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Abstract

We study stabilized FE approximations of SUPG type to the incompressible Navier—Stokes problem. Revisiting
the analysis for the linearized model, we show that for conforming LBB-stable elements the design of the stabilization
parameters for many practical flows differs from that commonly suggested in literature and initially designed for
the case of equal-order approximation. Then we analyze a reduced SUPG scheme often used in practice for LBB-
stable elements. To provide the reduced scheme with appropriate stability estimates we introduce a modified LBB
condition which is proved for a family of FE approximations. The analysis is given for the linearized equations.
Numerical experiments for some linear and nonlinear benchmark problems support the theoretical results.
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1. Introduction

We consider the nonstationary incompressible Navier—Stokes problem: find a velacity and a
kinematic pressurg(z, X) from

oU—vAU+ (U-V)U+Vp=Ff, divu=0 inQx (0,T] Q)

in a bounded domaif € R", n = 2, 3 with given force field and viscosity > 0. Boundary and initial
conditions should be additionally supplied. Implicit time integration and linearization often lead to the
generalized Oseen problem

—vAU4au+ (@-V)u+Vp=Ff, divu=g ing, 2)

with a reaction termx ~ 1/t related to the time stefy.

Finite element (FE) methods for (1) and (2) may suffer from two sources of instabilities. One is a
possible incompatibility of pressure and velocity FE pairs. A remedy is a choice of FE spaces passing
the inf-sup or LBB condition or the use of pressure stabilizing techniques. Another source of instabilities
stems from dominating advection for large Reynolds numbers Re. There exist several variants of stabilized
FE methods of arbitrary order which combine stability and accuracy, e.g. the streamline upwind/pressure
stabilizing Petrov—Galerkin (SUPG/PSPG) method, the Galerkin/Least-squares (GLS) and algebraic sub-
grid scale (ASGS) techniques, see, §410,20,22,23]These methods simultaneously suppress spurious
oscillations caused by both, dominating advection and nonLBB-stable FE spaces. In particular, the popular
equal-order velocity-pressure approximation is allowed.

At the same time the combination of LBB-stable velocity-pressure FE pairs with stabilization is often
used in practice, see e.[21,23] However it is rarely considered in numerical analysis. The goal of
the present paper is to extend the analysigL@f for conforming LBB-stable FE pairs and to provide
numerical results. Below we comment on the main observations and results.

We start withfully stabilizedschemes. For problem (2) it includes SUPG/PSPG and grad-div stabi-
lization. A rather general result by Tobiska/Verfurth[#2] is applicable to this case. Under reasonable
regularity assumptions on the solution (§£4.0,17,20] the design of the stabilization parameters differs
for LBB-stable elements from that of equal-order (LBB-unstable) pairs. The resulting error estimate is
uniform with respect te andx. It shows a quasi-optimal convergence order, whereas the standard choice
of parameters (optimal for equal-order pairs) leads to an order reduct%m of

For convenience we include here the analysis which simplifies the prof@2]iand slightly improves
results for conforming LBB-stable elements. The analysis does not exploit any specific information
aboutv-dependence of the solution. Our numerical results perfectly match the theoretical predictions
for smooth,v-independent solutions. Moreover, numerical experiments on guasi-uniform meshes with
several typical flow problems (2) and (1) witkdependent solutions are performed to verify conclusions
for more practical situations.

A natural question is whether pressure stabilization is necessary for LBB-stable FE pairs. So we
consider the SUPG scheme without PSPG stabilization. rekiscedscheme produces less additional
terms; itis often used by practitioners. In our numerical experiments we found almost identical results for
the reduced and the fully stabilized schemes. However a convincing numerical analysis for the reduced
scheme is missing. The analysis[i¥] follows the same framework of fully stabilized methods but
gives unsatisfactory stability estimates. Here we improve the analysis usiglifiedinf-sup (LBB)
condition, cf. Lemma 4.1. This condition was known for the simplest Taylor-Hood elemeffi2] séée
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extend the result to a family of LBB-stable elements with additional assumption on domain regularity
and for quasi-uniform meshes. This result allows to prove uniform stability and robust error estimates
for the reduced SUPG scheme if- ah?>h? (cf. condition (28)). If this condition fails to be true, then

a robust convergence analysis for this scheme is still an open problem. Numerical experiments indicate
robustness of the proposed scheme for this case as well.

Problem (2) appears as auxiliary problem within an implicit time integration of the unsteady Navier—
Stokes equations (1). This approach s also feasible for a problem with a stationary solution. In experiments
we apply it to solve typical benchmark problems (driven cavity, backward facing step). These results
indicate that the approach to the linear case remains meaningful in the nonlinear case too. The case of
time-accurate solution of (1) will be considered elsewhere; see also elaborations for a stabilized equal-
order method in the recent pagét.

The remainder of the paper is organized as follows: Section 2 presents various FE schemes for the
linearized equations. Section 3 is devoted to the case of fully stabilized schemes with LBB-stable pairs.
The analysis for reduced stabilized schemes is then presented in Section 4. Numerical results for the
linearized and nonlinear problems are given in Sections 5 and 6.

2. Stabilized FEM for the linearized model

We start with a variational formulation of (2) assuming homogeneous Dirichlet boundary conditions
foru. SetV = H(}(Q)” andQ = L%(Q). A variational formulation of (2) reads: givéne H1(Q),
g€ 0,findU :={u, p} e W:=V x Q such that

aU,V)=f(V) VV:i={v,q} eW, 3)
a(U, V) :=v(Vu, VV) + (aUu + (a- V)u, V) — (p, divv) + (g, divu),
fV):=(f,v)+(g.9).

Remark. Additionally we assume € L*(Q)" N Hol(Q)”, diva = 0. In the context of linearization of

the Navier—Stokes problem the smoothness assumptions are reasomeable iFE velocity field. The
second condition ensures thgh - V)u, v) is skew-symmetric. For FE functions this condition is usually
valid in a weak sense only and the skew-symmetry of the bilinear form can be lost. The simplest way
is to use the skew-symmetric foré{(a- Vu,v) — %((a- V)v, u). This modification does not alter our
analysis.

Let 7, := {K} be a regular family of simplicial triangulations &f We denote byix andp, the
diameter of the minimal ball circumscribed on an elemg&ntespectively the maximal ball inscribed
in K. Suppose that, is shape-regular such thak /px <c for all K with constantc # c¢(h). This
condition allows local mesh refinement but excludes an anisotropic refinement of layers. Assume that an
77, is an exact triangulation at. For any element € .7, the local inner product i.%(z) is denoted by
(-, -),. For the global scalar product and normZif(Q) we simply write(-, -) and|| - ||.

LetV, c V andQ;, C Q be conforming FE spaces to approximate velocity and pressure, consist-
ing of piecewise polynomials of degrée=1,2,... andk =0, 1, .... Later on we use local inverse
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inequalitieqd4] onV, andQj, for all elementg € 7:

AVl <, IVl IV ORIl < b Hlvrlle, 1Vl <uphs Hignll. 4)

The basic Galerkin finite element method for (3) reads: &ipa={u;, pr} € W, =V, x Qp such that
aUp, Vi) = f(Vi)  YVi={Vih,qin} € W, 5)

We consider velocity/pressure approximatiovis x Q,, which areLBB-stable i.e. the following
Ladyzhenskaya—BabuSka—Brezzi condition is valid: there exists a pokiiiveependent constarft,
such that

di
inf (qn, divvy)

= Po- (6)
0€0n Vyev, IVVRllllgnl

Henceforth supand inf, are taken foxx # O if ||x| appears in the denominator. Typical examples are
the P, 1/ P, elements of the Taylor-Hood family with> 1 which will be used in Sections 5-6.

The Galerkin scheme (5) may exhibit spurious solutions if the meshistoo coarse in ordertoresolve insta-
bilities stemming from locally dominating advection, i.e. the mesh Reynolds numbgts|Réso 1.v 1
are large. This can be seen even for solutions without sharp layers and very small value3. of

The standard stabilization methods for problem (3) are of the following typethind{u;, pr} € Wy,
such that

an(Un, Vi) = fu(Vi) YV ={Vh, qn} € Wy, (7)
ap(U, V) :=a(U, V) + Y Gdivu, divv). + ) (L), 5(V))x, ®
V)= FV) 4 ) (g, divv), + (F, 5 (V))o). 9)

Here ¢ denotes the differential operator on the left-hand side of momentum equation in (2). We shall
comment on a choice @f(V) below. Constants, andy, are some stabilization parameters, in general
they can be problem dependent.

The stabilized scheme (7)—(9) is built of residual type, i.e. the sum of additional terms vanishes for a
smooth solution of (2). This implies the Galerkin orthogonality

an(U —=Up, Vi) =0 VV, e Wy, (20)

The Galerkin scheme (5) is a special case of (7) wijtk 6, = 0. Another special cas& =0, 7, >0
will be called grad-div stabilization since, for a constantiset y, the corresponding term acts as an
additional term—yVdivu in (2).

3. Fully stabilized schemes with LBB-stable elements

In this section we consider the scheme (7)—(9) with

Y(V)=(@- V)v+Vg.
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This choice can also be found [6,10,17,20,22] Other possible (“expensive”) variants are the GLS
method withy/ (V) = £ (V) and the Douglas—Wang or algebraic subgrid-scale methodsywith =
—2*(V) with the adjoint operatoz*, cf. [7]. These methods can be analyzed using the norm

VIl == (V12 + oallgI®Y?, (11)

IVIZ = vIVVIZ 4+ alvI® + ) @ ldivv]iZ + 5ll@- VIV + Vg |?). (12)

T

Gaining additional control o} __d-|l(a- V)u + Vp||§ and of the incompressibility constraint, these
methods simultaneously stabilize spurious Galerkin solutions coming from dominating advection and
violation of the discrete LBB-condition. Therefore we call théuty stabilizedmethods. In particular,
they allow (not LBB-stable) equal-order approximatioa k > 1 of velocity and pressufd.0].

The rather general result if22], Section 3 covers the analysis of scheme (7)—(9) with') =
(a- V)V 4+ Vq in the case of LBB-stable elements where typicaliyk + 1> 1. For convenience we
include here the analysis which simplifies the prooff2i2] and slightly improves results. We start with
a stability result.

Lemma 3.1. Assume the following condition on stabilization parameters

0<6.< = min he 1 0<5.8°< (13)
X ‘E\2 'ugv’a £ ~X raT\'Y‘p
with a; := ||allz~(). Then there exists a positive constagit # f,(k, v) such that the bilinear form

ay (-, -) defined in(7)—(9) satisfies

) Up, Vi
inf  sup M)ﬁa. (24)
UneWs, v, ew,, 11UV

Parametes, in Eq. (11) can be taken as

-1
Crllalloo

Voa=c| ST+ v+ VeCr+ —— | . (15)

,/v—l—ocC%

Proof. Given in the Appendix. O

Remark. A simplified analysis is possible using the fact thal|, is a mesh-dependent norm uw,.
For arbitraryU;, € Wj, we obtaina, (Up, Uh)>%|[Uh]|§; this already yields existence of the discrete
solution. O

The following continuity result reflects the effect of stabilization: Tifeterms on the right-hand side
of (16) explode fow, o« — 0 if 7, = 0.
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Lemma 3.2. In addition to the assumptions of Lem@dlet§, > 0. Then for eaclV = {u, p} € W with
Aul; € L%(1)" Yt € 7 and V), = {vj,, q»} € Wy, it holds

1/2
(U, V) a2
Vil <C |[U]|a+(21:(51) ||u||T>

1/2

1/2
2
+<Z mnm?) +<Z af||—vAu+ocu||%) : (16)
T T

Proof. The symmetric terms af, are bounded by the produgtU]1|,|[Vx]l.. Furthermore, using inte-
gration by parts, we get

1/2

1/2
((a-V>u,vh)+<divu,qh><(Z(éo—lnmﬁ) (Z 5T||<a-V)vh+th||$) ,

1/2
_ 2 .
— (p,divvy) < (Z m”PH?) (\)IIVV;ZH2 + Z yT||d|VVh||$>

T

1/2

For the remaining terms it holds

Y 6e(—vAU+ au, (@- V)V, + Vi),

T
1/2
< (Z dcll — vAu + ocun%) (Z Sell@- Vyvi + thnf)
T T

This implies the assertion (16) via the definitionlofill, and|[-]|,. O

1/2

Consider solutiongu, p} € W and{uy, pn} € W;, of the continuous and of the discrete problems,
respectively. The following error estimate ff, = {u — u;, p — p,} differs from the standard result for
equal-order FE pairs.

Theorem 3.1. Assume such scaling (2) that ||al.c = O(1). The fully stabilized schem&)—(9) with
parameters

pe=y~1 o ~hi/y, (17)
satisfying(13) and with LBB-stable elements with: k + 1, obeys the uniform error estimate

IENE<C Y (h2® DI plGi gy + 2 MU} C # Clnah). (18)

T

Proof. Let {0y, pn} € W), be an appropriate interpolant fau, p}. Consider

{nU’ np} = {u - 0h7 p - ﬁh}a {Xuv Xp} = {Oh - Uh, ﬁh - ph}
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Galerkin orthogonality (10) and (14) imply that there exigtse W), with

Balllxus 7p MallValla <an Gy 2phs Vi) = —an (g, npls Va). (19)

We combine (19) and Lemma 3.2 with= {n, n,} to get
1/2
Ball (s 2pMa <1l 13l + (Z dcll — vAny, + anuuf)
T

5 1/2 1/2
+ (D 2]+ (D o mul?)
T V+VT T

Then the triangle inequalityE,lll, <ll{xy, x,}la +I{ny, n,}l, and standard local interpolation properties
together with assumption (13) imply that

INEWE<C Y {(51 + 120+ 90+ 0 kDR | pl i,
T

2 2
2,2 2,V 2,2 h 200,012
+ <v +oCrhs + 7y, + 0, <af + 02 + o hr) + 5—:) hZ |u|H,+1(T)}. (20)
For LBB-stable elements with> k + 1 a reasonable balance of the right-hand side terms gives the choice
7. =7~ 1,0, ~ h?/y. The estimate (20) yields

NERIZ<C Y (A4 0)h2* P p2y ) + 0+ oh? 49+ h2adh2 UG ) )

T

Observing that, remains bounded forand« (provided that|al|~ ~ 1), and for sufficiently smalk
we arrive at (18). O

In the case ofi ¢ H't1(Q)" andp € H**1(Q) several conclusions of Theorem 3.1 follow, which will
be confirmed by the numerical experiments in Section 5.

One is that the constard in the error estimate (18) is uniform for arbitra¢y, «); of course, the
seminorms of the solution on the right-hand side can depend, ain. With a fixedv and« the estimate
gives optimal convergence order in termskadnd/, see Experiments 5.1 and 5.2 in Section 5. Similar
results can be found if22], Remark 3.4 an{R0], Remark 1V.3.6, but here we improved constant

Let us compare (18) with the error estimate for tivestabilizedGalerkin scheme with LBB-stable
elements. In the interesting casel|af|., ~ 1, v<h our analysis gives the following error estimate

1
IEAESC YD st pl gy + 1P G (21)
T T

with [[{v. g} := v[[ V|2 + «|[V[|? + o4 ll¢]|? anda, ~ v+ aCZ. Note that for the unstabilized method
the error is controlled in a weaker northEj ||, <IIEjll,). Moreover the main effect of stabilization is
that the factor# presented in the right-hand side of (21) disappears.
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The parameter design (17) for LBB-stable elements is simpler than the corresponding cheigeafor
order interpolation:

5 Soh?
o V(1+Rer+ 1)1:)7

5. =70v(1+ Re. + D) (22)

with D, = ochfv—l. Relations (22) can be derived from (20) foe k> 1. For equal-order elements it

1
provides a convergence order@(ﬂzk*?) with respect to the norni-]|, in the advection-dominated case
Re >1, sed7,10,17,22]

Moreover, the use of (22) for FE pairs witk: k + 1 also gives a convergence order@‘ojh”%) with
respect to thé - [ll,-norm. Comparing to (18), one notes an order reductio%m. dthis will be confirmed
in Experiments 5.1-2 in Section 5.

We remark that for elements witke k + 1 the role of grad-div stabilization becomes more important. It
suppresses one more possible source of instability caused by a large pressure gradient in the momentun
equations in (2). The choice @f ~ 1 minimizes the pressure-dependent term on the right-hand side
of the error estimate. The main effect is seen in improving the velocity approximation, cfl18]sand
Experiment 5.2 in Section 5.

Sofarno specifie-dependence @li, p) isassumed. An existing regularity theory for the Navier—Stokes
problem conjectures that the norihg|; 1 and|| p||; are of comparable size. If thisis the case, then element
pairs with/ > k 4+ 1 are more appropriate than equal-order pairs Wwithk. See also Experiment 5.1.

Finally, results of the section as well as those found in other papers demonstrate that fully stabilized
methods admit transparent numerical analysis. Nevertheless some critical comments are also found in
literature:

e The parameter design (22) for equal-order pairs is sensitive to the particular choice of caistants
70- A wrong choice can lead to over- or under-stabilizafi®8]. On the other hand, from numerical
experiments in Section 5 we learn that the choice (17) for LBB-stable elements is less sensitive.

e The assembling of the corresponding algebraic system for these methods is very expensive, especially
forn = 3, see, e.gl[23].

e The construction of efficient iterative solvers is complicated due to the velocity/pressure coupling in
the stabilization terms, see, e.[1.6].

A few questions remain open for the fully stabilized scheme:

e The physical meaning of the tern _d.[(a- V)u + Vp||?, by contrast with the classical SUPG term
> d:ll(@- V)ul|?, is not clear.

e In our analysis and other papers, §22], the control of thel.2-norm of the pressure is lost for
o — 40 sinces, tends to zero. This is not observed in the numerical experiments. It remains an open
guestion whether the analysis can be refined.

In Section 4 we discuss a simplification of the fully stabilized scheme. The natural question is whether
the PSPG terms can be omitted for LBB-stable elements.
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4. Reduced stabilized schemes

In this section we consider the scheme (7)—(9) with
Y(V) = (a- V)v. (23)

As already mentioned this is a popular choice among practitioners, when LBB stable elements are used.
Indeed, numerical results with Taylor—Hood elements in Sections 5 and 6 indicate that the test function
0:Vq in (V) can be omitted. This leads us to

Problem (P). Is it possible to prove for the reduced scheme uniform error estimates similar to those in
TheorenB.1?

A positive answer to problem (P) was known for moderate values-0d, cf.[17], Remark 4.2. Here
we improve this result using a modified technique. The analysis will be given with respect to the norm
Il - 1ll, defined as

IVIE = 1IVIIE + b Y _ IIVqllZ, (24)
T

VI = VIVVIP + allVI® + Y GelldivviZ + 6l @ V)v[2). (25)

T

Trying to analyze the reduced scheme in the same framework one soon finds that troubles come from
the term)__6.(Vps, (@- V)vp,),. This term disappears for piecewise constant preggure0), se€f15],
but does not vanish for higher order pressure approximagtiond). For the higher order approximations
a modified LBB stability condition is crucial in the further analysis. Unfortunately we are able to prove
this condition only under the following assumption:

-1
(suph1> (inf hf) <e. (26)
T T
This condition excludes local mesh refinement.
Lemma 4.1. Suppose tha® is such that aH?-regularity result holds for the Stokes problénoi. [8]).
Consider LBB-stable conforming FE pairs such tiggt ¢ H1(Q), then the following condition holds

. divuy,
inf  sup (@iv . pn) >p1>0, 27)
Pr€Qn u,ev, IV prllllunll

wheref, is independent of.

Proof. Given in the Appendix. O

Remark. Lemma 4.1 is applicable to the family of Taylor—-Ho@&{,.1/ P, pairs withk>1. For the
particular case of = 1 the result can be found [2]. Analysing the reduced SUPG method we found it
more convenient to use the condition (27), rather than (6).

The stability result is given in the following lemma. We sgt= aoh?.
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Lemma 4.2. Assume such scaling (#) that||al| . ~ 1.Letthe following parameter conditions be valid

C(v4ah?u? B2 1
5:82<),<y;  0<0, = dph2< min | L ke o Te . 28
with y = O(1), &, := ||a|«.:- Then there exist positive constais# f,(h, v) anda, such that
. U1» V1
inf  sup M}ﬁb. (29)
UneWy, v, ew,, [1URlIpIVRlp
The schemér)—(9)with (23) has a unique solutiotv, = (uy,, py) € W,
Proof. Given in the Appendix. O
The main restriction on the SUPG parameieis hidden in (28):
a2 v ah?p2
5-,; = 50h1. < Tﬁgu (30)

The condition (30) is fulfilled for moderate up to large values.dafhis allows small up to moderate time
steps in a transient approach to the nonlinear model (1). Considering the worst case in(30),ofe
obtain the restriction

h.a; < 1

v 2250y
Note that the range of “allowed” Renere is significantly larger than for the (unstabilized) Galerkin
method, where a satisfactory stability estimate requires=R@(1). Moreover, we do not see restriction
(30) in the numerical experiments presented in Section 5, which show uniform error estimates even for
«=0andv — 0. Hence the results of Lemma 4.2 might not be optimakfes 0. On the other hand the
case ofx = 0 andv — 0 might not be of a large physical relevance, since for large Reynolds numbers
flows are typically unsteady.

As the next step we obtain the following continuity estimatedfar

Re, .=

Lemma 4.3. For arbitrary U = {u, p} € W with —vAu + Vp € L%(1)" Yt € 7, and V,, € W,,\{0} it
holds

1/2
ap(U, V) 1 32 ,
—w 1 <IlUllp + —=Ilull + %
i, Sl 2l (Z e

T

1/2

1/2
3 2 2
+ (Z: v—l—ozh—g—l—%”mh) + (ZT: 0|l — vAU + au + VP”f) . (31)
Proof. Follows with the same arguments as the proof of Lemma 32.
The goal is to derive error estimates and the design of the stabilization parameter, jsatsd {y_}.

Let {u, p} € W and{u;, pn} € W, be the solutions of the continuous and of the discrete problems,
respectively.
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Theorem 4.1. Suppose tha® is such that aH 2-regularity result holds for the Stokes problem. Consider
LBB-stable FE pairs such thad, c H1(Q). Assume conditiof26), a scaling of equation (2) such that
lalloc ~ 1and let the parameters

pe=y~1, S.~h%y, ap~h? (32)
satisfy condition$28). Then for the errorE, = {u — uy, p — p} the uniform estimate holds

IENE<C Y R2* D 1pl ) + 02 UG, ), € # Clhv o). (33)

T

Proof. We follow the lines of the proof of Theorem 3.1, also using the notation introduced there. Using
Lemmas 4.2 and 4.3 with’ = {n,, n,,}, we get

1 1/2
2
Bollzs 2l <10y o + (ET ' Sell — vany + oy + Vnpnf)

3 1/2 333 1/2
- 2 2
* (; v+ ah? +y, ”"””T) - (Z: v+ ah2 + a2s, ”'“”f) ‘

The triangle inequalityl Epll, <ll{xy, x, Iy + l{ny, n,}l, and the standard interpolation properties, to-
gether with the assumptions, <Ch$ andod, < C from (28), imply that

hZ
Il EpZ<C {(5 +op+ —) W2 | p15 s

2

h? a2
2 T 2 2 200,12
+(V+thr+7}r+£+5ra~[ +mhr> h‘r |u|Hl+l(T)}' (34)

Recalling the usual conditiolk + 1 for LBB-stable pairs, the estimate (34), together with the design
conditions (32) imply the desired resultd

Remark. Another possible or further reduction of stabilization terms give rise to “classical” SUPG-
stabilization(o, > 0, y, = 0) or grad-div stabilizatiorié, =0, y, > 0). It is not our intention here to study
these schemes in detail. We remark that the Lemmas 3.1 or 4.2 are not applicable for the=casH

6. =0 the stability result of Lemma 3.1 remains valid, whereas Lemma 3.2 requires minor modifications.

Summarizing some properties of the reduced schemes, we note the following.
e The assembling process of the discrete systems is cheaper than for the fully stabilized schemes con-
sidered in Section 3.

e The existing analysis of the scheme shows explicit control of the classical SUPG velocity error

Y k@ VellZ<C Y (2 1 pl i + B U )
T T

We were not able to show this result for the fully stabilized schemes.
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e The obtained stability estimates are not completely satisfactory yet, however they are significantly
better than for the unstabilized Galerkin method.

5. Numerical results for the Oseen problem

Here we apply the packageEM LAB™™ 2.3 which contains thé_.1/ P, pairs of the Taylor-Hood
family with k>1 on simplicial meshesFEMLAB™™ provides SUPG-stabilization in the sense of
Section 3 with parameters close to (22) but without grad-div stabilization, i;e.= 0. Therefore we
added MATLAB routines with different stabilization terms. Here we present some numerical experiments
for the linearized problem (2).

We consider two examples on an unstructured quasi-uniform triangular mesh in the unit@guare
(0, 1) x (0, 1). The right-hand sidefsand the Dirichlet data of problem (2) are chosen such that the exact
solutions are given by

P1: u(x) = (sin(rx1), —nx2 coSnx1))’, p(x) = sin(nx1) cogmxo)
P2: u(x) = (1= h(x2,v), 00",  p(x) = ix1h(x2,v)

with 7(xz, v) := exp =22 + exp ~222 We seta(x) := u(x) anda = 0.

Note that the solution P1 isindependent, whereas thelependent solution P2 mimics a “plug-flow”
in a channel with exponential layers fox<Oy < 1. The seminorms of the solution of P2 appearing on the
right-hand side of the error estimates amependent agi|; .1 ~ v /20+1/2) | plp g ~ v 1/2k=1/2)

Experiment 5.1. Theoretical vs. numerical order for the full norm.

For the fully stabilized scheme we compare the numerical results for problem P1 to the error estimate
w.r.t. the full norml| - lll, as predicted by Theorem 3.1. (For results for problem P2 see Experiment 5.3.)
Here we consider the viscosities= 1072 i € {1, 2, 3, 4}. Results are given for the/P; and P4/ P3
elements.

We start with the stabilization parameters according to Theorem 3.1. The results fantieendent
solution of P1 inFig. 1 (left) confirm both, the robustness w.ntand the predicted error order, of
the scheme. Moreover, one observes the considerable improvement with higher order elements. It is
worthwhile commenting that th,/ P; element gives much better results than the stabil2gd’, pair
and compares well t&>/ Ps.

Then we compare the new parameter design conditions (17), cf. Theorem 3.1, to the standard equal-
order design (22). IRig. 1(right) we present the results for the equal-order design (22) w.r.t. thelhdigm
for problem P1. We observe the predicted order reducticél 6&0r other norms we refer to Experiment
5.2.

Finally we compared the theoretical error estimates for the reduced stabilized scheme, cf. Theorem
4.1, w.r.tll-ll, to the numerical results for P1. We omit the results here since there is no visible difference
to the results for the fully stabilized scheme.

Experiment 5.2. Fully stabilized vs. reduced stabilized scheme.
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Convergence of V(u — up)|lo-

For the fully and reduced stabilized schemes and problem P1 we consider the convergence w.r.t.
[u = Upllo, lU = Ugl1, Ip — pallo- In Figs. 2—4we report the results for the,/P1 and P4/ P3 pairs,
respectively, and the viscosities= 107%,; e {1, 2, 3, 4}. Furthermore we use the design (32).
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Fig. 4. Fully (left) and reduced (right) stabilized schemes for P1 viliPy (full line) and P4/ P3 (broken line) schemes:
Convergence of p — pyllo-
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Fig. 5. Fully stabilized (left) and reduced stabilized (right) scheme with new parameter desigPpwithfor P2.

First of all, we see that the results for both schemes are almost the same with the exception of very
rough meshes. More precisely, the results|tor uy, |1 and||p — pxllo are in agreement with the theory
of Sections 3—4. Notice that the analysis did not predict the optimal afdérfor ||u — uy, |lo which is
seen inFig. 2 Moreover, we observe convergence resultg|tbv(u — up)||o of, at least, ordeh*.

Furthermore, we repeated the computations with the equal-order parameter design (22). We observed

(as in Experiment 5.1) the order reduction%ol’or the velocity norms considered here.
The results confirm our conjecture that the PSPG terms can be omitted.

Experiment 5.3. Resolution of boundary layers for P2

For thev-dependent solution of P2, the predicted rates can be seen for sufficiently fine meshes with

h<c./v only. Theorem 3.1 predicts for the, 1/ Py pair thatlll Eyll, ng_%l(hv_%)"Jr1 . On the other
hand, the errotlElll, remains uniformly bounded w.r.t, seeFig. 5 (left). Moreover, we observe as
for problem P1 that the reduced scheme gives almost identical resultsgsédright). Based on these
results, we consider the fully stabilized scheme with parameter design (17).

More interesting is a closer look at the pointwise convergencEignéwe present cross-sections of
the first velocity componemh,l(%, x2) with v = 10~8. The Galerkin scheme exhibits spurious global
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Fig. 6. Fully stabilized scheme for problem P2. Lt/ P1. Right: P4/ P3.

oscillations (not shown) whereas the stabilized scheme drastically reduces such oscillations. The stabilized
scheme generates a solution being well-known from SUPG-stabilization for scalar advection—diffusion
problems. The discrete solution is accurate away from the layers but has restricted oscillations around
the layer.

As aremarkable and well-known fact we emphasize that the “wiggles” around the layer are significantly
reduced with increasing ordér The best way to avoid the wiggles is an anisotropic mesh refinement.
Nevertheless the gradient of the solution at the boundary is remarkably sharp. In contrast with problem
P1, the SUPG stabilization is much more important than grad-div stabilization.

Experiment 5.4. Influence ofx ~ % for P1.

So far we considered the Oseen equations watt0. Here the influence offor the reduced stabilized
scheme is studied. We repeated the computations for problem P4 wifh0~2, 10°] and fixedhmax =
%3. In order to mimic the effect of a time stepping procedure for the computation of the stationary
Navier—Stokes problem we replaced the right-hand sidé #yxa; so the exact solution remains the
same. Controlling the noriti- lll,, we obtain inFig. 7 robustness from — 0 up to moderately large
values. This result confirms our conjecture that the result of Theorem 4.1 can be extendedo

Experiment 5.5. Sensitivity w.r.t. tuning parameters for P1.

The stabilized schemes with the parameter choices (17) and (32) depend only on a single “tuning”
parametep. In Fig. 8 we present the results w.r.t. the nokimll, for example P1 on a moderate mesh
with Imax= 312 usingy, =y = yg, 6. = h?/yo With varyingy, and ordet of the Taylor—Hood pairs. The
robustness of the new parameter design (17) is confirmed. Moreover, we found theyckdide be an
appropriate one.

6. Numerical results for the nonlinear case

Inthis section we demonstrate the feasibility of the approach to the Navier—Stokes model (1) as proposed
in Section 2. The solutions of the benchmark problems-atependent. We apply the semi-implicit Euler
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scheme for the time discretization. Then the stabilized schemes of Sections 3—4 are used to solve the
auxiliary Oseen problems within each time step.

Example 6.1. (Driven cavity).

Consider problem (1) in the domaitd= (0, 1), with f = (0, 0)" and Dirichlet datau|,, = (1, 0)"
if xo =1 andu|;, = (0,0)T if x < 1. We use a time stefr = 0.1 and a spatial discretization using
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Fig. 9. Isolines of the stream-function for the driven cavity problem foZRe500 with the reduced stabilized scheme: full flow
(upper right) and details of the recirculation zones.

the Taylor-Hood element&,/ P and P4/ P3 on a quasi-uniform mesh withnax = g5 andimax= 3,
respectively.

We compared our results for Re{100, 400, 1.000, 3.200, 7.500, 10.000} with those given if13] for
lower order finite difference schemes but on much finer meshesiug %@. The results are comparable,
for details cf.[12]. Moreover, we see a nice resolution of the boundary layers which are less sharp as in
Problem P2 in Section 5.

As an example, we present results with the reduced stabilized schemes#$o7.B@0 which is be-
low the first Hopf bifurcation for Re~ 8.018, cf.[1] . The isolines of the stream-function for the full
flow together with details of the secondary and tertiary recirculation zones in the corners are shown in
Fig. 9for h = 4—18. In Table 1we give the position of the center of the primary vortex of the cavity flow
together with the value of the stream function.Table 2we give the position and values of the mini-
mum ofu1(0.5, x2) and of the minimum and maximum ab(x1, 0.5). First of all, we observe a good
agreement of the results on moderately fine meshes with the reference solutjdri3df8]on much
finer grids. Moreover, we see that the results for the fully stabilized and the reduced scheme are
very close.
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Table 1

Driven cavity problem with Re= 7.500: Position and stream function of main vortex

Reference Method t4 X1 X2

(a)1 Fully stab. scheme FBy/P1, hmax= 1/96 0.1177 0.5129 0.5337
(@) Reduced scheme FB/P1, hmax= 1/96 0.1176 0.5129 0.5337
(b) Red. stab. scheme HE&/ P3, hmax= 1/32 0.1151 0.5166 0.5310
(c) Ref.[18] FD,h =1/512 0.1153 0.5137 0.5321
(d) Ref.[13] FD,h =1/256 0.1200 0.5117 0.5322
Table 2

Driven cavity problem with Re= 7.500: Minimum value 011 (0.5, x2) and minimum and maximum values o (x1, 0.5)

Reference/method uin xgnin uax xfnax u'in xfnin

(a)1 Fully stab.P>/P1, h =1/96 —0.4322 0.0620 0.4343 0.0685 —0.5535 0.9638
()2 ReducedPy/P1, h =1/96 —0.4322 0.0620 0.4343 0.0685 —0.5535 0.9638
(b) ReducedP/ P3. h = 1/32 ~0.4213 0.0628 0.4225 00694  —0.5396 0.9639
(c) Ref.[4] FD,h =1/512 —0.4266 0.0625 0.4274 0.0684 —0.5455 0.9648
(d) Ref.[13] FD, h = 1/256 —0.4359 0.0625 0.4403 0.0703 —0.5522 0.9609

Example 6.2. (Backward facing step).

Finally we consider the two-dimensional flow in a channel with a backward facing stefi,%3e@/e
employed the: : H =1 : 2 configuration (whered is the height of the channel aridthe height of
the step) with parabolic velocity profile at the inlet. At the outlet we prescribe the usual “do-nothing”
condition for the stress tensor. For the remaining boundary of the channel we prescribe no-slip. The flow
corresponds to Re 800.

We apply P,/ P, Taylor—Hood elements on an unstructured quasi-uniform meshiyjth= 1/32
and a time stepr = 0.4 in the interval s <T = 200. InFig. 100one finds the isolines of the stream
function and of the pressure of the stationary solution-a00 for the reduced stabilized scheme with
h =1/16. The fully stabilized scheme (not shown) gives almost the same picture. Moreover we compare
in Table 3the results for some critical Re-dependent parameters of the flow with reference values found
in literature. The results for the fully stabilized and the reduced schemes are again identical and in very
good agreement with reference solutions: an FD solution with1/40 in [11], an FD solution on a
refined mesh with about 280.000 nodes and Richardson extrapolat[@8]iand a spectral element
method in[14].

7. Conclusions

Mixed problems of Oseen type appear as auxiliary problems within the solution of the Navier—Stokes
problem. The application of conforming LBB-stable FE spaces requires a stabilization in case of large
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Fig. 10. Isolines of stream function and pressure for backward facing step problem witt8&& reduced stabilized scheme
with h = 1/16.

Table 3

Numerical results for the backward facing step problem with=R800. (x., y.)-position of the bottom vortex center,
ri-reattachment length of the bottom vortex;left separation point of the upper vortexg-right separation point of the
upper vortex

Reference Method (x¢s Ye) r1 ro r3

Fully stab. FEPy/P1, hmax=1/32 (3.40,0.30 6.10 4.86 10.48
Reduced stab. FB>/P1, hmax=1/32 (3.40,0.30) 6.10 4.86 10.48
Ref.[11] FD, hmax= 1/40 (3.35,0.30 6.10 4.85 10.48
Ref.[18] FD, Extrapol. (3.40,0.30 6.09 4.82 10.47
Ref.[14] Spectr. element (3.39,0.31) 6.10 4.85 10.48

Reynolds numbers Re. Stability without sacrificing accuracy can be reached by SUPG stabilization with
and without pressure stabilization (PSPG) however with the grad-div stabilization.

The design of the stabilization parameters is simpler (and in practice less sensitive) for LBB-stable
elements than for equal order interpolation. For the fully stabilized scheme studied in Section 3 the
proposed choice leads (for smooth Re-independent solutions) to error estimates being robust w.r.t.
to Re and quasi-optimal for fixed Re. The parameter design known from equal-order interpolation
leads to suboptimal convergence. Numerical experiments confirm the theoretical results for
smooth Re-independent solutions; reasonable results were obtained also for Re-dependent
solutions.

An open problem is whether PSPG can be omitted for LBB-stable elements. Such a reduced stabilized
scheme gives numerical results being almost identical to the fully stabilized scheme. In the paper a
previous stability result of this scheme is improved. The numerical results make us to believe that the
analysis can be improved even for arbitrary small values>0® andv > 0.

The approach considered remains feasible for calculation of steady-state solutions of the Navier—Stokes
model for moderate and high Re-numbers. The construction of consistent higher-order time discretization,
combined with stabilized FE methods, for the nonstationary problem and the development of efficient
solvers is left to future research. Another important open question is the extension of the theory to
anisotropically refined meshes in boundary layers.
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Appendix. Proof of stability results

Proof of Lemma 3.1. Fix an arbitraryU;, € Wj,. Below we findV,, € W), satisfying (14). We use the
following abbreviations:

A=y Vup 2+ alual®. B = lipald Z2:= )" plidivug |2,
T

= scll@ - Vyun+ Vpul?,  YZ:=" 5.l — vAu, + aup |12,
T T

hencel[U;]|2 = A2 + X2 + Z?. In the first step we séf;, = Uy, in (8), thus

an(Up, Up) > A% + X2 4+ 7% — XY.
We get from inverse inequalities and (13) thiat A; then Young’s inequality implies

an(Up, Up) > %(AZ + X2 4 72). (35)
Condition (6) yields the existence nf € V;, with (div z,, pi) > Boll prllo 1z lv.We can assumig,, ||v =

| prll@. Consider now

4 4

an(Un, (21, 0) = (p, divzy) — Y T;=pB* = Y T;.

i=1 i=1
Denotey = maxy,. Standard inequalities, integration of the advective term by parts, and (13) imply

Th =v(Vuy, Vi) + (o, Zp) — (Ug, (@ V)Zp)

Crla
N s ez 4 SRl | 4y

Jv+aC?

T; = Z 7.(divuy,, divz,), < /7ZB,
T
T
T
T4: Z 5‘[((3.- V)Uh + Vph’ a- Vzh)rg mfax(\/é_rar)XBgﬁxB
T

We sett, := /v + /aC2 4 S8l= 1 /5 and use Young's inequality; hence

\/ —i—ocCF

1 32
an(Un, (=24, 0)) > B3 — (o (A + X + Z)B>§ﬁoBz - =

P (A% + X% + 77, (36)
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SettingVj, := Uy + p,(—2z4, 0) with p, = 1sz2 6q = 2Bop,, We find by (35), (36)

. 1 3paC ﬁOpa
Uy, V) > min ;
an(Up, Vi) (2 By 20,

Furthermore, we obtain with (13)

)(|[U]| +0,B )>—H|Uhm2 (37)

(=2, OIIZ = vIIVZu 12 + sl za 1> + D (0clla- Vzull2 + p,lldivz 1)

T

<4 aC2 +2))||Vz, |2 <202 B2

By definition of p, ands, we have 624“ < 12%, hence
VA2 <231URNI2 4 p2lI(—25, O)IZ) < —HIU;,\H

which together with (37) implies (14) with, = %\/%. Finally we note that parametey, can be set as
given in (15). The lemma is proved [J

Proof of Lemma 4.1. Denote byS; (¢) : O — Qj, an operator defined &% (c) = BA(¢)"1B*, where
operatorsA(e) : V,, — Vj, andB : V;, — Q) are defined by the relations

(A(e)up, Vi) = e(VUp, VVi) + (U, Vi) YUp, V, €V,
(Bup, qn) = (divup, gn) Yup € Vi, qin € Op.

LetA,j1 be a solution operator for the discrete Poisson problem with the Neumann boundary conditions:
foranyg, € Qp

=A gy iff = (Vr, VO =(qn, &) Y€ Q. (38)
The corollary 4.1 fronf3] supplies us with the estimate
co(R?1 — A, pu, p) <(Sw(h®) i, pr) Vi € On. (39)

co is a positive constant independent/nff is the identity operator. It is straightforward to check for
arbitraryp, € Oy

(pn, Bup)? (divuy, pp)?
(Sp(h®) pn, pr) = sup ————"" = su
wev, (AU UL~ uey, B2IVUpLl2 + [lupll?
(divuy, pp)? (40)
Tuev,  llunl?

On the other hand (27) is equivalent to the inequality

(divug, pr)
BillVprll < SUp —————— Vpy € Qp.
wev,  luall
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Therefore, thanks to (39) and (40) it is sufficient to prove that
c1llVpull?< (W21 = 4,5 pis pr) - Vi € Qi (41)

with somec; > 0 independent of. To prove (41) let us fix arbitrary, € Q, and denotey, = (h%I —
4,17 1py, then by definition

h2qn — A, qn = ph. (42)
Letr, = A;lqh, yieldingr, = h2g;, — pj,. Substituting this into (38) and choosidg= p,, we get

—h?(Van, Vpu) + IV pull® = (qn, pa)-

This implies

1 1
(qn- Ph)>§||vph||2 —~ Eh“nv%nz. (43)

Now we take a scalar product of (42) aqpgto get
(Pns gn) = W2 lanl® + llgn |2 = h?llgn 1%,
Due to the inverse inequality (4) this leads to
(P> an) = 1, "B Vi 2. (44)
We combine (43) and (44) to obtain
(Pho qn) =2+ 11,) " HIV pall®.

The latter estimate implies (41) with = 2+ ,)™*. O

Proof of Lemma4.2. The proof follows the lines of that of Lemma 3.1; so we highlight the modifications.
We use the following modified abbreviations:

X2:=) " scl@ Vyupl?, ¥2:=) " ocll — vAu, + ouy + V2,
T

T

andB? := ||V p,||%; hencel[U,]|? = A2 + X? + Z2. Denotes = maxd..

In the first step we sét, = Uy, in (8), thusa, (U, Uy) > |[Us]|% — XY . We have, via triangle inequality,
inverse inequalities (4), and using (28),

Y2<3 " 5:(IlvAuLlIZ + llownlI? + IV pall?) < A% + 36 B2, (45)

T
hence

1 3,
ah(UhaUh)>§|[Uh]|b—_B .

. (46)
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Lemma 4.1 implies the existencenf € V,, with (divz,, ps) = 111V pilllizs || With 1 # p1(h). We can
assume|z, || = ||V prll = B. Consider now

Standard inequalities and condition (28) imply

. v+ ah2p, 2, N/2 a2 -

Ty == Ty < max ;l tm Tty V2 AB
‘ ! ,/v—i—ochfz,u;z

Ty = To< max*/_“” 7B

‘L'

\/5_;larﬂu VB

T

= Z S:(—vAUy, + auy + Vpp, (@- V)z;), < max
T

«/ 3d.ar 1, ~ / -1 .
< max LTy max f}; M 32 max ;;M“ AB+ 7 BB,
T

T T

Ty = Z s.((@-Vuy, @-V)zp). <X max B< max@ XB.

T

\/5_Ta1::uu 5
h

T

In the last estimate df; we used inequality (45) and a sufficiently sniallWe summarize these estimates,

set
Vv eh2i 2,2 a2
et — +Vrh |
t AT ochguu_z

and use Young's inequality

{p := max
T

- - - 1 -
an(Up, (=24, 0)) >/3le - @(A +X+2)B - p1B?
ﬁlBZ - — cb|[UhJ|,, (47)
p1

DefineV), := Uy + p,(—2zp, 0) with somep,, > 0, then via (46), (47)

1 3p,2 —35 -
an(Up, Vi) > (— — 0% N w12 + ﬁl””TBZ

2 B1

1 30,88 pupy — 39 2 2
> min {5 a2 ([UR1l; + oB?). (48)
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We have to find appropriate valuesgfando;. (28) implies

v+ ochz,ufz,u V2 1 g
{p < max SRS ALY [P (49)
: I 25, ' hy < I,

where we use that= 5oh2. Fixing p,(2 = &3, we obtain on a quasi-uniform mesh that

ﬁZ ﬁzhzl ﬁlcl .
Brop — 30 = 1—225 — 30>~ — Sdohiax> (157 — 300 ) h¥ =t fuh®.

A proper choice o gives a positive;. Together withs;, = 2,42 we observe

1
an(Up, Vi) > Z\\\Uhmg. (50)
Furthermore the following estimate holds

(=21, Ol =vIIVZull® + ollzal* + D _[5:ll@- V)zull? + 7. [1div 24 1?]
T

2 2.2 2
VI, 5Ta*cluu Vely n2 2 p2
<m — 4+ o+ m — < .
< TE‘lX( > o Tax( hg + h% )) B \CbB

T

By the definition ofp, we havep2(? = %pb, and hence
IVAIZ < 211UIZ + 2p2l1(—24, 0)IZ < 2 (1 + %) U2,
b

B2 _ pih?

Moreover, we obtairf,p, = 127 <2 and
2,2 2
14 P g L S W)
12, 122 . 24 h? 24c2p4

This, together with (50), implies the desired estimate (29) \B/i:th@. O
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