V ]|2a + �a‖q‖2)1/2, (11)

|[V ]|2a = �‖∇v‖2+ �‖v‖2+
∑

�

(	�‖div v‖2� + ��‖(a · ∇)v + ∇q‖2�). (12)

Gaining additional control of
∑

� ��‖(a · ∇)u + ∇p‖2� and of the incompressibility constraint, these
methods simultaneously stabilize spurious Galerkin solutions coming from dominating advection and
violation of the discrete LBB-condition. Therefore we call themfully stabilizedmethods. In particular,
they allow (not LBB-stable) equal-order approximationl = k�1 of velocity and pressure[10].
The rather general result in[22], Section 3 covers the analysis of scheme (7)–(9) with
(V ) =

(a · ∇)v + ∇q in the case of LBB-stable elements where typicallyl�k + 1�1. For convenience we
include here the analysis which simplifies the proofs in[22] and slightly improves results. We start with
a stability result.

Lemma 3.1. Assume the following condition on stabilization parameters

0����
1

2
min

{
h2�

�2u�
,
1

�

}
, 0���a2� �	�, (13)

with a� := ‖a‖L∞(�). Then there exists a positive constant�a �= �a(h, �) such that the bilinear form
ah(·, ·) defined in(7)–(9)satisfies

inf
Uh∈Wh

sup
Vh∈Wh

ah(Uh, Vh)

?Uh?a?Vh?a
��a. (14)

Parameter�a in Eq. (11) can be taken as

√
�a = c


√	+√�+√�CF + CF ‖a‖∞√

�+ �C2F



−1

. (15)

Proof. Given in the Appendix. �

Remark. A simplified analysis is possible using the fact that|[·]|a is a mesh-dependent norm onWh.
For arbitraryUh ∈ Wh we obtainah(Uh,Uh)� 1

2|[Uh]|2a; this already yields existence of the discrete
solution. �

The following continuity result reflects the effect of stabilization: TheL2-terms on the right-hand side
of (16) explode for�, � → 0 if 	� = 0.
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Lemma 3.2. In addition to the assumptions of Lemma3.1 let ��>0.Then for eachU ={u, p} ∈W with
�u|� ∈ L2(�)n ∀� ∈Th andVh = {vh, qh} ∈Wh it holds

ah(U, Vh)

?Vh?a
�C


|[U ]|a +

(∑
�

(��)
−1‖u‖2�

)1/2

+
(∑

�

2

�+ 	�
‖p‖2�

)1/2
+
(∑

�

��‖ − ��u+ �u‖2�
)1/2

 . (16)

Proof. The symmetric terms ofah are bounded by the product|[U ]|a|[Vh]|a. Furthermore, using inte-
gration by parts, we get

((a · ∇)u, vh)+ (divu, qh)�
(∑

�

(��)
−1‖u‖2�

)1/2(∑
�

��‖(a · ∇)vh + ∇qh‖2�
)1/2

,

− (p,div vh)�
(∑

�

2

�+ 	�
‖p‖2�

)1/2(
�‖∇vh‖2+

∑
�

	�‖div vh‖2�
)1/2

.

For the remaining terms it holds∑
�

��(−��u+ �u, (a · ∇)vh + ∇qh)�

�
(∑

�

��‖ − ��u+ �u‖2�
)1/2(∑

�

��‖(a · ∇)vh + ∇qh‖2�
)1/2

.

This implies the assertion (16) via the definition of?·?a and|[·]|a. �

Consider solutions{u, p} ∈ W and{uh, ph} ∈ Wh of the continuous and of the discrete problems,
respectively. The following error estimate forEh = {u− uh, p− ph} differs from the standard result for
equal-order FE pairs.

Theorem 3.1. Assume such scaling of(2) that ‖a‖∞ = O(1). The fully stabilized scheme(7)–(9)with
parameters

	� = 	 ∼ 1, �� ∼ h2�/	, (17)

satisfying(13)and with LBB-stable elements withl�k + 1,obeys the uniform error estimate

?Eh?2a�C
∑

�

{h2(k+1)� |p|2
Hk+1(�) + h2l� |u|2Hl+1(�)}, C �= C(�, �, h). (18)

Proof. Let {ûh, p̂h} ∈Wh be an appropriate interpolant for{u, p}. Consider
{�u, �p} := {u− ûh, p − p̂h}, {
u, 
p} := {ûh − uh, p̂h − ph}.
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Galerkin orthogonality (10) and (14) imply that there existsVh ∈Wh with

�a?{
u, 
p}?a?Vh?a�ah({
u, 
p}, Vh)=−ah({�u, �p}, Vh). (19)

We combine (19) and Lemma 3.2 withU = {�u, �p} to get

�a?{
u, 
p}?a� |[{�u, �p}]|a +
(∑

�

��‖ − ���u + ��u‖2�
)1/2

+
(∑

�

2

�+ 	�
‖�p‖2�

)1/2
+
(∑

�

�−1� ‖�u‖2�
)1/2

.

Then the triangle inequality?Eh?a�?{
u, 
p}?a+?{�u, �p}?a and standard local interpolation properties
together with assumption (13) imply that

?Eh?2a�C
∑

�

{
(�� + h2�(�+ 	�)

−1+ �ah
2
�)h

2k
� |p|2Hk+1(�)

+
(

�+ �C2Fh
2
� + 	� + ��

(
a2� +

�2

h2�
+ �2h2�

)
+ h2�

��

)
h2l� |u|2Hl+1(�)

}
. (20)

For LBB-stable elements withl�k+1 a reasonable balance of the right-hand side terms gives the choice
	� = 	 ∼ 1, �� ∼ h2�/	. The estimate (20) yields

?Eh?2a�C
∑

�

{(1+ �a)h
2(k+1)
� |p|2

Hk+1(�) + (�+ �h2� + 	+ h2�a2� )h2l� |u|2Hl+1(�)}.

Observing that�a remains bounded for� and� (provided that‖a‖∞ ∼ 1), and for sufficiently smallh
we arrive at (18). �

In the case ofu ∈ Hl+1(�)n andp ∈ Hk+1(�) several conclusions of Theorem 3.1 follow, which will
be confirmed by the numerical experiments in Section 5.
One is that the constantC in the error estimate (18) is uniform for arbitrary(�, �); of course, the

seminorms of the solution on the right-hand side can depend on(�, �). With a fixed� and� the estimate
gives optimal convergence order in terms ofk andl, see Experiments 5.1 and 5.2 in Section 5. Similar
results can be found in[22], Remark 3.4 and[20], Remark IV.3.6, but here we improved constant�a.
Let us compare (18) with the error estimate for theunstabilizedGalerkin scheme with LBB-stable

elements. In the interesting case of‖a‖∞ ∼ 1, ��h our analysis gives the following error estimate

‖Eh‖2g�C
∑

�

1

�+ �h2�
{h2(k+1)� |p|2

Hk+1(�) + h2(l+1)� |u|2
Hl+1(�)} (21)

with ‖{v, q}‖2g := �‖∇v‖2+ �‖v‖2+ �g‖q‖2 and�b ∼ �+ �C2F . Note that for the unstabilized method
the error is controlled in a weaker norm(‖Eh‖g�?Eh?a). Moreover the main effect of stabilization is
that the factor 1

�+�h2�
presented in the right-hand side of (21) disappears.



250 T. Gelhard et al. / Journal of Computational and Applied Mathematics 177 (2005) 243–267

The parameter design (17) for LBB-stable elements is simpler than the corresponding choice forequal-
order interpolation:

�̄� = �0h2�
�(1+ Re� +D�)

, 	̃� = 	0�(1+ Re� +D�) (22)

with D� = �h2� �
−1. Relations (22) can be derived from (20) forl = k�1. For equal-order elements it

provides a convergence order ofO(h
k+12 ) with respect to the norm|[·]|a in the advection-dominated case

Re��1, see[7,10,17,22].
Moreover, the use of (22) for FE pairs withl�k + 1 also gives a convergence order ofO(h

k+12 ) with
respect to the?·?a-norm. Comparing to (18), one notes an order reduction of1

2. This will be confirmed
in Experiments 5.1-2 in Section 5.
We remark that for elements withl�k+1 the role of grad-div stabilization becomesmore important. It

suppresses one more possible source of instability caused by a large pressure gradient in the momentum
equations in (2). The choice of	� ∼ 1 minimizes the pressure-dependent term on the right-hand side
of the error estimate. The main effect is seen in improving the velocity approximation, cf. also[19] and
Experiment 5.2 in Section 5.
So farnospecific�-dependenceof(u, p) is assumed.Anexisting regularity theory for theNavier–Stokes

problemconjectures that thenorms‖u‖l+1 and‖p‖l areof comparable size. If this is the case, thenelement
pairs withl > k + 1 are more appropriate than equal-order pairs withl = k. See also Experiment 5.1.
Finally, results of the section as well as those found in other papers demonstrate that fully stabilized

methods admit transparent numerical analysis. Nevertheless some critical comments are also found in
literature:

• The parameter design (22) for equal-order pairs is sensitive to the particular choice of constants�0,
	0. A wrong choice can lead to over- or under-stabilization[23]. On the other hand, from numerical
experiments in Section 5 we learn that the choice (17) for LBB-stable elements is less sensitive.

• The assembling of the corresponding algebraic system for these methods is very expensive, especially
for n= 3, see, e.g.,[23].

• The construction of efficient iterative solvers is complicated due to the velocity/pressure coupling in
the stabilization terms, see, e.g.,[16].

A few questions remain open for the fully stabilized scheme:

• The physical meaning of the term∑���‖(a · ∇)u + ∇p‖2� , by contrast with the classical SUPG term∑
���‖(a · ∇)u‖2� , is not clear.• In our analysis and other papers, e.g.[22], the control of theL2-norm of the pressure is lost for�,

� →+0 since�a tends to zero. This is not observed in the numerical experiments. It remains an open
question whether the analysis can be refined.

In Section 4 we discuss a simplification of the fully stabilized scheme. The natural question is whether
the PSPG terms can be omitted for LBB-stable elements.
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4. Reduced stabilized schemes

In this section we consider the scheme (7)–(9) with


(V ) := (a · ∇)v. (23)

As already mentioned this is a popular choice among practitioners, when LBB stable elements are used.
Indeed, numerical results with Taylor–Hood elements in Sections 5 and 6 indicate that the test function
��∇q in 
(V ) can be omitted. This leads us to

Problem (P). Is it possible to prove for the reduced scheme uniform error estimates similar to those in
Theorem3.1?

A positive answer to problem (P) was known for moderate values of�>0, cf. [17], Remark 4.2. Here
we improve this result using a modified technique. The analysis will be given with respect to the norm
?·?b defined as

?V?2b = |[V ]|2b + �b
∑

�

‖∇q‖2� , (24)

|[V ]|2b = �‖∇v‖2+ �‖v‖2+
∑

�

(	�‖div v‖2� + ��‖(a · ∇)v‖2�). (25)

Trying to analyze the reduced scheme in the same framework one soon finds that troubles come from
the term

∑
� ��(∇ph, (a · ∇)vh)�. This term disappears for piecewise constant pressure(k= 0), see[15],

but does not vanish for higher order pressure approximations(k�1). For the higher order approximations
a modified LBB stability condition is crucial in the further analysis. Unfortunately we are able to prove
this condition only under the following assumption:(

sup
�
h�

)(
inf
�
h�

)−1
�c. (26)

This condition excludes local mesh refinement.

Lemma 4.1. Suppose that� is such that aH 2-regularity result holds for the Stokes problem(cf. [8]).
Consider LBB-stable conforming FE pairs such thatQh ⊂ H 1(�), then the following condition holds

inf
ph∈Qh

sup
uh∈Vh

(divuh, ph)
‖∇ph‖‖uh‖��1>0, (27)

where�1 is independent ofh.

Proof. Given in the Appendix. �

Remark. Lemma 4.1 is applicable to the family of Taylor–HoodPk+1/Pk pairs with k�1. For the
particular case ofk = 1 the result can be found in[2]. Analysing the reduced SUPG method we found it
more convenient to use the condition (27), rather than (6).

The stability result is given in the following lemma. We set�b = �0h2.
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Lemma 4.2. Assume such scaling of(2) that‖a‖∞ ∼ 1.Let the following parameter conditions be valid:

��a2� �	��	; 0��� = �0h
2
� � min

{
�+ �h2��

−2
u

8a2�
; h

2
�

3�2u�
; 1
3�

}
(28)

with 	=O(1), a� := ‖a‖∞,�. Then there exist positive constants�b �= �b(h, �) and�b such that

inf
Uh∈Wh

sup
Vh∈Wh

ah(Uh, Vh)

?Uh?b?Vh?b
��b. (29)

The scheme(7)–(9)with (23)has a unique solutionUh = (uh, ph) ∈Wh.

Proof. Given in the Appendix. �

The main restriction on the SUPG parameter�� is hidden in (28):

�� = �0h
2
� �

�+ �h2��
−2
u

8a2�
. (30)

The condition (30) is fulfilled for moderate up to large values of�. This allows small up to moderate time
steps in a transient approach to the nonlinear model (1). Considering the worst case in (30) of�= 0, we
obtain the restriction

Re� := h�a�

�
�

1

2
√
2�0�

.

Note that the range of “allowed” Re� here is significantly larger than for the (unstabilized) Galerkin
method, where a satisfactory stability estimate requires Re� =O(1). Moreover, we do not see restriction
(30) in the numerical experiments presented in Section 5, which show uniform error estimates even for
�= 0 and� → 0. Hence the results of Lemma 4.2 might not be optimal for� → 0. On the other hand the
case of� = 0 and� → 0 might not be of a large physical relevance, since for large Reynolds numbers
flows are typically unsteady.
As the next step we obtain the following continuity estimate forah.

Lemma 4.3. For arbitrary U = {u, p} ∈ W with−��u + ∇p ∈ L2(�)n ∀� ∈ Th andVh ∈ Wh\{0} it
holds

ah(U, Vh)

?Vh?b
� |[U ]|b + 1√

�b
‖u‖ +

(∑
�

3a2�
�+ �h2� + a2� ��

‖u‖2�
)1/2

+
(∑

�

3

�+ �h2� + 	�
‖p‖2�

)1/2
+
(∑

�

��‖ − ��u+ �u+ ∇p‖2�
)1/2

. (31)

Proof. Follows with the same arguments as the proof of Lemma 3.2.�

The goal is to derive error estimates and the design of the stabilization parameter sets{��} and{	�}.
Let {u, p} ∈ W and{uh, ph} ∈ Wh be the solutions of the continuous and of the discrete problems,
respectively.
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Theorem 4.1. Suppose that� is such that aH 2-regularity result holds for the Stokes problem. Consider
LBB-stable FE pairs such thatQh ⊂ H 1(�). Assume condition(26),a scaling of equation (2) such that
‖a‖∞ ∼ 1 and let the parameters

	� = 	 ∼ 1, �� ∼ h2�/	, �b ∼ h2 (32)

satisfy conditions(28).Then for the errorEh = {u− uh, p − ph} the uniform estimate holds

?Eh?2b�C
∑

�

(h2(k+1)� |p|2
Hk+1(�) + h2l� |u|2Hl+1(�)), C �= C(h, �, �). (33)

Proof. We follow the lines of the proof of Theorem 3.1, also using the notation introduced there. Using
Lemmas 4.2 and 4.3 withU = {�u, �p}, we get

�b?{
u, 
p}?b� |[{�u, �p}]|b +
1√
�b
‖�u‖ +

(∑
�

��‖ − ���u + ��u + ∇�p‖2�
)1/2

+
(∑

�

3

�+ �h2� + 	�
‖�p‖2�

)1/2
+
(∑

�

3a2�
�+ �h2� + a2� ��

‖�u‖2�
)1/2

.

The triangle inequality?Eh?b�?{
u, 
p}?b +?{�u, �p}?b and the standard interpolation properties, to-
gether with the assumptions����Ch2� and����C from (28), imply that

?Eh?2b�C
∑

�

{(
�� + �b + h2�

�+ �h2� + 	�

)
h2k� |p|2Hk+1(�)

+
(

�+ �h2� + 	� +
h2�

�b
+ ��a2� +

a2�
�+ �h2� + a2� ��

h2�

)
h2l� |u|2Hl+1(�)

}
. (34)

Recalling the usual conditionl�k + 1 for LBB-stable pairs, the estimate (34), together with the design
conditions (32) imply the desired result.�

Remark. Another possible or further reduction of stabilization terms give rise to “classical” SUPG-
stabilization(��>0, 	�= 0) or grad-div stabilization(��= 0, 	�>0). It is not our intention here to study
these schemes in detail. We remark that the Lemmas 3.1 or 4.2 are not applicable for the case	� = 0. If
��=0 the stability result of Lemma 3.1 remains valid, whereas Lemma 3.2 requires minor modifications.
Summarizing some properties of the reduced schemes, we note the following.

• The assembling process of the discrete systems is cheaper than for the fully stabilized schemes con-
sidered in Section 3.

• The existing analysis of the scheme shows explicit control of the classical SUPG velocity error∑
�

h2�‖(a · ∇)eu‖2� �C
∑

�

(h2(k+1)� |p|2
Hk+1(�) + h2l� |u|2Hl+1(�)).

We were not able to show this result for the fully stabilized schemes.
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• The obtained stability estimates are not completely satisfactory yet, however they are significantly
better than for the unstabilized Galerkin method.

5. Numerical results for the Oseen problem

Here we apply the packageFEMLABTM 2.3 which contains thePk+1/Pk pairs of the Taylor–Hood
family with k�1 on simplicial meshes.FEMLABTM provides SUPG-stabilization in the sense of
Section 3 with parameters�� close to (22) but without grad-div stabilization, i.e.	� = 0. Therefore we
addedMATLAB routines with different stabilization terms. Herewe present some numerical experiments
for the linearized problem (2).
We consider two examples on an unstructured quasi-uniform triangular mesh in the unit square� =

(0,1)× (0,1). The right-hand sidesf and the Dirichlet data of problem (2) are chosen such that the exact
solutions are given by

P1: u(x)= (sin(�x1),−�x2 cos(�x1))
T , p(x)= sin(�x1) cos(�x2)

P2: u(x)= (1− h(x2, �),0)T , p(x)=√�x1h(x2, �)

with h(x2, �) := exp −x2√�
+ exp −(1−x2)√

�
. We seta(x) := u(x) and�= 0.

Note that the solution P1 is�-independent, whereas the�-dependent solution P2 mimics a “plug-flow”
in a channel with exponential layers for 0< �>1. The seminorms of the solution of P2 appearing on the
right-hand side of the error estimates are�-dependent as|u|l+1 ∼ �−1/2(l+1/2), |p|k+1 ∼ �−1/2(k−1/2).

Experiment 5.1. Theoretical vs. numerical order for the full norm.

For the fully stabilized scheme we compare the numerical results for problem P1 to the error estimate
w.r.t. the full norm?·?a as predicted by Theorem 3.1. (For results for problem P2 see Experiment 5.3.)
Here we consider the viscosities� = 10−2i , i ∈ {1,2,3,4}. Results are given for theP2/P1 andP4/P3
elements.
We start with the stabilization parameters according to Theorem 3.1. The results for the�-independent

solution of P1 inFig. 1 (left) confirm both, the robustness w.r.t.� and the predicted error order, of
the scheme. Moreover, one observes the considerable improvement with higher order elements. It is
worthwhile commenting that theP2/P1 element gives much better results than the stabilizedP1/P1 pair
and compares well toP2/P2.
Then we compare the new parameter design conditions (17), cf. Theorem 3.1, to the standard equal-

order design (22). InFig. 1(right) wepresent the results for the equal-order design (22)w.r.t. the norm?·?a
for problem P1. We observe the predicted order reduction of1

2. For other norms we refer to Experiment
5.2.
Finally we compared the theoretical error estimates for the reduced stabilized scheme, cf. Theorem

4.1, w.r.t.?·?b to the numerical results for P1.We omit the results here since there is no visible difference
to the results for the fully stabilized scheme.

Experiment 5.2. Fully stabilized vs. reduced stabilized scheme.
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Fig. 1. Fully stabilized scheme for PI. Left: New parameter designP2/P1 (full line), P4/P3 (broken line). Right: Equal-order
parameter designP2/P1 (full line), P4/P3 (broken line).

1/64 1/32 1/16 1/8 1/4

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

||u
−u

h|
| 0

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2
||u

−u
h|

| 0

hmax

1/64 1/32 1/16 1/8 1/4

hmax

 
 
 
 

Fig. 2. Fully (left) and reduced (right) stabilized schemes for P1 withP2/P1 (full line) and P4/P3 (broken line) schemes:
Convergence of‖u− uh‖0.
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Fig. 3. Fully (left) and reduced (right) stabilized schemes for P1 withP2/P1 (full line) and P4/P3 (broken line) schemes:
Convergence of‖∇(u− uh)‖0.

For the fully and reduced stabilized schemes and problem P1 we consider the convergence w.r.t.
‖u − uh‖0, |u − uh|1, ‖p − ph‖0. In Figs. 2–4we report the results for theP2/P1 andP4/P3 pairs,
respectively, and the viscosities�= 10−2i , i ∈ {1,2,3,4}. Furthermore we use the design (32).
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Fig. 5. Fully stabilized (left) and reduced stabilized (right) scheme with new parameter design withP2/P1 for P2.

First of all, we see that the results for both schemes are almost the same with the exception of very
rough meshes. More precisely, the results for|u− uh|1 and‖p − ph‖0 are in agreement with the theory
of Sections 3–4. Notice that the analysis did not predict the optimal orderhk+1 for ‖u − uh‖0 which is
seen inFig. 2. Moreover, we observe convergence results for‖div(u− uh)‖0 of, at least, orderhk.
Furthermore, we repeated the computations with the equal-order parameter design (22). We observed

(as in Experiment 5.1) the order reduction of12 for the velocity norms considered here.
The results confirm our conjecture that the PSPG terms can be omitted.

Experiment 5.3. Resolution of boundary layers for P2

For the�-dependent solution of P2, the predicted rates can be seen for sufficiently fine meshes with

h�c
√

� only. Theorem 3.1 predicts for thePk+1/Pk pair that?Eh?a�C�−
1
4 (h�−

1
2 )k+1 . On the other

hand, the error?Eh?a remains uniformly bounded w.r.t.�, seeFig. 5 (left). Moreover, we observe as
for problem P1 that the reduced scheme gives almost identical results, seeFig. 5(right). Based on these
results, we consider the fully stabilized scheme with parameter design (17).
More interesting is a closer look at the pointwise convergence. InFig. 6we present cross-sections of

the first velocity componentuh,1(12, x2) with � = 10−8. The Galerkin scheme exhibits spurious global
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Fig. 6. Fully stabilized scheme for problem P2. Left:P2/P1. Right:P4/P3.

oscillations (not shown)whereas thestabilizedschemedrastically reducessuchoscillations.Thestabilized
scheme generates a solution being well-known from SUPG-stabilization for scalar advection–diffusion
problems. The discrete solution is accurate away from the layers but has restricted oscillations around
the layer.
As a remarkable andwell-known fact we emphasize that the “wiggles” around the layer are significantly

reduced with increasing orderk. The best way to avoid the wiggles is an anisotropic mesh refinement.
Nevertheless the gradient of the solution at the boundary is remarkably sharp. In contrast with problem
P1, the SUPG stabilization is much more important than grad-div stabilization.

Experiment 5.4. Influence of� ∼ 1
�t for P1.

So far we considered the Oseen equations with�=0. Here the influence of� for the reduced stabilized
scheme is studied. We repeated the computations for problem P1 with� ∈ [10−3,103] and fixedhmax=
1
16. In order to mimic the effect of a time stepping procedure for the computation of the stationary
Navier–Stokes problem we replaced the right-hand side byf + �a; so the exact solution remains the
same. Controlling the norm?·?b, we obtain inFig. 7 robustness from� → 0 up to moderately large
values. This result confirms our conjecture that the result of Theorem 4.1 can be extended to� → 0.

Experiment 5.5. Sensitivity w.r.t. tuning parameters for P1.

The stabilized schemes with the parameter choices (17) and (32) depend only on a single “tuning”
parameter	. In Fig. 8we present the results w.r.t. the norm?·?a for example P1 on a moderate mesh
with hmax= 1

32 using	� = 	= 	0, �� = h2�/	0 with varying	0 and orderk of the Taylor–Hood pairs. The
robustness of the new parameter design (17) is confirmed. Moreover, we found the choice	 ∼ k to be an
appropriate one.

6. Numerical results for the nonlinear case

In this sectionwedemonstrate the feasibility of theapproach to theNavier–Stokesmodel (1) asproposed
in Section 2. The solutions of the benchmark problems are�-dependent.We apply the semi-implicit Euler
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scheme for the time discretization. Then the stabilized schemes of Sections 3–4 are used to solve the
auxiliary Oseen problems within each time step.

Example 6.1. (Driven cavity).

Consider problem (1) in the domain� = (0,1)2, with f = (0,0)T and Dirichlet datau|�� = (1,0)T
if x2 = 1 andu|�� = (0,0)T if x2<1. We use a time step�t = 0.1 and a spatial discretization using
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Fig. 9. Isolines of the stream-function for the driven cavity problem for Re=7.500 with the reduced stabilized scheme: full flow
(upper right) and details of the recirculation zones.

the Taylor–Hood elementsP2/P1 andP4/P3 on a quasi-uniform mesh withhmax= 1
96 andhmax= 1

32,
respectively.
We compared our results for Re∈ {100,400,1.000,3.200,7.500,10.000}with those given in[13] for

lower order finite difference schemes but onmuch finer meshes up toh= 1
256. The results are comparable,

for details cf.[12]. Moreover, we see a nice resolution of the boundary layers which are less sharp as in
Problem P2 in Section 5.
As an example, we present results with the reduced stabilized schemes for Re= 7.500 which is be-

low the first Hopf bifurcation for Re≈ 8.018, cf.[1] . The isolines of the stream-function for the full
flow together with details of the secondary and tertiary recirculation zones in the corners are shown in
Fig. 9 for h = 1

48. In Table 1we give the position of the center of the primary vortex of the cavity flow
together with the value of the stream function. InTable 2we give the position and values of the mini-
mum ofu1(0.5, x2) and of the minimum and maximum ofu2(x1,0.5). First of all, we observe a good
agreement of the results on moderately fine meshes with the reference solutions of[4,13,18]on much
finer grids. Moreover, we see that the results for the fully stabilized and the reduced scheme are
very close.
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Table 1
Driven cavity problem with Re= 7.500: Position and stream function of main vortex
Reference Method � x1 x2

(a)1 Fully stab. scheme FEP2/P1, hmax= 1/96 0.1177 0.5129 0.5337
(a)2 Reduced scheme FEP2/P1, hmax= 1/96 0.1176 0.5129 0.5337
(b) Red. stab. scheme FEP4/P3, hmax= 1/32 0.1151 0.5166 0.5310
(c) Ref.[18] FD, h= 1/512 0.1153 0.5137 0.5321
(d) Ref.[13] FD, h= 1/256 0.1200 0.5117 0.5322

Table 2
Driven cavity problem with Re= 7.500: Minimum value ofu1(0.5, x2) and minimum and maximum values ofu2(x1,0.5)

Reference/method umin1 xmin2 umax2 xmax1 umin2 xmin1

(a)1 Fully stab.P2/P1, h= 1/96 −0.4322 0.0620 0.4343 0.0685 −0.5535 0.9638
(a)2 ReducedP2/P1, h= 1/96 −0.4322 0.0620 0.4343 0.0685 −0.5535 0.9638
(b) ReducedP4/P3, h= 1/32 −0.4213 0.0628 0.4225 0.0694 −0.5396 0.9639
(c) Ref.[4] FD, h= 1/512 −0.4266 0.0625 0.4274 0.0684 −0.5455 0.9648
(d) Ref.[13] FD, h= 1/256 −0.4359 0.0625 0.4403 0.0703 −0.5522 0.9609

Example 6.2. (Backward facing step).

Finally we consider the two-dimensional flow in a channel with a backward facing step, see[19]. We
employed theh : H = 1 : 2 configuration (whereH is the height of the channel andh the height of
the step) with parabolic velocity profile at the inlet. At the outlet we prescribe the usual “do-nothing”
condition for the stress tensor. For the remaining boundary of the channel we prescribe no-slip. The flow
corresponds to Re= 800.
We applyP2/P1 Taylor–Hood elements on an unstructured quasi-uniform mesh withhmax= 1/32

and a time step�t = 0.4 in the interval 0� t�T = 200. InFig. 10one finds the isolines of the stream
function and of the pressure of the stationary solution att = 200 for the reduced stabilized scheme with
h= 1/16. The fully stabilized scheme (not shown) gives almost the same picture. Moreover we compare
in Table 3the results for some critical Re-dependent parameters of the flow with reference values found
in literature. The results for the fully stabilized and the reduced schemes are again identical and in very
good agreement with reference solutions: an FD solution withh = 1/40 in [11], an FD solution on a
refined mesh with about 280.000 nodes and Richardson extrapolation in[18] and a spectral element
method in[14].

7. Conclusions

Mixed problems of Oseen type appear as auxiliary problems within the solution of the Navier–Stokes
problem. The application of conforming LBB-stable FE spaces requires a stabilization in case of large
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Fig. 10. Isolines of stream function and pressure for backward facing step problem with Re= 800: reduced stabilized scheme
with h= 1/16.

Table 3
Numerical results for the backward facing step problem with Re= 800. (xc, yc)-position of the bottom vortex center,
r1-reattachment length of the bottom vortex,r2-left separation point of the upper vortex,r3-right separation point of the
upper vortex

Reference Method (xc, yc) r1 r2 r3

Fully stab. FEP2/P1, hmax= 1/32 (3.40,0.30) 6.10 4.86 10.48
Reduced stab. FEP2/P1, hmax= 1/32 (3.40,0.30) 6.10 4.86 10.48
Ref. [11] FD, hmax= 1/40 (3.35,0.30) 6.10 4.85 10.48
Ref. [18] FD, Extrapol. (3.40,0.30) 6.09 4.82 10.47
Ref. [14] Spectr. element (3.39,0.31) 6.10 4.85 10.48

Reynolds numbers Re. Stability without sacrificing accuracy can be reached by SUPG stabilization with
and without pressure stabilization (PSPG) however with the grad-div stabilization.
The design of the stabilization parameters is simpler (and in practice less sensitive) for LBB-stable

elements than for equal order interpolation. For the fully stabilized scheme studied in Section 3 the
proposed choice leads (for smooth Re-independent solutions) to error estimates being robust w.r.t.
to Re and quasi-optimal for fixed Re. The parameter design known from equal-order interpolation
leads to suboptimal convergence. Numerical experiments confirm the theoretical results for
smooth Re-independent solutions; reasonable results were obtained also for Re-dependent
solutions.
An open problem is whether PSPG can be omitted for LBB-stable elements. Such a reduced stabilized

scheme gives numerical results being almost identical to the fully stabilized scheme. In the paper a
previous stability result of this scheme is improved. The numerical results make us to believe that the
analysis can be improved even for arbitrary small values of��0 and�>0.
The approach considered remains feasible for calculation of steady-state solutions of theNavier–Stokes

model formoderate and highRe-numbers. The construction of consistent higher-order timediscretization,
combined with stabilized FE methods, for the nonstationary problem and the development of efficient
solvers is left to future research. Another important open question is the extension of the theory to
anisotropically refined meshes in boundary layers.
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Appendix. Proof of stability results

Proof of Lemma 3.1. Fix an arbitraryUh ∈ Wh. Below we findVh ∈ Wh satisfying (14). We use the
following abbreviations:

A2 := �‖∇uh‖2+ �‖uh‖2, B2 := ‖ph‖2, Z2 :=
∑

�

	�‖divuh‖2� ,

X2 :=
∑

�

��‖(a · ∇)uh + ∇ph‖2� , Y 2 :=
∑

�

��‖ − ��uh + �uh‖2� ,

hence|[Uh]|2a = A2+X2+ Z2. In the first step we setVh = Uh in (8), thus
ah(Uh,Uh)�A2+X2+ Z2−XY.

We get from inverse inequalities and (13) thatY �A; thenYoung’s inequality implies

ah(Uh,Uh)�
1

2
(A2+X2+ Z2). (35)

Condition (6) yields the existence ofzh ∈ Vh with (div zh, ph)��0‖ph‖Q‖zh‖V .We can assume‖zh‖V=
‖ph‖Q. Consider now

ah(Uh, (zh,0))= (ph,div zh)−
4∑
i=1

Ti��1B
2−

4∑
i=1

Ti.

Denote	=max�	�. Standard inequalities, integration of the advective term by parts, and (13) imply

T1= �(∇uh,∇zh)+ (�uh, zh)− (uh, (a · ∇)zh)

�


√�+√�C2F +

CF ‖a‖∞√
�+ �C2F


AB,

T2=
∑

�

	�(divuh,div zh)��√	ZB,

T3=
∑

�

��(−��uh + �uh, (a · ∇)zh)�� max
�
(
√

��a�)AB�√	AB,

T4=
∑

�

��((a · ∇)uh + ∇ph,a · ∇zh)�� max
�
(
√

��a�)XB�√	XB.

We set�a := √�+√�C2F + CF ‖a‖∞√
�+�C2F

+√	 and useYoung’s inequality; hence

ah(Uh, (−zh,0))��20− �a(A+X + Z)B�
1

2
�0B

2− 3�2a
�0
(A2+X2+ Z2). (36)
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SettingVh := Uh + �a(−zh,0) with �a = �0
12�2a

, �a := 2�0�a, we find by (35), (36)

ah(Uh, Vh)� min

(
1

2
− 3�a�

2
a

�0
; �0�a
2�a

)
(|[U ]|2a + �aB

2)�
1

4
?Uh?2a. (37)

Furthermore, we obtain with (13)

?(−zh,0)?2a = �‖∇zh‖2+ �‖zh‖2+
∑

�

(��‖a · ∇zh‖2� + 	�‖div zh‖2�)

�(�+ �C2F + 2	)‖∇zh‖2�2�2aB2.
By definition of�a and�a we have 6�2a�

2
a� 1

12�a; hence

?Vh?2a�2(?Uh?2a + �2a?(−zh,0)?2a)�
13

6
?Uh?2a,

which together with (37) implies (14) with�a = 1
4

√
6
13. Finally we note that parameter�a can be set as

given in (15). The lemma is proved.�

Proof of Lemma 4.1. Denote bySh(�) : Qh → Qh an operator defined asSh(�)= BA(�)−1B∗, where
operatorsA(�) : Vh→ Vh andB : Vh→ Qh are defined by the relations

(A(�)uh, vh)= �(∇uh,∇vh)+ (uh, vh) ∀uh, vh ∈ Vh,

(Buh, qh)= (divuh, qh) ∀uh ∈ Vh, qh ∈ Qh.
Let�−1h be a solution operator for the discrete Poisson problem with the Neumann boundary conditions:
for anyqh ∈ Qh

rh = �−1h qh iff − (∇rh,∇�)= (qh, �) ∀� ∈ Qh. (38)

The corollary 4.1 from[3] supplies us with the estimate

c0((h
2I − �−1h )

−1ph, ph)�(Sh(h2)ph, ph) ∀ph ∈ Qh. (39)

c0 is a positive constant independent ofh, I is the identity operator. It is straightforward to check for
arbitraryph ∈ Qh

(Sh(h
2)ph, ph)= sup

uh∈Vh
(ph, Buh)2

(A(h2)uh,uh)
= sup

uh∈Vh
(divuh, ph)2

h2‖∇uh‖2+ ‖uh‖2

� sup
uh∈Vh

(divuh, ph)2

‖uh‖2 . (40)

On the other hand (27) is equivalent to the inequality

�1‖∇ph‖� sup
uh∈Vh

(divuh, ph)
‖uh‖ ∀ph ∈ Qh.
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Therefore, thanks to (39) and (40) it is sufficient to prove that

c1‖∇ph‖2�((h2I − �−1h )
−1ph, ph) ∀ph ∈ Qh (41)

with somec1>0 independent ofh. To prove (41) let us fix arbitraryph ∈ Qh and denoteqh = (h2I −
�−1h )

−1ph, then by definition

h2qh − �−1h qh = ph. (42)

Let rh = �−1h qh, yieldingrh = h2qh − ph. Substituting this into (38) and choosing�= ph, we get
−h2(∇qh,∇ph)+ ‖∇ph‖2= (qh, ph).

This implies

(qh, ph)�
1

2
‖∇ph‖2− 1

2
h4‖∇qh‖2. (43)

Now we take a scalar product of (42) andqh to get

(ph, qh)= h2‖qh‖2+ ‖qh‖2−1�h2‖qh‖2.
Due to the inverse inequality (4) this leads to

(ph, qh)��−1p h4‖∇qh‖2. (44)

We combine (43) and (44) to obtain

(ph, qh)�(2+ �p)
−1‖∇ph‖2.

The latter estimate implies (41) withc1= (2+ �p)
−1. �

Proof of Lemma4.2. Theproof follows the lines of that of Lemma3.1; sowehighlight themodifications.
We use the following modified abbreviations:

X̃2 :=
∑

�

��‖(a · ∇)uh‖2� , Ỹ 2 :=
∑

�

��‖ − ��uh + �uh + ∇ph‖2� ,

andB̃2 := ‖∇ph‖2; hence|[Uh]|2b = A2+ X̃2+ Z2. Denote�=max���.

In the first step we setVh=Uh in (8), thusah(Uh,Uh)� |[Uh]|2b−X̃Ỹ .We have, via triangle inequality,
inverse inequalities (4), and using (28),

Ỹ 2�3
∑

�

��(‖��uh‖2� + ‖�uh‖2� + ‖∇ph‖2�)�A2+ 3�B̃2, (45)

hence

ah(Uh,Uh)�
1

2
|[Uh]|2b −

3�

2
B̃2. (46)
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Lemma 4.1 implies the existence ofzh ∈ Vh with (div zh, ph)��1‖∇ph‖‖zh‖ with �1 �= �1(h). We can
assume‖zh‖ = ‖∇ph‖ = B̃. Consider now

ah(Uh, (zh,0))= (ph,div zh)−
4∑
i=1

T̃i��1B̃
2−

4∑
i=1

T̃i .

Standard inequalities and condition (28) imply

T̃1 := T1� max
�



√

�+ �h2��
−2
u �u

√
2

h�
+ a�

√
2√

�+ �h2��
−2
u


AB̃

T̃2 := T2� max
�

√
	��u
h�

ZB̃

T̃3 :=
∑

�

��(−��uh + �uh + ∇ph, (a · ∇)zh)�� max
�

√
��a��u
h�

Ỹ B̃

� max
�

√
	��u
h�

AB̃ +max
�

√
3��a��u
h�

B̃2� max
�

√
	��u
h�

AB̃ + 1

4
�1B̃

2,

T̃4 :=
∑

�

��((a · ∇)uh, (a · ∇)zh)��X̃max
�

√
��a��u
h�

B̃� max
�

√
	��u
h�

X̃B̃.

In the last estimate of̃T3weused inequality (45) andasufficiently smallh�.Wesummarize theseestimates,
set

�b := max
�



√

�+ �h2��
−2
u �u

√
2

h�
+ a�

√
2√

�+ �h2��
−2
u

+√	�h
−1
� �u


 ,

and useYoung’s inequality

ah(Uh, (−zh,0))��1B̃
2− �b(A+ X̃ + Z)B̃ − 1

4
�1B̃

2

�
1

2
�1B̃

2− 3

�1
�2b|[Uh]|2b. (47)

DefineVh := Uh + �b(−zh,0) with some�b >0, then via (46), (47)

ah(Uh, Vh)�
(
1

2
− 3�b�

2
b

�1

)
|[Uh]|2b +

�1�b − 3�
2

B̃2

� min

{
1

2
− 3�b�

2
b

�1
; �1�b − 3�

2�b

}
(|[Uh]|2b + �B2). (48)
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We have to find appropriate values of�b and�b. (28) implies

�b� max
�



√

�+ �h2��
−2
u �u

√
2

h�
+ 1

2
√

��
+
√

	��u
h�


 � max

�

c

h�
, (49)

where we use that�= �0h2� . Fixing �b�
2
b = �1

12, we obtain on a quasi-uniform mesh that

�1�b − 3�=
�21
12�2b

− 3��
�21h

2
min

12c2
− 3�0h2max�

(
�1c1
12c2

− 3�0
)
h2 =: �̃1h2.

A proper choice of�0 gives a positivẽ�1. Together with�b = 2�̃1h2 we observe

ah(Uh, Vh)�
1

4
?Uh?2b. (50)

Furthermore the following estimate holds

?(−zh,0)?2b = �‖∇zh‖2+ �‖zh‖2+
∑

�

[��‖(a · ∇)zh‖2� + 	�‖div zh‖2� ]

� max
�

(
��2u
h2�
+ �+max

�

(
��a2� �

2
u

h2�
+ 	��

2
u

h2�

))
B̃2��2bB̃

2.

By the definition of�b we have�
2
b�
2
b = �1

12�b, and hence

?Vh?2b�2?Uh?2b + 2�2b?(−zh,0)?2b�2
(
1+ �1�b

12�b

)
?Uh?2b.

Moreover, we obtain�1�b = �21
12�2b

� �21h
2

12c2
and

1+ �1�b
12�b

�1+ �21h
2

12c2 · 2�̃1h2
= 1+ �21

24c2�̃1
=: Q2.

This, together with (50), implies the desired estimate (29) with�= 1
4
√
2Q
. �
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