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GRAD-DIV STABLILIZATION FOR STOKES EQUATIONS

MAXIM A. OLSHANSKII AND ARNOLD REUSKEN

Abstract. In this paper a stabilizing augmented Lagrangian technique for
the Stokes equations is studied. The method is consistent and hence does
not change the continuous solution. We show that this stabilization improves
the well-posedness of the continuous problem for small values of the viscosity
coefficient. We analyze the influence of this stabilization on the accuracy of
the finite element solution and on the convergence properties of the inexact
Uzawa method.

1. Introduction

This paper provides an analysis of the effects of a particular stabilizing term that
can be added to the Stokes equations. We consider the variational Stokes problem:
given f ∈ H−1(Ω)d, find (u, p) ∈ H1

0 (Ω)d × L2(Ω) with
∫

Ω p(x) dx = 0 such that
(1.1)
ν(∇u,∇v) + α(u, v) + ξ(div u, div v) + (div v, p) = f(v) for v ∈ H1

0 (Ω)d,
(div u, q) = 0 for q ∈ L2(Ω),

with parameters ν ∈ (0, 1], α ≥ 0, ξ ≥ 0, where (·, ·) stands for the L2 scalar
product. To simplify the presentation, we restrict ourselves to the two cases α = 0,
α = 1. In this paper we study the effects of the term (div u, div v) on the numerical
solution of the Stokes problem. In the strong formulation this term is represented by
the differential operator ∇div and, as we will show, adding this term has a stabiliz-
ing effect for small ν values. This explains why we call this a “∇div stabilization”.
Note that the unique solution of problem (1.1) does not depend on ξ. Adding the
consistent ∇div term to Stokes equations is not a new idea. This stabilization term
is considered at several places in the literature. In [9] it is proposed and analyzed
in the general framework of augmented Lagrangian methods. Indeed, in the sad-
dle point formulation of the Stokes problem, adding the ∇div term results in an
augmented Lagrangian. In [9] it is shown that this generally improves the rate of
convergence of descent-type iterative methods for solving the saddle point problem.
In [4], [10] the influence of the ∇div term on the convergence of iterative solvers
for the Stokes and Navier-Stokes problems is studied. In [10] it is demonstrated
that for the incompressible Navier-Stokes equations with high Reynolds numbers,
the additional ∇div term improves the performance of nonlinear iterations. The
analysis in [4] shows that for block-diagonal and block-triangular preconditioning
of the Stokes problem this term does not lead to convergence improvement if it
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is used in the residual calculation only while not affecting the preconditioner. We
note that in this paper we consider a preconditioner for the Stokes problem which
depends on ξ.

In [21] it is shown that using this stabilization in the mixed formulation of the
Poisson equation improves the rate of convergence of a suitably preconditioned
MINRES method.

In the literature on the finite element method for incompressible Navier-Stokes
equations, this term sometimes occurs in an error analysis of the streamline diffu-
sion or Petrov-Galerkin finite element method (e.g., [15], [20]). From the analysis,
however, it is not clear whether this term plays a key role or is introduced for
technical reasons only.

In the papers mentioned ([9, 4, 21]) the effect of the ∇div stabilization on the
rate of convergence of iterative methods for solving the discretized Stokes equations
has been studied. We observed that there are also interesting effects concerning the
continuous problem and the quality of the finite element discretization and, to our
knowledge, there is no theoretical explanation for this known in the literature. This
paper tries to fill this gap. In practical implementations ξ = 0 is the usual choice.
In this paper we try to make clear when ξ > 0 leads to a (significant) improvement.

We analyze the influence of the ∇div term on the continuous problem, the finite
element discretization and the iterative solution of the discrete problem. Concerning
the continuous problem, we show that although taking ξ > 0 in (1.1) does not
change the continuous solution, it has a clear positive effect on the stability of the
bilinear form corresponding to (1.1). We will show that for ξ > 0 the continuous
problem is uniformly (w.r.t. ν) well-posed in the natural energy norm. This is not
true for the case ξ = 0. The main new result presented in this paper concerns
finite element error bounds for problem (1.1). We use LBB stable conforming
finite element spaces for discretization and show that for ν ↓ 0 the discretization
error bounds become significantly better if a ∇div stabilization is used. Numerical
experiments show that the theoretical upper bounds predict the correct behaviour.
We also analyze an Uzawa type iterative method for solving the discrete problem
and draw a similar conclusion as in [9]; namely, the rate of convergence of the outer
iteration for solving the Schur complement equation for the pressure in general
increases due to the ∇div term. However, for ν ↓ 0, the inner velocity problem
becomes more stiff if we use ∇div stabilization.

We will present results of numerical experiments which confirm our theoretical
analysis. Based on the theory and the results of the experiments, our conclusion
is that by adding the ∇div term the Stokes problem with ν � 1 can be solved up
to a prescribed accuracy with significantly lower arithmetic costs. We note that
numerical experiments (in, e.g., [12]) have shown that similar positive effects of the
∇div stabilization occur in (linearized) Navier-Stokes equations with high Reynolds
numbers.

As usual for a stabilization method, a proper value of the stabilization parameter,
ξ in our case, is important. In the present paper we only briefly address this issue.
Results of numerical experiments related to this parameter choice can be found in
[12].

Finally we have two remarks on scaling arguments. First, for the case α = 0, ξ =
0 a common scaling argument using p̃ = ν−1p, f̃ = ν−1f leads to a parameter-
independent Stokes problem with a new pressure variable and right-hand side. One
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can then use known results for this Stokes problem (in (u, p̃)) and transform back
to the (u, p) variables. For example, a typical discretization error bound of the form

‖u− uh‖1 + ‖p̃− p̃h‖0 ≤ Ch(‖u‖2 + ‖p̃‖1)

immediately yields

(1.2) ‖u− uh‖1 +
1
ν
‖p− ph‖0 ≤ Ch(‖u‖2 +

1
ν
‖p‖1),

with a constant C that is independent of ν. If, however, we take ξ > 0, there are
two parameters and the problem cannot be reduced to a parameter-independent
standard Stokes problem by a simple scaling argument. One could use a scaling
to eliminate one of the parameters. This then results in a parameter-dependent
problem with scaled variables. We found that the analysis is most transparent if
one does not apply a scaling but considers problem (1.1) in the original variables
(u, p). Therefore we will not use scaling arguments.

Secondly, another scaling argument relates problem (1.1) with α = 1 to a
transient-like problem. Let (u, p) be the solution of (1.1) with α = 1. Define

ξ̃ :=
ξ

∆t
, ν̃ :=

ν

∆t
, and ũ := ∆t u.

Then the pair (ũ, p) satisfies
(1.3)
ν̃(∇ũ,∇v) + 1

∆t (ũ, v) + ξ̃(div ũ, div v) + (div v, p) = f(v) for v ∈ H1
0 (Ω)d,

(div ũ, q) = 0 for q ∈ L2(Ω).

For the case ξ = 0, this type of problem occurs if one applies an implicit time
integration method (with a time step ∆t) to a standard unsteady Stokes problem.
Results for problem (1.1), like for example finite element discretization error bounds,
immediately yield corresponding results for problem (1.3) (cf. Remark 4). These
discretization error bounds are fairly sharp if one considers arbitrary f ∈ H−1(Ω)d

and show a clear stabilizing effect due to the ∇div term. If, however, problem
(1.3) corresponds to a time-discretized unsteady Stokes problem, the right-hand
side f has a special structure and our general bounds are too pessimistic. For
such discrete unsteady problems, other techniques for analyzing the discretization
error which take into account the evolutionary nature of the problem (as in [19],
[7]) should be used. Our analysis does not yield satisfactory discretization error
bounds for the unsteady case with a time step ∆t tending to zero. The results we
obtain concerning the efficiency of the inexact Uzawa iterative solver for the finite
element discretization of (1.3) are satisfactory, even for the case ∆t tending to zero
(Remark 6).

The paper is organized as follows. In §2 we present two simple linear algebra
results that will be used further on. In §3 we consider the variational formulation of
the Stokes problem and show that adding the ∇div term leads to a uniformly (for
ν ↓ 0) well-posed problem in a natural norm. Finite element discretization error
bounds are presented in §4. The convergence of the inexact Uzawa iterative method
for solving the discrete problem is discussed in §5. Finally in §6 some numerical
results are presented that illustrate important effects of ∇div stabilization.
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2. Preliminaries

We first derive two elementary linear algebra results related to a matrix A of
saddle point type:

A =
(
A BT

B 0

)
, Rn×n 3 A = AT > 0,

B ∈ Rm×n, m < n, rank(B) = m.

(2.1)

We use the notation 〈·, ·〉 for the euclidean scalar product. The euclidean norm is
denoted by ‖ · ‖. We define the energy scalar product 〈x, y〉A = 〈Ax, y〉 and energy
norm ‖x‖2A = 〈x, x〉A. The spectral condition number of a regular matrix C is
denoted by κ(C) = ‖C‖‖C−1‖. The following quantities will play an important
role

(2.2)
√

Γ := sup
y∈Rm, x∈Rn

〈Bx, y〉
‖x‖A‖y‖

,
√
γ := inf

y∈Rm
sup
x∈Rn

〈Bx, y〉
‖x‖A‖y‖

.

Here and in the remainder we always take infx or supx over nonzero elements. The
following elementary result is known in the literature (see [22]). For completeness
we also show a proof.

Lemma 2.1. Let λmin(BA−1BT ) and λmax(BA−1BT ) be the smallest and largest
eigenvalues of the Schur complement BA−1BT . Then the following holds:

γ = λmin(BA−1BT ), Γ = λmax(BA−1BT ).

Proof. Note that

sup
x

〈Bx, y〉2
‖x‖2A‖y‖2

= sup
x

〈BA− 1
2x, y〉2

‖x‖2‖y‖2 = sup
x

〈x,A− 1
2BT y〉2

‖x‖2‖y‖2

=
‖A− 1

2BT y‖2
‖y‖2 =

〈BA−1BT y, y〉
〈y, y〉 .

Hence

γ = inf
y

〈BA−1BT y, y〉
〈y, y〉 = λmin(BA−1BT ),

Γ = sup
y

〈BA−1BT y, y〉
〈y, y〉 = λmax(BA−1BT ).

�
Using this lemma we derive an elementary result concerning the spectral condi-

tion number of a preconditioned version of the matrix A. Similar results are known
in the literature (e.g., the equality (2.5) can be found in [1]).

Lemma 2.2. Define

(2.3) P :=
(
A−

1
2 0

0 I

)
A
(
A−

1
2 0

0 I

)
=
(

I A−
1
2BT

BA−
1
2 0

)
.

Assume that γ > 0 holds. Then P is invertible and

‖P‖ =
1
2

(
√

1 + 4Γ + 1),(2.4)

‖P−1‖ =
2

min{2 ,
√

1 + 4γ − 1} .(2.5)
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Proof. With C := BA−
1
2 we obtain

P =
(
I CT

C 0

)
.

Note that C has a nontrivial kernel. For v ∈ Ker(C), v 6= 0, we have P
(
v
0

)
=
(
v
0

)
,

hence 1 ∈ σ(P). For µ ∈ σ(P), µ 6= 1, we have(
I CT

C 0

)(
v1

v2

)
= µ

(
v1

v2

)
, with v2 6= 0.

This holds iff µ(µ − 1) ∈ σ(CCT ). Let λ1 ≤ λ2 ≤ . . . ≤ λm be the eigenvalues of
CCT = BA−1BT . We then obtain

σ(P) \ {1} =
{ 1

2
(1±

√
1 + 4λj)

∣∣ 1 ≤ j ≤ m
}
.

Hence, the largest eigenvalue of P is given by

‖P‖ =
1
2

(1 +
√

1 + 4λm) =
1
2

(1 +
√

1 + 4Γ).

Due to Lemma 2.1 and the assumption γ > 0 we have that λ1 > 0 holds. Hence P
is invertible and the largest eigenvalue of the inverse is given by

‖P−1‖ = max
{

1 , max
1≤j≤m

2
∣∣∣1±√1 + 4λj

∣∣∣−1}
= max

{
1 , 2

∣∣∣1−√1 + 4λ1

∣∣∣−1}
=

2
min{2 ,

√
1 + 4γ − 1} .

�

These results show that the quantities γ and Γ completely determine κ(BA−1BT )
and κ(P). Note that the former depends only on the quotient Γ/γ, whereas for the
latter this is not the case. The result in Lemma 2.2 will be used below.

3. The continuous Stokes equations

We consider a standard variational formulation of the Stokes problem in a domain
Ω in d-dimensional Euclidean space (d = 2, 3). We use the notations

(3.1) X := H1
0 (Ω)d, M := { f ∈ L2(Ω) |

∫
Ω

f(x) dx = 0 }.

The L2 scalar product and associated norm are denoted by (·, ·), ‖ · ‖, respectively.
Before we turn to the Stokes problem in (1.1), we first consider a more general
setting. We introduce two continuous bilinear forms:

a(·, ·) : X ×X → R, b(·, ·) : X ×M → R.

We assume that a(·, ·) is symmetric and X-elliptic and that the bilinear form b
satisfies the infsup condition

(3.2) inf
q∈M

sup
v∈X

b(v, q)
‖∇v‖‖q‖ ≥ β > 0.
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We consider the standard saddle point problem: given f ∈ X ′, find (u, p) ∈ X×M
such that

(3.3)
{
a(u, v) + b(v, p) = f(v) for v ∈ X,

b(u, q) = 0 for q ∈M.

Using the bilinear form φ : (X ×M)× (X ×M)→ R,

φ(u, p; v, q) := a(u, v) + b(v, p) + b(u, q),

problem (3.3) can be rewritten as follows. Find (u, p) ∈ X ×M such that

(3.4) φ(u, p; v, q) = f(v) for all (v, q) ∈ X ×M.

On X we introduce the norm induced by the bilinear form a: ‖u‖X := a(u, u)
1
2 for

u ∈ X . On M we use the L2-norm ‖ · ‖ and on the product space we use the norm

|‖(u, p)‖| = (‖u‖2X + ‖p‖2)
1
2 .

We introduce the notation
√

Γ := sup
v∈X,q∈M

b(v, q)
‖v‖X‖q‖

,
√
γ := inf

q∈M
sup
v∈X

b(v, q)
‖v‖X‖q‖

.(3.5)

Note that Γ, γ are used in (2.2) to denote similar quantities. Below the symbols Γ, γ
always refer to the quantities in (3.5). The infsup condition (3.2) implies γ > 0.
We emphasize that if the bilinear forms a(·, ·) and b(·, ·) correspond to the Stokes
problem (as in (3.9) below), then the infsup constant β from (3.2) does not depend
on any parameters, whereas Γ and γ depend on the parameters ν, α and ξ. The
quantities Γ and γ completely determine the continuity and stability of the bilinear
form φ, as shown below.

Theorem 3.1. For all (u, p), (v, q) ∈ X ×M we have

(3.6) |φ(u, p; v, q)| ≤ 1
2

(
√

1 + 4Γ + 1)|‖(u, p)|‖ |‖(v, q)|‖

and

(3.7) sup
(v,q)∈X×M

φ(u, p; v, q)
|‖(v, q)‖| ≥

1
8

min{1 , γ} |‖(u, p)‖|.

Proof. We define θ := 1
2 (
√

1 + 4Γ + 1) and note that

|φ(u, p; v, q)| = |a(u, v) + b(v, p) + b(u, q)|

≤ ‖u‖X‖v‖X + Γ
1
2 ‖v‖X‖p‖+ Γ

1
2 ‖u‖X‖q‖

≤
(
‖u‖2X +

Γ
θ
‖u‖2X + θ‖p‖2

) 1
2
(
‖v‖2X +

Γ
θ
‖v‖2X + θ‖q‖2

) 1
2

= θ|‖(u, p)‖||‖(v, q)‖|.
This proves the result in (3.6).
For (f, g) ∈ X ′ ×M ′, let (u, p) ∈ X ×M be the solution of

φ(u, p; v, q) = f(v) + g(q) for all (v, q) ∈ X ×M.

The mapping (f, g) → (u, p) is bijective. A standard analysis (e.g., in [8] § 4.1,
[14] § 7.4.1) yields the following sharp bounds on the norms of u and p:

‖u‖X ≤ ‖f‖X′ + 2γ−
1
2 ‖g‖M ′ ,

‖p‖ ≤ γ− 1
2
(
‖f‖X′ + ‖u‖X

)
≤ 2γ−

1
2 (‖f‖X′ + γ−

1
2 ‖g‖M ′).
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Hence

|‖u, p‖| ≤ ‖u‖X + ‖p‖ ≤ 2
(
1 + γ−

1
2
)(
‖f‖X′ + γ−

1
2 ‖g‖M ′

)
= 2
(
1 + γ−

1
2
)(

sup
v∈X

f(v)
‖v‖X

+ γ−
1
2 sup
q∈M

g(q)
‖q‖

)
≤ 4
(
1 + γ−

1
2
)

max{1 , γ− 1
2 } sup

(v,q)∈X×M

f(v) + g(q)
‖v‖X + ‖q‖

≤ 4
(
1 + γ−

1
2
)

max{1 , γ− 1
2 } sup

(v,q)∈X×M

φ(u, p; v, q)
|‖(v, q)‖| .

Let z = γ−
1
2 ∈ (0,∞). A simple computation yields

1
4(1 + z) max{1 , z} ≥

1
8 max{1 , z2} =

1
8

min{1 , z−2}.

This proves the result in (3.7). �

The result in (2.4) shows that the bound in (3.6) is sharp. The inverse of the
infsup constant in (3.7) behaves like O(γ−1) for γ → 0. The same behaviour
‖P−1‖ = O(γ−1) for γ → 0 is observed in (2.5). In this sense, the result in (3.7) is
sharp, too.

The results in Theorem 3.1 show that the condition number

(3.8) C(γ,Γ) :=
4(
√

1 + 4Γ + 1)
min{1 , γ}

can be used as a measure for the well-posedness of the continuous problem (3.4) in
the norm |‖ · ‖|.

We now consider the Stokes problem (1.1) with α ∈ {0, 1}. Note that the unique
solution of this problem does not depend on ξ, since div v ∈ M for all v ∈ X .
Continuity and stability results for problem (1.1) are known in the literature (e.g.,
[8]). However, in the literature the parameters ν and ξ are then treated as fixed
constants (usually ξ = 0). Here we allow these parameters to vary and analyze the
the dependence of the condition number (i.e., the well-posedness) on the parameters
ν and ξ. Hence, for the bilinear forms a and b in (3.3), we now take

a(u, v) := ν(∇u,∇v) + α(u, v) + ξ(div u, div v) for u, v ∈ X,
b(u, q) := (div u, q) for u ∈ X, q ∈M.

(3.9)

Note that b satisfies the infsup condition (3.2) and a is symmetric and X-elliptic.
The norm ‖·‖X depends on the parameters ν, α, ξ. In the next theorem we describe
the dependence of the condition number C(γ,Γ) on the parameters ν, α, ξ. We use
‖ divu‖ ≤ ‖∇u‖ for u ∈ X and the Friedrichs inequality

‖u‖ ≤ cF ‖∇u‖ for all u ∈ X.

Theorem 3.2. The following holds:

C(γ,Γ) ≤ 4(
√

5 + 1)
β2

max{β2 , ν + ξ}
min{1 ,

√
ν + ξ}

=: C0(ν, ξ) if α = 0,(3.10)

C(γ,Γ) ≤ 4(
√

5 + 1)
β2

max{β2 , ν + c2F + ξ}
min{1 ,

√
ν + ξ}

=: C1(ν, ξ) if α = 1,(3.11)

with β defined in (3.2).
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Proof. We take α ∈ [0, 1]. From

(3.12) ‖u‖2X ≤ (ν + αc2F + ξ)‖∇u‖2

and the infsup property (3.2) we obtain

γ ≥ β2

ν + αc2F + ξ
.

Using
‖u‖2X ≥ (ν + ξ)‖ div u‖2

and the Cauchy-Schwarz inequality yields

(3.13) Γ ≤ 1
ν + ξ

.

Using the inequality
√

1 + 4x+ 1 ≤ (
√

5 + 1) max{1 , √x} we obtain

4
√

1 + 4Γ + 1
min{1 , γ} ≤ 4(

√
5 + 1)

max{1 , Γ
1
2 }

min{1 , γ} ≤ 4(
√

5 + 1)
max{1 , 1√

ν+ξ
}

min{1 , β2

ν+αc2F+ξ
}

=
4(
√

5 + 1)
β2

max{β2 , ν + αc2F + ξ}
min{1 ,

√
ν + ξ}

.

Taking α ∈ {0, 1} yields the bounds in (3.10) and (3.11) . �

Corollary 1. We consider a few interesting cases.

• α = 0, ξ = 0. The function ν → C0(ν, 0) behaves like ν−
1
2 for ν ↓ 0 and

hence is unbounded for ν ↓ 0.
• α = 0, ξ = ξ0 > 0. The function ν → C0(ν, ξ0) is bounded for ν ↓ 0, hence

the problem is uniformly well-posed in the norm

(3.14) |‖(u, p)‖| =
(
ν‖∇u‖2 + ξ0‖ div u‖2 + ‖p‖2

) 1
2 .

• α = 1, ξ = 0. The function ν → C1(ν, 0) is unbounded for ν ↓ 0.
• α = 1, ξ = ξ0 > 0. The bound is controlled for ν ↓ 0, hence we have

uniform well-posedness in the norm

(3.15) |‖(u, p)‖| =
(
ν‖∇u‖2 + ‖u‖2 + ξ0‖ divu‖2 + ‖p‖2

) 1
2 .

From these results we see that adding the term (div u, div v) in the variational Stokes
problem makes the problem well-posed in the corresponding natural norm |‖(·, ·)‖|
uniformly for ν ∈ (0, 1]. Although adding the (div u, div v) term does not change
the solution of the Stokes problem, it yields robust (i.e., uniform w.r.t. ν) stability
bounds.

Remark 1. For α = 1 and ν ↓ 0, the Stokes problem is singularly perturbed. As
a well-posed limit (ν = 0, ξ = 0) problem one can take the mixed formulation of
the Poisson equation with Neumann boundary conditions. This limit problem in
variational form uses the space H(div)×M (M as in (3.1)), with norm

(3.16) (u, p)→
(
‖u‖2 + ‖ div u‖2 + ‖p‖2

) 1
2 .

In the analysis of the Stokes problem we use the norm

(3.17) |‖(u, p)‖| =
(
ν‖∇u‖2 + ‖u‖2 + ξ‖ divu‖2 + ‖p‖2

) 1
2 .
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Note that in the limit case ν = 0 the latter norm is equivalent to the norm in (3.16)
only for ξ > 0. In this sense the ∇div term is a natural stabilizing term for the
Stokes problem if ν ↓ 0.

Remark 2. For the case α = 0, ν ↓ 0, ξ = 0, uniform well-posedness with respect to
a special norm can be proved. It is well known that the standard Stokes problem,
(1.1) with ν = 1, ξ = α = 0, is well-posed in the norm (u, p̃) → (‖∇u‖2 + ‖p̃‖2)

1
2

on X ×M . A scaling argument as discussed in the introduction then immediately
yields uniform well-posedness in the (anisotropic) norm

(3.18) |‖(u, p)‖|∗ :=
(
‖∇u‖2 +

1
ν2
‖p‖2

) 1
2 .

It can be shown, using a similar analysis as presented above, that for the corre-
sponding conditon number C∗(γ,Γ) the uniform bound

(3.19) C∗(γ,Γ) ≤ 4

√
1 + 4Γ

ν + 1

min{1 , νγ} ≤ C for ν ∈]0, 1],

holds. The norm |‖ ·‖|∗ in (3.18) has a stronger anisotropy than the norm in (3.14),
and using the latter results in better control of the velocity variable as ν ↓ 0.

4. Finite element discretization using grad-div stabilization

We now consider the discretization of the variational Stokes problem using a
family of pairs of LBB stable finite element spaces Xh ⊂ X, Mh ⊂ M indexed by
some mesh size parameter h. In this section we use standard arguments to derive
a sharp discretization error bound and we show that for ν ↓ 0 taking ξ = ξ0 > 0
instead of ξ = 0 has a clear stabilizing effect.

Before we turn to the discrete Stokes problem we first consider the Galerkin
discretization of the more general variational problem (3.3) or, equivalently, (3.4).
We assume that the finite element pair (Xh,Mh) is LBB stable with a constant β̂
independent of h:

(4.1) inf
qh∈Mh

sup
vh∈Xh

b(vh, qh)
‖∇vh‖‖qh‖

≥ β̂ > 0.

The discrete problem is as follows: find (uh, ph) ∈ Xh ×Mh such that

(4.2) φ(uh, ph; vh, qh) = f(vh) for all (vh, qh) ∈ Xh ×Mh.

We introduce the discrete analog of the quantity γ :

√
γh := inf

qh∈Mh

sup
vh∈Xh

b(vh, qh)
‖vh‖X‖qh‖

.

From (4.1) it follows that γh > 0 holds. For the analysis below we introduce the
formulation of the discrete problem as a linear system in Rn+m. For this we assume
standard bases in Xh and Mh and the corresponding isomorphisms

JX : Rn → Xh, n := dim(Xh), JM : Rm →Mh, m := dim(Mh).
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Let the stiffness matrices A ∈ Rn×n, B ∈ Rm×n, and the mass matrix M̂ ∈ Rm×m
be given by

〈Ax, y〉 = a(JXx, JXy) for all x, y ∈ Rn,
〈Bx, y〉 = b(JXx, JMy) for all x ∈ Rn, y ∈ Rm,
〈M̂x, y〉 = (JMx, JMy) for all x, y ∈ Rm.

(4.3)

We now prove an infsup property of φ on Xh ×Mh.

Lemma 4.1. The following holds:

inf
(uh,ph)∈Xh×Mh

sup
(vh,qh)∈Xh×Mh

φ(uh, ph; vh, qh)
|‖(uh, ph)|‖ |‖(vh, qh)|‖

=
1
2

min{ 2,
√

1 + 4γh − 1 }.

Proof. With B̃ := M̂−
1
2B, we obtain

√
γh := inf

y∈Rm
sup
x∈Rn

〈Bx, y〉
〈Ax, x〉 1

2 〈M̂y, y〉 1
2

= inf
y∈Rm

sup
x∈Rn

〈B̃x, y〉
‖x‖A‖y‖

.

(4.4)

Let L :=
(

I A−
1
2 B̃T

B̃A−
1
2 0

)
. Note that

inf
(uh,ph)∈Xh×Mh

sup
(vh,qh)∈Xh×Mh

φ(uh, ph; vh, qh)
|‖(uh, ph)|‖ |‖(vh, qh)|‖

= inf
z∈Rn+m

sup
w∈Rn+m

〈( I A−
1
2BT M̂−

1
2

M̂−
1
2BA−

1
2 0

)
z, w

〉
‖z‖‖w‖

= inf
z∈Rn+m

sup
w∈Rn+m

〈Lz,w〉
‖z‖‖w‖ = inf

z∈Rn+m

‖Lz‖
‖z‖ = ‖L−1‖−1.

We now apply Lemma 2.2. �

Due to the continuity result (3.6) and the infsup result in the previous lemma
we can prove a discretization error bound using standard arguments.

Theorem 4.2. Let (u, p) be the solution of the continuous problem (3.4) and
(uh, ph) be the solution of the discrete problem (4.2). The following holds:

|‖(u− uh, p− ph)|‖ ≤
(
1 + Ĉ(γh,Γ)

)
min

vh∈Xh,qh∈Mh

|‖(u− vh, p− qh)|‖ ,

with Ĉ(γh,Γ) :=
√

1 + 4Γ + 1
min{ 2,

√
1 + 4γh − 1 } .

(4.5)

Proof. For arbitrary vh ∈ Xh, qh ∈ Mh, define e := u − vh, eh = uh − vh, g :=
p− qh, gh := ph − qh. The Galerkin orthogonality property yields

φ(eh, gh;wh, rh) = φ(e, g;wh, rh) for all (wh, rh) ∈ Xh ×Mh.
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Using this in combination with the continuity and infsup results, we obtain, for
suitable (wh, rh) ∈ Xh ×Mh,

|‖(eh, gh)|‖ ≤ 2
min{ 2,

√
1 + 4γh − 1 }

φ(eh, gh;wh, rh)
|‖(wh, rh)|‖

=
2

min{ 2,
√

1 + 4γh − 1 }
φ(e, g;wh, rh)
|‖(wh, rh)|‖

≤
√

1 + 4Γ + 1
min{ 2,

√
1 + 4γh − 1 }|‖(e, g)|‖.

Now combine this with the triangle inequality |‖(u− uh, p− ph)|‖ ≤ |‖(eh, gh)|‖ +
|‖(e, g)|‖. �

We now consider the Stokes problem; i.e., in the remainder of this section the
bilinear forms a and b are as in (3.9). Note that the bilinear form a(·, ·) depends
on ξ and that opposite to the continuous problem the discrete solution in general
depends on ξ, unless div vh ∈ Mh for all vh ∈ Xh. Thus if one uses a space Xh of
divergence-free finite elements, the discrete solution does not depend on ξ. For the
Stokes problem we have, for all (u, p) ∈ X ×M
1
2

(ν
1
2 ‖∇u‖+ξ 1

2 ‖ div u‖+α 1
2 ‖u‖+‖p‖) ≤ |‖(u, p)‖| ≤ (ν

1
2 +ξ

1
2 )‖∇u‖+α 1

2 ‖u‖+‖p‖.

Using this in combination with Theorem 4.2 yields the discretization error bound

(4.6)

ν
1
2 ‖∇(u− uh)‖+ ξ

1
2 ‖ div(u− uh)‖+ α

1
2 ‖u− uh‖+ ‖p− ph‖

≤ 2(1 + Ĉ(γh,Γ))
(

min
vh∈Xh

{(ν 1
2 + ξ

1
2 )‖∇(u− vh)‖+ α

1
2 ‖u− vh‖}

+ min
qh∈Mh

‖p− qh‖
)
.

We now analyze the dependence of the factor Ĉ(γh,Γ) on the parameters ν, α, ξ
and the mesh size parameter h.

Theorem 4.3. The following holds:

Ĉ(γh,Γ) ≤ 1
4β̂2

(
√

5 + 1)2 max{β̂2 , ν + ξ}
min{1 ,

√
ν + ξ}

=: Ĉ0(ν, ξ) if α = 0,(4.7)

Ĉ(γh,Γ) ≤ 1

4β̂2
(
√

5 + 1)2 max{β̂2 , ν + c2F + ξ}
min{1 ,

√
ν + ξ}

=: Ĉ1(ν, ξ) if α = 1.(4.8)

Proof. We take α ∈ [0, 1]. Note that for x ≥ 0,
√

1 + 4x+ 1 ≤ (
√

5 + 1) max{ 1,
√
x },

√
1 + 4x− 1 ≥ (

√
5− 1) min{ 1, x }.

Hence,

(4.9) Ĉ(γh,Γ) ≤ 1
4

(
√

5 + 1)2 max{1 ,
√

Γ}
min{1 , γh}

holds. Using the Friedrichs inequality, we obtain

‖uh‖X = ν‖∇uh‖2 + α‖uh‖2 + ξ‖ divuh‖2 ≤ (ν + αc2F + ξ)‖∇uh‖2.
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From the LBB property it follows that

(4.10) γh ≥
β̂2

ν + αc2F + ξ
.

From (3.13) we have the bound

(4.11) Γ ≤ 1
ν + ξ

.

Using the results (4.10) and (4.11) in (4.9) and taking α ∈ {0, 1} yields the results
in (4.7), (4.8). �

The bounds for Ĉ(γh,Γ) in Theorem 4.3 are of the same form as the bounds
for C(γ,Γ) in Theorem 3.2. Hence the results in Corollary 1 apply here; i.e.,
Ĉ0(ν, 0) and Ĉ1(ν, 0) are unbounded for ν ↓ 0, whereas for ξ0 > 0 the factors
Ĉ0(ν, ξ0) and Ĉ1(ν, ξ0) are uniformly bounded for ν ↓ 0. Due to Theorem 4.2, this
has direct consequences for the discretization error bounds. To make this more
clear we consider a concrete finite element pair. As an example we take the LBB
stable pair of conforming P1isoP2/P0 finite elements (piecewise linear velocity on a
refined grid / piecewise constant for the pressure). We use standard approximation
properties of these spaces and assume that the solution (u, p) of the Stokes problem
is sufficiently regular. We use the notation ‖ · ‖k for the norm on the Sobolev
space Hk(Ω) (k = 1, 2). The results in (4.6) and Theorem 4.3 yield the following
discretization error bounds for ν ∈ (0, 1]:

• For α = 0, ξ = 0,

(4.12) ν
1
2 ‖∇(u− uh)‖ + ‖p− ph‖ ≤ Cν−

1
2h(ν

1
2 ‖u‖2 + ‖p‖1).

• For α = 0, ξ = 1,

(4.13) ν
1
2 ‖∇(u− uh)‖+ ‖ div(u− uh)‖ + ‖p− ph‖ ≤ Ch(‖u‖2 + ‖p‖1).

• For α = 1, ξ = 0,

(4.14) ν
1
2 ‖∇(u− uh)‖+ ‖u− uh‖+ ‖p− ph‖ ≤ Cν−

1
2 h(ν

1
2 ‖u‖2 + ‖u‖1 + ‖p‖1).

• For α = 1, ξ = 1,

(4.15) ν
1
2 ‖∇(u− uh)‖+ ‖ div(u− uh)‖+ ‖u− uh‖+ ‖p− ph‖ ≤ Ch(‖u‖2 + ‖p‖1).

Note that for small ν the bounds for the case with ∇div-stabilization (ξ = 1) are
significantly better than for the case ξ = 0. These bounds indicate that the larger
the H1-norm of the pressure is compared to the H2-norm of the velocity, the more
important the stabilizing ∇div term is. Also note that for the case with ∇div-
stabilization, the term ‖ div(u− uh)‖ is controlled, wheras for ξ = 0 this is not the
case.

Remark 3. For the case α = 0, ξ = 0, the scaling argument discussed in the
introduction immediately yields a (sharp) discretization error bound. For the
P1isoP2/P0 finite elements this results in (cf. (1.2))

(4.16) ‖∇(u− uh)‖ + ν−1‖p− ph‖ ≤ Ch(‖u‖2 + ν−1‖p‖1).

For small ν values this bound is better than the one in (4.12) but worse than the
result for the problem with ∇div-stabilization in (4.13).
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Remark 4. Using the scaling ξ̃ = ξ
∆t , ν̃ = ν

∆t , ũ = ∆t u, the results for α = 1
in (4.14) and (4.15) immediately yield corresponding results for the transient-like
Stokes problem in (1.3). Let (ũh, ph) be the discrete solution that results from
the Galerkin discretization using P1isoP2/P0 finite element spaces applied to (1.3).
The results in (4.14), (4.15) can be reformulated as

ν̃
1
2 ‖∇(ũ− ũh)‖+

1√
∆t
‖ũ− ũh‖+

√
∆t‖p− ph‖

≤

 C h√
ν̃∆t

(ν̃
1
2 ‖ũ‖2 + 1√

∆t
‖ũ‖1 +

√
∆t‖p‖1), if ξ = 0,

Ch( 1√
∆t
‖ũ‖2 +

√
∆t‖p‖1) if ξ = 1.

(4.17)

From the numerical experiments in §6 it can be seen that the results in (4.14) and
(4.15) are fairly sharp and hence the results in (4.17) are sharp, too. These results,
however, are too pessimistic for ∆t � 1 in the context of unsteady problems. As
was pointed out in the introduction, to obtain more reliable error bounds, other
techniques, which take into account the evolutionary nature of the problem, should
be used.

Remark 5. Clearly if we introduce the ∇div term, we have to chose a reasonable
value for the parameter ξ. Numerical experiments have shown that the effect of
the stabilization is not very sensitive with respect to this choice, although ξ should
not be too large. An indication for a reasonable value can be obtained as fol-
lows. Assume that minvh∈Xh ‖∇(u − vh)‖ ∼ minqh∈Mh

‖p − qh‖ (for our example
of P1isoP2/P0 FE this is the case if ‖u‖2 ∼ ‖p‖1), and assume that α = 0 and ν

is sufficiently small (actually ν ≤ β̂2 already suffices). Then the balance between
velocity and pressure terms in the right-hand side of (4.6) is preserved if ξ = O(1).
The constant Ĉ in (4.6) also depends on ξ. The choice ξ = β̂2 minimizes Ĉ. More-
over, under certain assumptions on the domain Ω and triangulation it is known that
β̂2 = O(1) holds (cf. [6]). Therefore, with the above assumptions, the choice ξ ∼ β̂2

is reasonable. Numerical experiments presented in [12] with common benchmark
problems (driven cavity and backward facing step) show that for ξ ∈ [0.1, 0.2] one
obtains good results. Note that for a unit square and P1isoP2/P0 FE, we have
β̂ ≈ 0.44.

5. Preconditioning the discrete problem

In this section we discuss the iterative solution of the discrete problem (4.2).
We restrict ourselves to iterative methods of inexact Uzawa type. For this class of
methods applied to the stationary Stokes problem, convergence analyses are known
(e.g., [1], [3]). Also for other iterative methods based on conjugate or minimal
residual techniques there are convergence analyses available (cf. [16], [18] and the
references therein). In all these analyses one assumes fixed values for ν and ξ, usu-
ally ξ = 0, and one does not analyze the dependence of the convergence behaviour
on variation in these parameters. Below, for the inexact Uzawa method we study
how the rate of convergence depends on variation in the parameters ν, ξ, and α.

The effect of adding the term (div u, div v) on the convergence speed of gradient
type methods for solving the saddle point problem associated to (4.2) is analyzed
in [9]. In the terminology of [9] the addition of the term (div u, div v) yields a corre-
sponding augmented Lagrangian. In [9] it is shown that gradient type of methods,
like the exact Uzawa method, have a higher rate of convergence when applied to
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the problem with an augmented Lagrangian. In this section we will draw a similar
conclusion for the inexact Uzawa method.

Finally note that for the case ν = 1, ξ = 0, α > 0 (the transient-like Stokes
problem), robustness results concerning the convergence of Uzawa-type methods
are given in [2], [11].

We consider a linear system of the form

(5.1)
(
A BT

B 0

)(
x
y

)
=
(
f
g

)
,

with stiffnes matrices A and B as in (4.3). We consider a method of an inexact
Uzawa type as analyzed in [3], [23]. For this we assume symmetric positive definite
preconditioners QA of A and QS of the Schur complement S := BA−1BT . We
assume that QA and QS are scaled such that QA − A and QS − S are positive
semidefinite. Furthermore, let constants σA, σS ∈ [0, 1) be such that

(1− σA)〈QAx, x〉 ≤ 〈Ax, x〉 for all x ∈ Rn,(5.2)
(1 − σS)〈QSy, y〉 ≤ 〈Sy, y〉 for all y ∈ Rm.(5.3)

Note that since QA and QS are positive definite, such σA and σS always exist. The
inexact Uzawa method is as follows: for x0 ∈ Rn, y0 ∈ Rm given, (xi, yi), i =
1, 2, . . . is determined by

xi+1 = xi +Q−1
A (f − (Axi +BT yi)),

yi+1 = yi +Q−1
S (Bxi+1 − g).

(5.4)

In [3] it is shown that for the error ei :=
(
x− xi
y − yi

)
the inequality

[|ei|] ≤ ρi[|e0|] for i = 0, 1, 2, . . .

holds, where [| · |] is a suitable problem-dependent norm and

(5.5) ρ =
σS(1− σA) +

√
σ2
S(1− σA)2 + 4σA
2

≤ 1− 1
2

(1− σS)(1− σA).

From these results we see that one obtains fast convergence of the inexact Uzawa
method if one uses good preconditioners QA and QS .

For our analysis we introduce the discrete analog of the quantity Γ:√
Γh := sup

vh∈Xh,qh∈Mh

b(vh, qh)
‖vh‖X‖qh‖

.

Lemma 5.1. Let M̂h be the mass matrix as in (4.3) and QS := ΓhM̂h, then QS−S
is positive semidefinite and for σS := 1− γh

Γh
the inequality (5.3) holds.

Proof. Note that with B̃ := M̂−
1
2B,√

Γh = sup
x∈Rn,y∈Rm

〈Bx, y〉
〈Ax, x〉 1

2 〈M̂y, y〉 1
2

= sup
x∈Rn,y∈Rm

〈B̃x, y〉
‖x‖A‖y‖

.

(5.6)

The relations (4.4), (5.6), and Lemma 2.1 imply

γhI ≤ B̃A−1B̃T ≤ ΓhI,
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and thus for QS = ΓhM̂h,
γh
Γh
QS ≤ S ≤ QS .

Thus, QS − S is positive semidefinite and (5.3) holds with σS = 1− γh
Γh

. �

The results in Lemma 5.1 and (5.5) show that for fast convergence of the Uzawa
method, it is favourable to have small σS values, i.e., small values for Γhγ−1

h . We
now consider the Stokes problem; i.e., in the remainder we assume that the bilinear
forms a and b are as in (3.9). We analyze, for α ∈ {0, 1}, the dependence of Γhγ−1

h

on the parameters ξ, ν, h. We assume that the finite element spaces Xh are such
that the inverse inequality

(5.7) ‖∇vh‖ ≤ cIh−1‖vh‖ for all vh ∈ Xh

holds, with a constant cI that does not depend on h.

Lemma 5.2. The following holds:
Γh
γh
≤ β̂−2 if α = 0,(5.8)

Γh
γh
≤ β̂−2 ν + c2F + ξ

ν + c−2
I h2 + ξ

if α = 1.(5.9)

Proof. Using the inverse inequality, it follows that

‖uh‖2X = ν‖∇uh‖2 + α‖uh‖2 + ξ‖ div uh‖2 ≥ (ν + αc−2
I h2 + ξ)‖ divuh‖2.

Hence we get, due to b(vh, qh) ≤ ‖ div vh‖‖qh‖,

(5.10) Γh ≤
1

ν + αc−2
I h2 + ξ

.

A lower bound for γh is given in (4.10). Now combine these bounds for Γh and γh
and take α ∈ {0, 1}. �

From the results in (5.8) and Lemma 5.1 it follows that for α = 0 and for all ξ
values, the scaled mass matrix QS = ΓhM̂h is a good preconditioner for the Schur
complement. For this choice we have 1−σS > c0 > 0 with a constant c0 independent
of ν and h.

For the case α = 1, the result in (5.9) yields

(5.11)
Γh
γh

= O(h−2) for h ↓ 0, ν ≤ h2, ξ = 0,

hence a rapid growth for h→ 0 and sufficiently small ν. In this case a simple scaled
mass matrix is not appropriate and one needs special preconditioners for the Schur
complement as discussed in [2], [11], [5]. For α = ξ = 1, we have

(5.12)
Γh
γh
≤ 2 + c2F

2 + c−2
I h2

for all ν ∈ (0, 1],

and thus for the scaled mass matrix we have (as for the case α = 0) 1−σS > c0 > 0
with a constant c0 independent of ν and h.

Remark 6. We apply the robustness result for the case α = ξ = 1 to the transient-
like problem (1.3) using the scaling argument discussed in the introduction. Let

L =
(
A BT

B 0

)
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be the finite element stiffness matrix as in (5.1) corresponding to the original prob-
lem (1.1) for the case α = ξ = 1. Its Schur complement is denoted by S. From the
analysis above we have that, uniformly for h, ν ∈ (0, 1], the scaled mass matrix QS
is a good preconditioner for S (Lemma 5.1).

The same finite element discretization applied to problem (1.3) with ξ̃ = 1
∆t ,

ν̃ = ν
∆t yields the stiffness matrix

Lt =
(

1
∆tA BT

B 0

)
with Schur complement St = ∆tS. Hence, uniformly for h, ν ∈ (0, 1] and ∆t ∈
(0, 1], the scaled mass matrix ∆tQS is a good preconditioner for St.

Besides a good preconditoner QS for the Schur complement, one also needs a
preconditioner QA of A. The stiffness matrix A is given by

〈Ax, y〉 = ν(∇JXx,∇JXy) +α(JXx, JXy) + ξ(div JXx, div JXy) for all x, y ∈ Rn,
with JX : Rn → Xh the finite element isomorphism. For the case ξ = 0 one can use
a multigrid method as a preconditioner for A. It is known ([13]) that a standard
multigrid method results in a precondioner QA of A with (1 − σA)QA ≤ A ≤ QA
with a constant σA < 1 independent of h, ν ∈ (0, 1], α ≥ 0. Hence, for the case
ξ = 0 (no stabilization) a good (i.e., robust w.r.t. variation in the parameters)
preconditioner for A is known.

Opposite to this, a robust preconditioner QA of A for the case with ∇div-
stabilization (ξ = 1) is an open problem. For ξ = 1 additional stiffness is introduced
due to the div operator which in general has a large kernel. A suitable robust pre-
conditioner for this case is a topic of current research. Techniques presented in [17]
may be applicable in this setting.

Summarizing, we have the following results concerning the convergence of the
inexact Uzawa method. For fast convergence one needs good (robust w.r.t. variation
in parameters) preconditioners of S and A. We restrict ourselves to the cases
ξ ∈ {0, 1}, α ∈ {0, 1}:

• ξ = α = 0: the scaled mass matrix QS is a good preconditioner for S.
Multigrid is a good preconditioner for A.
• ξ = 0, α = 1: the preconditoner QS is not robust (for ν ≤ h2 ↓ 0).

More sophisticated preconditioning techniques which lead to robust pre-
conditoners, like the methods in [2, 11], should be used. Multigrid is a
good preconditioner for A.
• ξ = 1, α ∈ {0, 1}: the scaled mass matrix QS is a good preconditioner for
S. A robust preconditioner for A is not yet known.

6. Numerical experiments

As a test example we take the Stokes equations (3.3) on Ω = (0, 1)× (0, 1). The
right-hand side f is taken such that the continuous solution is

u1(x, y) = 4(2y − 1)x(1 − x),
u2(x, y) = −4(2x− 1)y(1− y),
p(x, y) = 3(x3 + y3 − 0.5).

Note that the continuous solution is independent of the parameters ν, α. For the
discretization we use a uniform triangulation with mesh size h. For Xh ×Mh we
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take the P1isoP2-P0 finite element pair (piecewise-constant pressure and piecewise-
linear continuous velocity on a once refined triangulation). This pair is known to
be LBB stable, i.e., condition (4.1) holds.

The discrete problem is solved using the inexact Uzawa method from the previous
section. For the Schur complement preconditioner QS we take the pressure mass
matrix (indentity in our case) scaled by (ν+c−2

I h2
uα+ξ)−1, cf. (5.10). Here hu = h

2

is the size of velocity element. We take cI = 2
√

2 for the constant from (5.7). This
value can be found from a spectral upper bound for the discrete Laplacian in a
unit square. If a reasonable bound for cI is not available, the term c−2

I h2
uα can be

ignored. This will result in a smaller value of 1− σS in (5.3).
For the preconditioner QA we use a standard multigrid V-cycle method. The

prolongations and restrictions are the canonical ones. We used two pre- and two
post-smoothings with a symmetric block-Gauss-Seidel iteration.

For the stopping criterion in the inexact Uzawa iteration (5.4), we take a reduc-
tion of the relative residual by at least a factor 105. To illustrate the performance
of the solver, we show in Tables 6.1–6.2 Niter, the total number of inexact Uzawa
iterations required to satisfy the stopping criterion. As was discussed in the previ-
ous section, the quantities σA and σS defined in (5.2)–(5.3) characterize the rate of
convergence of (5.4). An estimate for σS was obtained in Lemma 5.1. The value of
σA depends on the performance of the multigrid method for the velocity problem,
which defines QA. The values ψcd in the tables are estimates for the contraction
number of the multigrid method. Since we use two iterations of the multigrid
method for solving the velocity problem, we have σA ≈ ψ2

cd.
Tables 6.1 and 6.2 present error norms and convergence data for the problem

with α = 0 solved on meshes with h = 1
32 and h = 1

64 , respectively. For the
problem without ∇div stabilization (ξ = 0), the O(ν−1) dependence of the error
in velocity as predicted by our theory is clearly seen. For the stabilized problem
(ξ = 0.1), this dependence is much milder (analytical estimate was O(ν−

1
2 )). Note

Table 6.1. Dependence on ν: h = 1/32, α = 0

viscosity

Parameter Quantity 1 10−2 10−4

‖∇(u− uh)‖ 5.0e− 2 4.4e− 0 4.0e+ 2
‖u− uh‖ 4.1e− 4 3.7e− 2 3.7e− 0

ξ=0 ‖p− ph‖ 3.5e− 2 3.5e− 3 3.5e− 3
Niter 38 38 38
ψcd 0.06 0.06 0.06

‖∇(u− uh)‖ 4.7e− 2 3.8e− 1 5.5e− 1
‖u− uh‖ 3.8e− 4 3.4e− 3 5.0e− 3

ξ=0.1 ‖p− ph‖ 3.8e− 2 3.8e− 3 3.4e− 3
Niter 36 13 312
ψcd 0.06 0.30 0.96

Niter—total number of inexact Uzawa iterations
ψcd—convergence factor in the MG-preconditioner for A



1716 M. A. OLSHANSKII AND A. REUSKEN

Table 6.2. Dependence on ν: h = 1/64, α = 0

viscosity

Parameter Quantity 1 10−2 10−4

‖∇(u− uh)‖ 2.5e− 2 2.0e− 0 2.0e+ 2
‖u− uh‖ 1.0e− 4 9.5e− 3 9.5e− 1

ξ=0 ‖p− ph‖ 1.7e− 2 1.2e− 3 1.2e− 3
Niter 39 36 34
ψcd 0.06 0.06 0.06

‖∇(u− uh)‖ 2.4e− 2 1.8e− 1 2.5e− 1
‖u− uh‖ 9.8e− 5 8.5e− 4 5.0e− 3

ξ=0.1 ‖p− ph‖ 1.9e− 2 1.9e− 3 1.7e− 3
Niter 37 12 414
ψcd 0.06 0.34 0.98

Niter—total number of inexact Uzawa iterations
ψcd—convergence factor in the MG-preconditioner for A

that the error in pressure is insensitive both to viscosity and stabilization, which is
in agreement with (4.16) (for ξ = 0) and with (4.13) (for ξ > 0). Comparing results
from Tables 6.1 and 6.2, we observe approximately O(h) convergence in velocity
gradients and in pressure and O(h2) in velocity, as expected from theory. The slow
convergence of the Uzawa method for stabilized equations with small ν is caused
by the poor convergence of the multigrid method for the velocity problem (see the
values of ψcd). It is clear that in practice (for small ν values) this multigrid solver

Table 6.3. Dependence on ν: h = 1/64, α = 1

viscosity

Parameter Quantity 1 10−2 10−4

‖∇(u− uh)‖ 2.5e− 2 2.0e− 0 1.7e+ 2
‖u− uh‖ 1.0e− 4 9.3e− 3 7.6e− 1

ξ=0 ‖p− ph‖ 1.7e− 2 2.8e− 3 1.6e− 1
Niter 39 124 3829
ψcd 0.05 2.6e− 2 1.7e− 3

‖∇(u− uh)‖ 2.4e− 2 1.9e− 1 3.6e− 1
‖u− uh‖ 9.8e− 5 8.4e− 4 1.6e− 3

ξ=0.1 ‖p− ph‖ 1.9e− 2 1.9e− 3 1.7e− 3
Niter 37 20 217
ψcd 0.05 0.34 0.97

Niter—total number of inexact Uzawa iterations
ψcd—convergence factor in the MG-preconditioner for A
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should not be used. An efficient alternative for this multigrid solver is a topic of
current research.

In the Table 6.3 we show results for α = 1. In this case, as predicted by the
results in (4.14), (4.15), for small ν values due to the ∇div term, one obtains much
smaller discretization errors both for pressure and velocity. We also observe a strong
deterioration of the convergence of the inexact Uzawa method for the case ξ = 0.
This is probably due to the fact that for ν → 0, h → 0 the scaled mass matrix is
not a good preconditioner for the Schur complement (cf. (5.11) and the discussion
in Section 5).

Concluding remarks

We summarize the effect of ∇div stabilization. For the continuous problem,
the stabilization does not change the solution but enhances the stability of the
corresponding bilinear form. For the case ξ = ξ0 > 0, the problem is uniformly (for
ν ↓ 0) well-posed in the natural norm (3.14).

For finite element discretization, stabilization changes the discrete solution and
results in better error bounds. For example, for the P1isoP2/P0 finite elements
we have (with α = 0) the sharp bound ‖∇(u − uh)‖ ≤ Ch(‖u‖2 + ν−1‖p‖1) for
ξ = 0 and ‖∇(u − uh)‖ ≤ Cν−

1
2 h(‖u‖2 + ‖p‖1) for ξ = 1. Our analysis does not

yield sharp discretization error bounds for a time-discretized problem as in (1.3) if
∆t ↓ 0.

The ∇div stabilization influences the convergence behaviour of the inexact
Uzawa iterative solver . The main results are summarized at the end of Section 5
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