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a b s t r a c t

In this paper the grad–div stabilization for the incompressible Navier–Stokes finite element approxima-
tions is considered from two different viewpoints: (i) as a variational multiscale approach for the pres-
sure subgrid modeling and (ii) as a stabilization procedure of least-square type. Some new error
estimates for the linearized problem with the grad–div stabilization are proved with the help of norms
induced by the pressure Schur complement operator. We discuss the stabilization parameter choice aris-
ing in the frameworks of least-square and multiscale methods and consider assumptions which allow to
relate both approaches.
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1. Introduction

Numerical simulation of laminar and turbulent incompressible
flows is an important subtask in many industrial applications
and remains within the focus of intensive scholar research. Incom-
pressible viscous flows of a Newtonian fluid are modeled by the
system of the Navier–Stokes equations, which read: Given a
bounded, connected domain X � Rd ðd ¼ 2;3Þ with a piecewise
smooth boundary @X, the simulation time T, and a force field
f : ð0; T� �X ! Rd, find a velocity field u : ð0; T� �X ! Rd and a
pressure field p : ð0; T� �X ! R such that

@u
@t
� mDuþ ðu � rÞuþrp ¼ f in ð0; T� �X; ð1Þ

divu ¼ 0 in ½0; T� �X; ð2Þ
ujt¼0 ¼ u0 in X; ð3Þ

where m > 0 is the kinematic viscosity coefficient. Some boundary
conditions have to be imposed on @X to obtain a closed set of
equations.
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Among various discretization techniques for the Navier–Stokes
equations the finite element (FE) method is one of the most popu-
lar and mathematically sound variants. Nevertheless, it is well-
known that FE methods for (1)–(3) may suffer from several sources
of instabilities. One is a possible incompatibility of pressure and
velocity FE pairs. A remedy is a choice of FE spaces passing the
inf–sup or LBB condition [8] or the use of pressure stabilizing tech-
niques [25]. Another source of instabilities stems from domination
of advection terms over viscous terms, which is typically character-
ized by large mesh Reynolds numbers. This shortcoming can be
overcome to some extent by a variety of stabilizing techniques,
including streamline-upwind Petrov–Galerkin, the use of resid-
ual-free bubbles enrichment, local projection stabilization, and
interior-penalty methods, see, e.g. [6,10–12]. There exist several
variants of stabilized FE methods of arbitrary accuracy order which
simultaneously suppress instabilities caused by both, dominating
advection and non-LBB-stable FE spaces, see, e.g. [14,18,24,26]. Be-
sides being widely used these methods enjoy nowadays a solid
mathematical foundation, e.g. [44].

While the instability caused by dominating advection terms can
be related to the failure of a given mesh to resolve sharp layers
(small scales) in velocity, there is another less well-studied insta-
bility source in the Galerkin discretization method related to a pos-
sible poor resolution of pressure. Due to connections between
variables already present in the linear Stokes problem, the loss of
accuracy in pressure may destructively affect the velocity approx-
imation in a way that Velocity Error � Re � Pressure Error, cf. [41]
and Remark 8. In laminar flows, the kinematic pressure is often a
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(much) more smooth function than the velocity; hence this insta-
bility phenomenon is less pronounced, especially if equal-order
discretizations are applied to model flows with moderate Reynolds
numbers. This can be a reason why the phenomenon has not
drawn much attention in the FE literature until recently. If inf–
sup stable elements are used, then the LBB condition places a
strong link between velocity and pressure degrees of freedom. This
condition roughly implies that, for higher order elements, the poly-
nomial degree of pressure approximations is less than the polyno-
mial degree of velocity approximations. In this case the pressure
may be under-resolved by lower order polynomials and an addi-
tional modeling for suppressing the related instability is needed
[7,20,29,40]. The situation becomes even more critical if the formu-
lation of the Navier–Stokes equations involves the Bernoulli pres-
sure variable3. The Bernoulli pressures exhibit the same complex
dynamic as velocities and if a mesh fails to resolve it, an additional
stabilization is vital [30,31,40]. Such instabilities can be suppressed
with the grad–div stabilization introduced below.

Assume a finite element partition fThg of X and conforming FE
spaces for velocities and pressures Vh and Qh. Consider the semi-
discrete version of (1)–(3): Find fuh; phg 2 Vh �Qh 8t 2 ð0; T�
solving

@uh

@t
;vh

� �
þ mðruh;rvhÞ þ ððuh � rÞuh;vhÞ � ðph;divvhÞ

þ ðqh;divuhÞ þ
X

K2Th

cK

Z
K

divuhdivvh dx

¼ ðf;vhÞ 8fvh; qhg 2 Vh �Qh; 8t 2 ð0; T�: ð4Þ

We use the notation (�, �) for the scalar product in
L2ðXÞk; k ¼ 1; 2; . . .. The choice of element dependent parameters
cK P 0 defines the last term on the left-hand side of (4); cK ¼ 0
for all elements K corresponds to the plain Galerkin method. Adding
such a term is known as the grad–div stabilization (the name reflects
the fact that adding �rcdivu with varying c to (1) can be seen as
the continuous counterpart of the stabilization). Parameters cK are
constant on each element and each time t 2 ð0; T�, but may in gen-
eral depend on t and the discrete solution uh; ph, leading in the lat-
ter case to a non-linear stabilization.

Remark 1. To focus the discussion and analysis below we inten-
tionally do not include any other stabilization terms in (4) and
further on. However this still may be needed in practice in order to
stabilize the advection operator and/or allow arbitrary velocity–
pressure FE pairs. In fact, including such terms does not alter the
main results and conclusions of this paper.

Generally speaking, adding the penalization of the continuity
constraint to the FE formulation is not a new idea at all. These terms
are part of the streamline-upwinding Petrov–Galerkin method
(SUPG) in [18,24]. However, in practice these terms are often omit-
ted, and until recently it was not clear if they are needed for technical
reasons of the analysis of SUPG type methods only or play an impor-
tant role in computations. The role of the grad–div stabilization was
again emphasized in recent studies of (stabilized) FE methods for
incompressible flow problems, see [7,29,37,38,40,41,46], also in
conjunction with the rotation form in [30,31,40]. Its relation to the
variational multiscale approach was revealed in [14,22]. In particu-
lar, numerical studies in [29] and [31] show that the grad–div stabil-
ization is highly important for the practical use of some turbulence
models (both with convection and rotation forms of non-linearities).
3 A d i f f e r e n t f r o m ( 1 ) f o r m u l a t i o n i s b a s e d o n t h e i d e n t i t y
ðu � rÞu ¼ rotu� uþr u2

2 and P ¼ u2

2 þ p as the new pressure variable (Bernoulli
pressure) leading to what is known as the rotation form of the N.-S. eqs. This form is
widely used in turbulence modeling. For example, a popular and well-mathematically
supported NS-alpha model [17] of turbulence uses the rotation form.
At the same time, the right choice of parameters cK remains a contro-
versial issue. Few receipts can be found in the literature, but the
question of there relevance and optimality remains open.

In this paper, the grad–div stabilization for the incompressible
Navier–Stokes finite element approximations is considered from
two different viewpoints:

(i) as a variational multiscale approach for the pressure subgrid
modeling and

(ii) as a stabilization procedure of least-square type.

We discuss the design of parameters cK arising in the frameworks
of least-square and multiscale methods and look for assumptions
which allow to relate both approaches. In particular, we show that
currently adopted assumptions in the multiscale framework lead
to some inconsistency in the choice of c’s. Using the least-square
framework we prove an error estimate for the grad–div stabilized fi-
nite element method applied to the linearized Navier–Stokes prob-
lem. Moreover, with the help of norms induced by the pressure
Schur complement operator we show that, in the Stokes case, the
estimate is optimal in a certain sense. The estimate leads to an ‘opti-
mal’ choice of cK , which is based, however, on higher-order norms of
the unknown continuous solution. To obtain computationally feasi-
ble formulas we introduce different modeling assumptions. Doing
this we are able to show the interrelation of different receipts known
from the literature, to identify the possible limitations of their appli-
cability and to deduce few improved formulas.

As a prototypical model for our studies we adopt the steady lin-
earized Navier–Stokes problem (the Oseen problem) with homoge-
neous Dirichlet boundary conditions given by:

� mDuþ a � ruþrp ¼ f in X;

divu ¼ 0 in X;

u ¼ 0 on @X:

ð5Þ

The mean value condition
R

X pdx ¼ 0 should be imposed to make
the pressure solution unique; a is a given approximation of the
solution from the previous time step or non-linear iteration. For
the sake of analysis we assume a 2 L1ðXÞd; diva ¼ 0.

The remainder of the paper is organized as follows: In Section 2,
we discuss the grad–div stabilization as a subgrid pressure model
in the framework of variational multiscale methods. Then, Section
3 provides refined error estimates of the grad–div stabilized meth-
od for linearized problems of Stokes and Oseen type. The problem
of numerical dissipation and mass balance for grad–div terms is
discussed in Section 4. Finally, some numerical experiments for
the Oseen and the Navier–Stokes problem are given in Section 5.
2. Grad–div stabilization and the subgrid modeling

In this section, the grad–div stabilization is observed as a sub-
grid pressure model in the framework of the variational multiscale
method of Hughes and coauthors [2,27,28]. We will show that cur-
rent models known from the literature lead, however, to a some-
what questionable conclusion for the unresolved subgrid
pressure behavior and hence to a possibly inconsistent design of
c’s. Define the following spaces

V :¼ fv 2 H1ðXÞdjv ¼ 0 on @Xg; Q :¼
(

q 2 L2ðXÞj
Z

X
qdx ¼ 0

)

and the bilinear form

aðu; p; v; qÞ ¼ mðru;rvÞ þ ða � ru;vÞ � ðp;divvÞ þ ðq;divuÞ:
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The weak formulation of the Oseen problem (5) reads: Given
f 2 L2ðXÞd find u 2 V and p 2 Q such that

aðu;p; v; qÞ ¼ ðf;vÞ 8 v 2 V; q 2 Q: ð6Þ

For the discretization of (5) we introduce a family Th of triangula-
tions of X (triangles or quadrilaterals in 2D, tetrahedra or hexahe-
dral elements in 3D) without hanging nodes, parameterized with
mesh size parameter h ¼maxK2ThK , and hK ¼ diamðKÞ. We use con-
forming finite elements with piecewise polynomial functions. This
results in FE spaces Vh and Qh for velocity and pressure.

Consider the orthogonal decomposition of pressure and velocity
spaces (e.g., H1-orthogonal for u and L2-orthogonal for p):

V ¼ Vh 	 eV; Q ¼ Qh 	 eQ:
Let fu; pg be the strong solution of the Oseen equations (5). We
have the decomposition of the solution on resolved and unresolved
parts:

u ¼ uh þ ~u; p ¼ ph þ ~p: ð7Þ

In general, uh; ph in (7) are unknown and we are looking for equa-
tions which allow us to find an accurate approximation to uh; ph.
Testing the weak formulation of the Oseen problem (6) with arbi-
trary fvh; qhg 2 Vh �Qh we get

aðuh;ph;vh;qhÞþað~u;~p;vh;qhÞ¼ ðf;vhÞ 8 vh 2Vh; qh 2Qh: ð8Þ

With h�; �i standing for a L2-duality pairing between V �Q and
V� �Q, and L� for the adjoint of the Oseen operator

L :¼
�mDþ a � r r
�div 0

� �
; ð9Þ

Eq. (8) can be rewritten as

aðuh; ph; vh; qhÞ þ h~u; ~p;L� ½vh; qh�
ti ¼ ðf;vhÞ 8 vh 2 Vh; qh 2 Qh:

ð10Þ

Furthermore, since uh;ph are polynomials in any K 2 Th and fu; pg
is the strong solution, it holds

L
~u
~p

� �
¼

f
0

� �
�L

uh

ph

" #
in K ð11Þ

for all K 2 Th. To ensure the well-posedness of (11) on each ele-
ment K as a problem for unresolved scales one has to supply some
additional conditions, for example

~uj@K ¼ ðu� uhÞj@K and
Z

K

~pdx ¼
Z

K
ðp� phÞdx: ð12Þ

Up to this point (5) is clearly equivalent to the set of Eqs. (10)–(12).
Now the intention is to obtain from (10) an equation only for the
resolved scales uh; ph in a way that the influence of the unresolved
scales through the second term in (10) is modeled. To this end, one
typically accepts several simplifications in order to deduce from
(11) simple expressions for ~u and ~p in terms of resolved scales
residual ½f; 0�t �L½uh; ph�t . Below we outline some typical model-
ling assumptions:

Assumption 1. Following [9,22,27,28,35,39] one may assume that
the unresolved velocity vanishes on element boundaries:

~uj@K ¼ 0: ð13Þ

It is also natural to assume the zero mean of the unresolved pres-
sure on every K:Z

K

~pdx ¼ 0: ð14Þ

Assumption (13) is rather strong, although in [43] it is argued
that, for small enough hK , this should not introduce a significant
modeling error. In some variational multiscale models a similar
assumption is made less explicit by neglecting boundary integrals
arising in integration by parts relations, as for example in the sec-
ond term in (10).

Note that (11) with (13),(14) is a well-posed problem for ~u and ~p.
Another common simplification is assuming that, for all ele-

ments K 2 Th, the Oseen operator L from (9), which has a natu-
ral 2 � 2 block structure, can be reasonably well-approximated by
a block-diagonal one, see e.g. [2,14,22]. This is the same as
admitting:

Assumption 2. ~u depends only on the residual of momentum
equation in ½f; 0�t �L½uh; ph�t and ~p depends only on the residual
of the continuity equation:

~u
~p

� �



Lu 0
0 Lp

� �
f
0

� �
�L

uh

ph

" # !
for all K 2Th: ð15Þ

The simplification coming from (15) is not completely ad hoc:
for example, from the theory of algebraic saddle point problems
it is well-known that, multiplying L with such block-diagonal
approximations, leads to a matrix with well-clustered eigenvalues
if L�1

u and L�1
p are good approximations to velocity (1,1)-block of

L and the pressure Schur complement operator, respectively, cf.
[45]. Thus it is reasonable to set

Lu :¼ ð�mDþ a � rÞ�1 and

Lp :¼ �ðdiv ð�mDþ a � rÞ�1rÞ�1
; ð16Þ

where ð�mDþ a � rÞ�1 is the solution operator for the velocity con-
vection–diffusion problem in element K with boundary conditions
from (13).

The final modeling step consists of replacing the operators Lu

and Lp in (15) on each element K by the scaled identity operators
sK I and cK I where sK and cK are element-dependent constants
[9,27,28]. This leads to:

Assumption 3. Relations (15) are replaced by the model:

~u 
 sKðf þ mDuh � a � ruh �rphÞ; ~p 
 cK divuh for all K 2Th:

ð17Þ

Thanks to (13), (17) and the orthogonality ðr~u;ruhÞ ¼ 0 we get
from (10) the following discrete model: Find fuh; phg 2 Vh �Qh

solving

aðuh;ph; vh; qhÞ þ
X

K2Th

cK

Z
K

divuh divvh dxþ
X

K2Th

sK

�
Z

K
ð�mDuh þ a � ruh þrph � fÞ � ða � rvh þrqhÞdx

¼ ðf;vhÞ 8 vh 2 uh; qh 2 Qh: ð18Þ

The solution to (18) can be observed as an approximation to
fuh; phg from (7) up to the modeling Assumptions 1–3. The third
term in (18) models the effect of the unresolved velocity on the re-
solved velocity and pressure. Its stabilizing effect is well-known for
a long time and has been studied within the theory of SUPG-meth-
ods [11,18,26]. The second term in (18) corresponds to the modeling of
the effect of unresolved pressure and coincides with the grad–div
stabilization.

One possible way to define the parameters sK and cK on element
K is based on ensuring

sK 
 kLuk and cK 
 kLpk;

with Lu and Lp from (16). The operator norms are understood as
the norms on L2ðKÞ, see [14]. Letting a be a constant vector on an
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element K, the Fourier analysis leads to the choice (cf. Remark 1 in
[14]): sK ¼ ðc1mh�2

K þ c2kakK h�1
K Þ

�1 and

cK ¼ c3mþ c4kakK hK : ð19Þ

with some constants c1; . . . ; c4.
Note that the order of velocity and pressure finite elements was

never taken into account in the considerations above. In particular,
the design of cK from (19) is assumed for both, equal-order pairs
and LBB stable elements of any order. This leads, however, to the
following inconsistency: From the condition divu ¼ 0 and (17) we
get

~p 
 �cK div ~u in K; 8K 2Th: ð20Þ

If cK is independent of a relation between the velocity and pressure
elements, than k~pk is completely determined by the resolution
properties of the resolved-scale velocity space Vh. This contradicts
to the possibility of using both, equal order and different order
(LBB stable) elements, for Vh �Qh with the same sets of parameters.
As an example, consider the equal order Pk � Pk and the Taylor–
Hood Pk � Pk�1 pairs for some k P 2 and the same fixed quasi-uni-
form triangulation Th, i.e. hK 
 h for all K 2Th. Let also kakK ¼ Oð1Þ
for all K 2Th, yielding cK 
 c for all K 2Th for some constant
c > 0. Thanks to (20)

k~pk 
 ckdiv ~uk: ð21Þ

The subgrid velocity ~u (the projection of u on eV) is the same func-
tion for both FE pairs and thus the right-hand side of (21) is also the
same. At the same time, we get from (7) and the L2-orthogonality of
Qh and eQ:

k~pk ¼ kp� phk ¼ inf
qh2Qh

kp� qhk 

hkþ1jpjHkþ1ðXÞ for Pk � Pk;

hkjpjHkðXÞ for Pk � Pk�1:

8<:
Assume pressure solution p to be sufficiently smooth, such that
c�jpjHkþ1ðXÞ ¼ jpjHkðXÞ with some finite constant c� ¼ Oð1Þ, which has
the physical dimension of the length-scale. In this case, norms of
subgrid pressures for equal order ~peo and Taylor–Hood ~pth would
scale as

c�k~peok 
 hk~pthk: ð22Þ

This indicates that (21) and so (20) could not be relevant in all sit-
uations unless parameters cK account on the order of velocity and
pressure elements or depend on some norms of the unknown con-
tinuous solution.

Assume that (19) is appropriate for equal order elements, which is
not unreasonable since (19) has been also derived for equal-order
elements by other approaches [18,34]. Then, due to (22) and (21), it
is natural to introduce for Taylor–Hood (or similar) elements the
extra scaling of c with h�1. On the elementwise level this would
lead to cK w c�ðmh�1

K þ kakKÞ: The latter choice is not optimal, how-
ever, for the Stokes case (a ¼ 0), see Section 3.2. Hence, based on
the bound (54), we assume

cK w mþ c�kakK ð23Þ

to be a reasonable choice for different order velocity–pressure ele-
ments. The above considerations suggest that the best choice of c�

depends on the behavior of the pressure on element K. Since this
information is in general not available, we set c� to be a global con-
stant of order 1. Furthermore, numerical experiments with inf–sup
stable Q2 � Q1 elements from Section 5 clearly show the h-indepen-
dence of optimal (in the sense of minimizing certain error norms)
parameters c’s. Hence the design (23) is more plausible for LBB sta-
ble elements compared to (19).
The above discussion shows that, within the variational multi-
scale framework, the choice of the best parameter cK is still an is-
sue. In our opinion, the Assumption 2 might be too strong in some
cases since it decouples the resolution of pressure and velocity.
Probably, it is advantageous to replace the block-diagonal approx-
imation of L on K by a block-triangular or another approximation
which accounts for both, momentum and continuity residuals, in a
subgrid pressure model. This would lead, however, to a bulk of
additional terms in the variational FE formulation. We will study
such a model elsewhere. In this paper, we attempt to cure the sit-
uation by applying different designs of parameters cK depending
on the relative order of FE pairs.
3. Grad-div stabilization and finite element error analysis

3.1. Preliminaries

The finite element velocity and pressure spaces are based on
polynomials of degrees k and s, respectively. Since we avoid using
additional pressure stabilization we assume the discrete LBB
condition

sup
uh2Vh

ðdivuh;phÞ
kruhk

P c0kphk 8ph 2 Qh ð24Þ

to be valid with a constant c0 independent of h. Throughout the pa-
per k � k denotes the norm in L2ðXÞ and H0 :¼ L2ðXÞd. The following
approximation properties of FE spaces are standard: There exist
interpolation operators Iu : V! Vh and Ip : Q ! Qh, such that for
sufficiently smooth v and q and any K 2 Th

kv � IuvkH‘ðKÞK hkþ1�‘
K jvjHkþ1ðKÞ; ‘ ¼ 0;1;

kq� IpqkH0ðKÞK hsþ1
K jpjHsþ1ðKÞ:

ð25Þ

Moreover, if divv ¼ 0, then in the first estimate from (25), the inter-
polant Iuv can be assumed to belong to the subspace
V0

h :¼ fvh 2 Vhjðdivvh; qhÞ ¼ 0; 8qh 2 Qhg and the norm on the
right-hand side is replaced by jvj

Hkþ1ðeK Þ, where eK is a suitable neigh-
borhood of K, cf. [21].

For a given triangulation Th, denote by c a piecewise constant
non-negative function with respect to the partitioning Th, i.e.
cðxÞjK ¼ cK P 0 for any K 2Th, where fcKg is a set of constants.
Denote

cmin ¼min
x2X

cðxÞ; cmax ¼max
x2X

cðxÞ:

On V and Q, we introduce the norms:

kvkV :¼ mkrvk2 þ kc1
2 divvk2

� �1
2
; kqkQ :¼ sup

v2V

ðdivv; qÞ
kvkV

: ð26Þ

On the product space V �Q, we define the product norm

j½v; q�j ¼ kvk2
V þ kqk

2
Q

� �1
2
;

and the bilinear form

acðu;p;v;qÞ
¼ mðru;rvÞþðcdivu;divvÞþða �ru;vÞ�ðp;divvÞþðq;divuÞ:

The discrete problem with grad–div stabilization is given by: Find
uh 2 Vh; ph 2 Qh such that

acðuh;ph; vh; qhÞ ¼ ðf;vhÞ 8 vh 2 Vh; qh 2 Qh: ð27Þ

Thanks to (24) there is a unique solution to (27). Note that
ðcdivuh;divvhÞ is the c-term in (4) or (18).
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Besides the product norm j½�; ��j defined above we endow each FE
subspace pair Vh �Qh with the product norm:

j½vh; qh�jh ¼ kvhk2
V þ kqhk

2
Qh

� �1
2

with kqkQh
:¼ sup

vh2Vh

ðdivvh; phÞ
kvhkV

:

The latter relation defines a norm on Qh due to the LBB condition
(24).

Assume c > 0 and consider the constant d0 defined through the
following inf–sup relation:

d0 ¼ inf
ph2Qh

sup
uh2Vh

ðdivuh;phÞ
kc�1

2phkkc
1
2 divuhk

: ð28Þ

For the sake of analysis, we assume that

0 < c 6 d0 ð29Þ

holds with some mesh -and parameter-independent constant c.

Remark 2. Assumption (29) is quite plausible. Thanks to
kdiv vk 6 krvk for v 2 V and (24), we have the obvious bound
0 < c0ðcmin

cmax
Þ

1
2 6 d0 and the assumption is trivially fulfilled for

c ¼ const. Otherwise d0 may depend on the variation of c. The
following analysis shows that this dependence is very mild: In [13]
and [23] the preconditioning for the Stokes problem with variable
viscosity was studied. Its performance and analysis relies on an
estimate from below for the constant ed0 defined through

ed0 ¼ inf
ph2eQh

sup
uh2Vh

ðdivuh;phÞ
kc�1

2phkkc
1
2Duhk

: ð30Þ

where Du ¼ 1
2 ðruþrT uÞ is the rate of deformation tensor (and

c > 0 has the physical meaning of variable viscosity). Due to
kc1

2divuk 6 kc1
2Duk, we get ed0 6 d0. Numerical experiments with

highly variable c in [23] (for the regularized Bingham models)
and [13] (for geophysical models of magma migration and mantle
convection) suggest that ed0 is almost insensitive to variations of
c. Furthermore, some lower bounds for the continuous counterpart
(30) can be found in [23]. Moreover, the continuous counterpart of
(29) trivially gives d0 � 1 with Q ¼ fq 2 L2ðXÞj

R
X c�1qdx ¼ 0g,

since in this case c�1 �Q � Iðdiv jV Þ.

In order to avoid the repeated use of generic but unspecified
constants, further by x K y we mean that there is a constant c such
that x 6 cy, and c does not depend of the parameters which x, y
may depend on, e.g. m, fcKg, a, and mesh size. Obviously, x J y
is defined as y K x, and x w y when both x K y and y K x.

The following Lemma provides some technical results.

Lemma 1. Assume (24) and (29). Then there holds

kðmþ cÞ�
1
2phkwkphkQh

wkphkQ 8ph 2 Qh: ð31Þ

and

kpkQ K kðmþ cÞ�
1
2pk 8p 2 Q: ð32Þ

Proof. Applying the Cauchy inequality and the inequality
kdivvk 6 krvk for v 2 V, we get

kpkQ ¼ sup
v2V

ðdivv; pÞ
kvkV

6 sup
v2V

kðmþ cÞ
1
2divvkkðmþ cÞ�

1
2pk

kvkV
6 kðmþ cÞ�

1
2pk:

Thus, (32) is proved. The bound kphkQh
K kphkQ immediately fol-

lows from the definition of the norms and the embedding
Vh � V. To prove (31) it remains to show, for arbitrary ph 2 Qh,
the following estimate

kðmþ cÞ�
1
2phkK kphkQh

¼ sup
vh2Vh

ðdivvh;phÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkrvhk2 þ kc1

2divvhk2
q : ð33Þ

The key relation below follows from the theory of sums and inter-
sections of vector spaces, see the Appendix A:
sup
vh2Vh

ðdivvh; phÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkrvhk2 þ kc1

2divvhk2
q

¼ inf
qh2Qh

sup
vh2Vh

ðdivvh;ph � qhÞ
2

mkrvhk2 þ sup
vh2Vh

ðdivvh; qhÞ
2

kc1
2divvhk2

 !1
2

: ð34Þ

Due to (24) and (29) we get from (34)

sup
vh2Vh

ðdivvh;phÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkrvhk2 þ kc1

2divvhk2
q J inf

qh2Qh

m�1kph � qhk
2 þ kc�1

2qhk
2

� �1
2
:

ð35Þ

An elementary variation analysis shows that the minimum on the

right-hand side of (35) is attained for qh ¼ c
mþc

� �1
2
ph. This leads to

inf
qh2Qh

m�1kph � qhk
2 þ kc�1

2qhk
2

� �1
2 ¼ kðmþ cÞ�

1
2phk:

This together with (35) proves (33) and so (31). The lemma is
proved. h

Remark 3. Consider the operator S :¼ div ð�mD�rcdiv Þ�1r,
where �ðmDþrcdiv Þ�1 is the solution operator to

� mDu�rcdivu ¼ f in X;

u ¼ 0 on @X:

Since c is not necessarily continuous, the problem should be under-
stood in the weak sense. One can easily check that S is a self-adjoint
positive definite operator on Q and

ðSq; qÞ ¼ kqk2
Q for q 2 Q: ð36Þ

Thus the k � kQ -norm can be observed as the norm induced by the
pressure Schur complement matrix of the linearized problem (5)
for a ¼ 0. Similar observation w.r.t. the algebraic Schur complement
operator holds for the k � kQh

-norm.

We will refer to the following H2-regularity condition: The do-
main X is such that the Stokes problem (i.e. Eq. (5) with m ¼ 1
and a ¼ 0) is H2-regular, i.e., there are constants cu and cp such that,
for any f 2 L2ðXÞd, the solution fu; pg is an element of
H2ðXÞd � H1ðXÞ and satisfies

kukH2ðXÞ 6 cukfk; krpk 6 cpkfk: ð37Þ

The condition is satisfied for convex domains [15].

3.2. Stokes problem

First we treat the case of the Stokes problem, i.e. a ¼ 0.
Although therdiv-stabilization is usually not applied to the Stokes
problem (see, however, [19,41]), we begin our analysis with treat-
ing this case, since the problem is symmetric and accurate optimal
bounds can be attained. The norms in (26) are based on the ‘‘veloc-
ity part” of the Stokes problem and its pressure Schur complement
operator (cf. Remark 3). In this way, the c-dependence is taken into
account in the norms and the uniform stability and continuity re-
sults for acð�; �Þ in (38)–(40) easily follow from an abstract analysis
as, for example, in [8]. It holds

acðu; p; v; qÞK j½u;p�k½v; q�j 8fu;pg; fv; qg 2 V �Q ð38Þ

j½u; p�jK sup
v;q2V�Q

acðu;p; v; qÞ
j½v; q�j 8fu;pg 2 V �Q ð39Þ
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as well as

j½uh;ph�jh K sup
vh ;qh2Vh�Qh

acðuh;ph;vh;qhÞ
j½vh;qh�jh

8fuh;phg2Vh�Qh: ð40Þ
Remark 4. Using the L2 norm for the pressure instead of k � kQ and
k � kQh

in general leads to parameter dependent stability and
continuity constants, see [41].

Further in this section, we prove several FE convergence results for
the grad–div stabilized Stokes problem.

Theorem 2. Assume (24), (29) and a ¼ 0. Let ðu; pÞ be a solution to
(6) and ðuh; phÞ a solution of (27), then it holds

j½u� uh;p� ph�jw inf
vh2Vh

inf
qh2Qh

j½u� vh; p� qh�j: ð41Þ

Assume further the H2-regularity condition and maxK2Th
hK 6 h, then

ku� uhkK
c2

uðmþ cmaxÞ
m2 þ

c2
p

mþ cmin

 !1
2

hj½u� uh; p� ph�j: ð42Þ

Proof. Let uI be the best approximation to u in Vh with respect to
the k � kV norm and pI be the best approximation to p in Qh with
respect to the k � kQ norm. The norm equivalence (31), stability
(40), continuity (38) estimates, and the orthogonality property of
the FE error function give:
j½uI � uh; pI � ph�jK j½uI � uh;pI � ph�jh

K sup
vh ;qh2Vh�Qh

acðuI � uh;pI � ph; vh; qhÞ
j½vh; qh�jh

K sup
vh ;qh2Vh�Qh

acðuI � uh;pI � ph; vh; qhÞ
j½vh; qh�j

¼ sup
vh ;qh2Vh�Qh

acðuI � u;pI � p; vh; qhÞ
j½vh; qh�j

K j½uI � u;pI � p�j:
With the help of this estimate and the triangle inequality we get

j½u� uh;p� ph�jK j½uI � u;pI � p�j ¼ inf
vh2Vh

inf
ph2Qh

j½u� vh; p� qh�j:

Since fuh; phg 2 Vh �Qh the inverse inequality

inf
vh 2 Vh

inf
ph2Qh

j½u� vh; p� qh�j K j½u� uh; p� ph�j

is evident. The equivalence (41) is proved.
With the help of a standard duality argument we prove (42).

Denote eh ¼ u� uh; rh ¼ p� ph. Consider
w 2 H2ðXÞd; q 2 H1ðXÞ \Q solving the Stokes problem

� mDw�rq ¼ eh; divw ¼ 0 in X;

w ¼ 0 on @X:

Thanks to the H2-regularity assumption, the following a priori esti-
mate holds

mkwkH2 6 cukehk; krqk 6 cpkehk: ð43Þ
Using the weak form of the problem and the orthogonality property
for eh; rh, we get

kehk2 ¼ acðw�wh; q� qh; eh; rhÞ
with arbitrary wh 2 Vh; qh 2 Qh. Thanks to (38), (32), interpola-
tion properties (25), and a priori estimate (43), we obtain
kehk2 K j½w�wh; q� qh�k½eh; rh�j

K ðkw�whk2
V þ kðmþ cÞ�

1
2ðq� qhÞk

2Þ
1
2j½eh; rh�j

K ððmþ cmaxÞkrðw�whÞk2 þ ðmþ cminÞ
�1kq� qhk

2Þ
1
2j½eh; rh�j

K hððmþ cmaxÞkwk
2
H2 þ ðmþ cminÞ

�1krqk2Þ
1
2j½eh; rh�j

K c2
u
mþ cmax

m2 þ
c2

p

mþ cmin

 !1
2

hkehkj½eh; rh�j:

Thus (42) is proved. h
Theorem 2, interpolation properties (25), and estimate (32)
immediately yield the following corollary.

Corollary 3. Let ðu; pÞ be a smooth solution to (6) and ðuh; phÞ a
solution of (27), then the following error estimate holds

j½u� uh; p� ph�j
2 K

X
K2Th

h2k
K ðmþ cKÞjuj

2
Hkþ1ðKÞ þ

1
mþ cK

jpj2HkðKÞ

� �
ð44Þ

Finding the minimum of the right-hand side from (44) with re-
spect to cK gives the optimal value

cKwmax
jpjHkðKÞ

jujHkþ1ðKÞ
� m;0

( )
: ð45Þ
Remark 5. The assumption (29) can be avoided. In this case, one
can show (see, e.g. [20]):

ku� uhk2
V þ

1
mþ cmax

kp� phk
2 K inf

vh2Vh

inf
qh2Qh

j½u� vh;p� qh�j: ð46Þ

The norm on the left-hand side of (46) is somewhat weaker than in
(41). More important, however, is that (41) gives the equivalence re-
sult, while (46) is only the upper bound. Thus the bound in the j½�; ��j
norm is tight. This suggests that the choice of c’s from (45) is likely
to minimize the left-hand side in (41) as well.

Since the norms of solution on the right-hand side of (45) are
not accessible, different assumptions and/or simplifications can
be made to obtain computable expressions for cK . Below we review
few different approaches to handle this problem.

� Regularity based approach is typical for analysis in the framework
of least-squares and Petrov-Galerkin methods [20,34,44,47].
Based on the regularity theory for the Navier-Stokes equations,
one assumes that for many flows of interest kuk

Hkþ1ðeT Þ 

kpk

HkðeT Þ, which yields for small enough m the choice

cK w 1: ð47Þ

This choice, however, is rather questionable for the Stokes prob-
lem alone, since the resulting method does not pass the simple
scaling criteria: for u ! ku the parameters should scale like
m ! k�1m and c ! k�1c. We will revisit this approach for the
Oseen problem below.

� In the f-based approach one supposes that some a priori esti-
mates provide useful information about the unknown solution.
Thus the regularity estimate for the Stokes problem gives:
mkukHkþ1ðXÞ 6 ~cukfkHk�1ðXÞ and kpkHkðXÞ 6 ~cpkfkHk�1ðXÞ. Therefore,
the error estimate (44) yields

j½u� uh;p� ph�j
2 K h2k ~c2

uðmþ cmaxÞ
m2 þ

~c2
p

mþ cmin

 !
kfk2

Hk�1ðXÞ

An optimal parameter is given now by the choice

cK w maxfð~cp~c�1
u � 1Þm;0g: ð48Þ

Note that, for the Stokes problem, (48) is similar to the choice of
c w m based on the bubble functions enrichment [19] and the
analysis of the SUPG method for equal-order velocity–pressure
elements [18].

� One may also think of an L2-norm approach based on the esti-
mate (42) for the L2-norm of velocity. Thus, instead of mini-
mizing the error estimate in the m-dependent norm as in
(44), one may minimize the right-hand side of (42) assuming
that the j½�; ��j-norm of the error is almost c-independent (the
assumption is somewhat vague, of course). This also leads to
(48).
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The situation for the ‘‘simple” case of the Stokes problem is now
clear: there is the optimal choice of c’s in (45), which can be
simplified in different ways depending on some a priori knowledge
of the solution behavior. Further we extend the above analysis to
the Oseen problem (a is not necessarily zero). We shall see that
similar conclusions hold in this more general case.

3.3. Oseen problem: a–0

Most of the analysis for the Stokes problem from the previous
section can be extended to the Oseen equations. However, the opti-
mality (tightness) of the error representation as in (41) will be lost
since the problem is not symmetric anymore.

In addition to the norms used before we will need the following
norm on V:

kvka :¼ kvk2
V þ m�1ka
 vk2

� �1
2
:

The product space norm in this section is altered by the a-depen-
dent scaling of the pressure norm:

j½v; q�ja :¼ kvk2
V þ cpðmþ cmax þ m�1kak2

1Þ
�1kqk2

� �1
2

with an appropriate mesh- and parameter-independent constant
cp > 0.

Remark 6. The error for the Oseen problem will be estimated in
the j½�; ��ja norm defined above. If we also assume the alternative
inf–sup condition for Qh � H1ðXÞ:

sup
uh2Vh

ðdivuh; phÞ
kuhk

P ~c0krphk 8ph 2 Qh; ð49Þ

then the error analysis can be done with the stronger pressure norm:

kqk2
a :¼ sup

v2Vh

ðdivv; qÞ2

kvk2
V þ m�1kak2

1kvk
2

instead of ðmþ cmax þ m�1kak2
1Þ
�1kqk2. Condition (49) is satisfied by

Taylor–Hood or Mini element [42,36]. However, we shall not elab-
orate details, since this improvement is tangential to the main topic
of the paper.

The following result generalizes Theorem 2 for the Stokes
problem.

Theorem 4. Let ðu; pÞ be a solution to (6) and ðuh; phÞ a solution of
(27). Then it holds

j½u� uh;p� ph�ja

K inf
vh2Vh

ku� vhk2
a þ inf

qh2Qh

kðmþ cÞ�
1
2ðp� qhÞk

2
� �1

2

: ð50Þ

Proof. The result is a special case of [37] where additionally a
reduced variant of the streamline-diffusion stabilization is consid-
ered. Following [37], we obtain in the first step the stability
estimate

acðvh; qh; vh; qhÞP
1
2
j½vh; qh�j

2
a 8ðvh; qhÞ 2 Vh �Qh: ð51Þ

Let uJ ¼ Iuu be the interpolant to u in Vh with the divergence-pre-
serving interpolation operator Iu of Girault–Scott [21]. Moreover,
let pI be the best approximation to p in Qh. Using the property
ðqh;divðu� uJÞÞ ¼ 0, we obtain in a second step the estimate

acðu� uJ ;p� pI; vh; qhÞ
6 ku� uJkVj½vh; qh�ja þ ðp� pI;divvhÞ � ða
 ðu� uJÞ;rvhÞ

K ðku� uJk2
a þ kðmþ cÞ�

1
2ðp� pIÞk

2Þ
1
2j½vh; qh�ja: ð52Þ
Then we set ðvh; qhÞ ¼ ðuh � uJ ; ph � pIÞ and derive from (51), (52),
together with the Galerkin orthogonality acðu� uh; p� ph;

vh; qhÞ ¼ 0, the estimate:

j½uh � uJ ;ph � pI�ja K ðku� uJk2
a þ kðmþ cÞ�

1
2ðp� pIÞk

2Þ
1
2:

The triangle inequality concludes the proof of (50). h

Corollary 5. Let ðu; pÞ be a smooth solution to (6) and ðuh; phÞ a solu-
tion of (27). Then it holds

j½u� uh; p� ph�j
2
a

K
X

K2Th

h2k
K mþ cK þ

h2
K jaj

2
K

m

 !
juj2

Hkþ1ðeK Þ þ 1
mþ cK

jpj2HkðKÞ

 !
ð53Þ

with jajK :¼ kak2
L1ðKÞ.

Proof. The interpolation property (25) for the pressure and the
corresponding estimates for the divergence-constraint preserving
interpolator Iu, see (25), immediately yield the bound (53). h

Finding the minimum of the right-hand side from (53) with re-
spect to cK gives the optimal value in (45) up to the extension of
the velocity semi-norm to a neighborhood eK of K. Attempting to
deduce computable expression for cK , one may follow the same
arguments as for the Stokes case:

� Assuming kuk
Hkþ1ðeK Þ 
 kpkHkðKÞ together with the scaling of equa-

tion in a way that kak ¼ 1 (for some norm of a) yields the choice
cK w 1 again. This design of c’s can be found in [20,29,37,44]. The
drawback of this parameter design is that the local behavior of
flow is not taken into account.

� Compared to the Stokes problem it is not easy to obtain sharp
estimates for the higher derivatives of u and p due to the pres-
ence of the convection term a � ru. In the case when the contri-
bution of body forces f in the momentum can be neglected, the
approximate equality �mDuþ a � ru 
 rp yields

jpjHkðKÞK mjuj
Hkþ1ðeK Þ þXk�1

m¼0

kak
Wm;1ðeK ÞjujHk�mðeK Þ:

Now assume that the bounds juj
Hk�mðeK Þ 6 cmjuj

Hkþ1ðeK Þ hold with
some finite constants cm, which have dimension of
½length-scale�mþ1. This provides the upper bound for optimal
parameters

cK K
�
mþ

Xk�1

m¼0

cmkak
Wm;1ðeK Þ

�
: ð54Þ

Note that the design deduced in the multiscale framework in
(23):

cK w mþ c�kakK ð55Þ

perfectly fits the condition (54) for k = 1.
� Finally, note that the Dirichlet inflow boundary conditions for

(5) lead to Dirichlet outflow boundary conditions and thus poor
regularity for the adjoint problem. Then, we are not able to
deduce reasonable formulas for cK based on a L2-norm error esti-
mate for a – 0.
Remark 7. The above analysis suggests that for shear/channel
flows where the inertia terms a � ru vanish the estimate (54) is not
sharp in its a-dependent part and thus the design (55) is not
perfect. This explains the well-known numerical observation (see,
e.g. [33]) that for laminar channel flows the choice c w m is optimal,
which is in contrast to flows with an intense inertia phenomenon,
see examples in Section 5. For flow exhibiting mixed dynamics or
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in the lack of additional information about the continuous problem
solution fu; pg, the design of the stabilization parameter c is a
controversial issue. Thus, there is no surprise that different
recommendations can be found in the literature. To amend this
situation one may try a ‘dynamic’ choice of parameter c directly
based on (45) setting, for example,

cK w max
jp�j

HkðeK Þ
ju�j

Hkþ1ðeK Þ � m; 0

8<:
9=;; ð56Þ

where eK is a macro-element such that K � eK , and u�; p� are
approximations to uh; ph from the previous Picard iteration or time
step, that the semi-norms in (56) makes sense. Some other approx-
imations to (45) can be considered as well.

Remark 8. The norm of the velocity error on the left-hand side of
(50) depends on m and c. For c ¼ 0 the estimate allows the Oðm�1Þ
scaling of the velocity error with respect to the best possible pres-
sure approximation. Note that in the Stokes case such estimate is
optimal, cf. (41). For c ¼ Oð1Þ only O m�1

2

� �
scaling of the velocity

error is allowed by (50). Moreover, in this case one gets additional
control of mass conservation for the discrete solution. In particular,
for c ¼ Oð1Þ estimate (50) implies

kdivuhkK inf
vh2Vh

ku� vhk2
a þ inf

qh2Qh

kp� qhk
2

� �1
2

:

3.4. Equal order elements

The error estimates (44) and (53) and hence the basic formula
(45) were deduced for the case of different order LBB stable veloc-
ity and pressure elements. Here we extend the analysis to pres-
sure-stabilized discretizations of the Oseen problem which allow
equal-order pairs. The error analysis basically follows the lines of
Section 3.3, so we outline the necessary modifications. To avoid
additional, but non-important for our purpose complications, we
assume that the convection is not numerically dominant, i.e.
jajK hK 6

1
2 m for all elements K and Qh � H1ðXÞ. The bilinear form

of the pressure stabilized FE method is augmented with an addi-
tional term as:

ast
c ðuh; ph; vh; qhÞ :¼ acðuh;ph; vh; qhÞ

þ
X

K2Th

sK

Z
K
ð�mDuh þ a � ruh þrphÞ � rqh dx

and the discrete problem now reads: Find uh 2 Vh;ph 2 Qh such that

ast
c ðuh; ph; vh;qhÞ ¼ ðf;vhÞ þ

X
K2Th

sK

Z
K

f � rqh dx 8vh 2 Vh; qh 2 Qh:

ð57Þ

Following [14], the stabilization parameter is designed through
sK w h2

Kðmþ jajK hKÞ�1. The product norm is altered as

j½v; q�j2st :¼ kvk2
V þ cpðmþ cmax þ m�1kak2

1Þ
�1kqk2 þ

X
K2Th

sKkrqk2
K

 !1
2

:

Instead of the LBB condition (24) we need the following weak
inf–sup condition (e.g. [5]):

sup
uh2Vh

ðdivuh; phÞ
kruhk

P c0kphk � c1

X
K2Th

h2
Kkrphk

2
K

 !1
2

8ph 2 Qh ð58Þ

with positive constants c0; c1 independent of h. Following the same
arguments as in [37], we obtain the stability estimate

ast
c ðvh; qh; vh; qhÞP cj½vh; qh�j

2
st 8ðvh; qhÞ 2 Vh �Qh
with some positive parameter independent constant c. Further,
repeating arguments from the proof of Theorem 4, we get the error
estimate

j½u� uh; p� ph�jst K

 
inf

vh2Vh

ku� vhk2
a þ inf

qh2Qh

kðmþ cÞ�
1
2ðp� qhÞk

2
n

þ
X

K2Th

sKkrðp� qhÞk
2
K

)!1
2

;

where ðu; pÞ and ðuh; phÞ are solutions to (6) and (57), respectively.
Interpolation properties of FE spaces now yield

j½u� uh; p� ph�j
2
st K

X
K2Th

h2k
K mþ cK þ

h2
K jaj

2
K

m

 !
juj2

Hkþ1ðeK Þ
 

þ h2
K

mþ cK
jpj2Hkþ1ðKÞ þ sK jpj2Hkþ1ðKÞ

!
:

Thus, if equal-order elements are used, then the error analysis leads
to the different optimal parameter:

cKwmax hK

jpjHkþ1ðKÞ

juj
Hkþ1ðeK Þ � m;0

8<:
9=;: ð59Þ

For smooth solutions, this would scale the parameter from (45) with
hK . Note that this conclusion is similar to the one obtained by different
arguments within the variational multiscale framework of Section 2.

The next section studies dissipation properties of the grad–div
stabilization.

4. Numerical dissipation vs. mass balance for grad–div terms

In this section, we show that in general the grad–div stabiliza-
tion introduces some numerical dissipation into the method. In
particular, this suggests an explanation why such grad–div
enhancement alone was shown to be useful for stable calculations
of turbulent solutions, see [29]. Introducing too large numerical
dissipation is also related to over-stabilization effects when c is ta-
ken too large, see numerical examples in the next section. Let uhðtÞ
be the FE solution to (4). Assuming the skew-symmetric approxi-
mation of the convection term, the discrete energy balance for
uhðtÞ is given by

kuhðtÞk2 þ m
Z t

0
kruhðsÞk2 dsþ

Z t

0
kc1

2divuhðsÞk2 ds

¼ kuhð0Þk2 þ ðf;uhðtÞÞ for t 2 ð0; T�: ð60Þ

The second term in (60) corresponds to the viscous dissipation of
the energy, while the third term in (60) (non-negative for all t
and thus potentially dissipative) has no matching in the energy bal-
ance for the continuous solution. Thus the rate of numerical dissipa-
tion introduced by the grad–div stabilization at time t can be
measured as

dissðtÞ ¼ kc
1
2divuhðtÞk2

kruhðtÞk2 : ð61Þ

Let V0
h :¼ fvh 2 Vhjðdivvh; qhÞ ¼ 0; 8qh 2 Qhg be the set of discrete

divergence free velocity functions. Since the solution uhðtÞ belongs
to V0

h , the quantities

lh ¼ inf
vh2V0

h

kc1
2divvhk
krvhk

and Mh ¼ sup
vh2V0

h

kc1
2divvhk
krvhk

ð62Þ

give us bounds for the numerical diffusion from (61):

l2
h 6 dissðtÞ 6 M2

h:

Denote by G the FE matrix representation of the grad–div term.
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When numerically evaluating l2
h with element order p P 2,

there are true divergence-free functions in V0
h , thus lh would be

zero (see Figs. 1 and 2). We can still calculate the minimal diffusion
on the complementary orthogonal subspace V0

h n kerðGÞ to gain
some insight. For this we look at the quantity

~lh ¼ inf
vh2V0

hnkerðGÞ

kc1
2divvhk
krvhk

instead of the lower bound lh.
For the following calculation we assume c ¼ 1 and denote the

FE matrices for the diffusion and divergence terms with A and B,
respectively. Further, let P be the L2-orthogonal projection from
Vh onto V0

h. The matrix counterpart of this projection will be also
denoted by P, thus P is the orthogonal projector from Rn onto
V0 :¼ kerðBÞ. Note that P G is a symmetric operator on V0 and P A
is a symmetric positive definite operator on V0.

Now the bounds M2
h and l2

h can be expressed via generalized
Rayleigh quotients:

M2
h ¼ sup

vh2V0
h

kc1
2divvhk2

krvhk2 ¼max
u2V0

hGu;ui
hAu; ui ¼max

u2V0

hPGu; ui
hPAu; ui ¼: kmax;

l2
h ¼ inf

vh2V0
h

kc1
2divvhk2

krvhk2 ¼min
u2V0

hGu;ui
hAu;ui ¼min

u2V0

hPGu;ui
hPAu; ui ¼: kmin;

and can be determined by the minimal and maximal eigenvalues
kmin and kmax of

kPAu ¼ PGu; u 2 V0: ð63Þ

By the definition of P, Pv ¼ 0 is equivalent to v ¼ BT q with some
q 2 Rm. This makes (63) equivalent to

G 0
0 0

� � v
p

� �
¼ k

A BT

B 0

 !
v
p

� �
; v – 0; ð64Þ

which can be solved with a generalized eigenvalue solver. In Fig. 2,
one can see the spectra for different element orders and mesh
0 0.2 0.4 0.6 0.8 1
0
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0.4
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1

k/n

λ k

Q2
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Q4

Fig. 2. Eigenvalue spectra for different element orders and h = 1/8 (left) an

Fig. 1. Four basis functions of the (strongly) di
refinements. In Table 1, we present our results of lower and upper
bounds for the numerical dissipation for different element orders
and refinements; ‘*’-sign means that computing the whole spectra
for this case was beyond available computer resources.

We can draw a few observations and conclusions from these re-
sults. Table 1 shows that for Q1 velocity approximation at least
Oðch2Þ numerical dissipation is introduced. Note that Q 1 velocities
can be used with both LBB unstable equal order and LBB stable iso
Q2 � Q1 and iso Q2 � Q0 elements. For higher order elements,
numerical dissipation acts only on a subspace of V0

h. The relative
dimension of this subspace decreases and the relative dimension
of the strongly divergence-free velocity subspace increases for
higher order elements. Fig. 2 and Table 1 show that for certain
modes the OðcÞ numerical dissipation is introduced; the properties
of these modes and the relation of such anisotropic non-uniform
dissipation to the turbulence modeling character of the grad–div
stabilization deserves further studies. At the same time, the exis-
tence of eigenmodes of (63) with k ¼ Oð1Þ warns us against possi-
ble over-diffusion (over-stabilization) for larger c’s.

Note that the FE method imposes only global mass balance
through the identity ðdivuh; qhÞ ¼ 0 for all qh 2 Qh. The resulting
FE solution is not necessarily div-free since div ðVhÞ R Qh, and even
element-wise mass balance can be violated if Qh does not contain
piecewise constant functions (as, for example, happens with Tay-
lor–Hood elements). Another role of the grad–div stabilization is
to enforce mass balance in a stronger way. This can be seen in
two ways; more investigation in this direction can be found in
[32]. First of all, as already discussed in Remark 8, the stabilization
leads to a better scaled estimate of kdivuhk. Also, assuming
c ¼ const and uh 2 V0

h , it holds:

kc1
2divuhk2 ¼ cðdivuh;divuh � qhÞ 8qh 2 Qh

Therefore

kc1
2divuhk ¼ c1

2 inf
qh2Qh

kdivuh � qhk 8uh 2 V0
h ð65Þ
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d for Q3 with different refinements (right). X-axis is rescaled to [0,1].

vergence-free subspace for Q2 and h = 1/4.



Table 1
Dimension of truly div-free functions subspace of V0

hðG ¼ kerGÞ and bounds for
numerical dissipation on its orthogonal complement subspace in V0

h .

h 1/4 1/8 1/16 1/32

Q1

dimðGÞ=dimðVhÞ 0/ 18 0/ 98 0/ 450 0/ 1922
l2

h
4.8812e�2 1.1864e�2 2.9564e�3 7.3869e�4

Q2

dimðGÞ=dimðV0
h=GÞ 4/ 94 36/ 414 196/ 1726 900/ 7038

~l2
h

8.9596e�3 2.4653e�3 6.3427e�4 1.6002e�4

M2
h

9.9302e�1 9.9961e�1 9.9998e�1 1.0000e�0

Q3

dimðGÞ=dimðV0
h=GÞ 36/ 206 196/ 862 900/ 3518 */ *

~l2
h

4.3242e�3 1.0953e�3 2.7497e�4 6.9336e�5

M2
h

9.9876e�1 9.9992e�1 9.9999e�1 1.0000e�0

Q4

dimðGÞ=dimðV0
h=GÞ 100 / 350 484 / 1438 2116 / 5822 * / *

~l2
h

2.4296e�3 6.1053e�4 1.5289e�4 3.8241e�5

M2
h

9.9955e�1 9.9997e�1 1.0000e�0 1.0000e�0
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and the stabilization can be also observed as a way to penalize the
discrepancy between divðVhÞ and Qh.

Summarizing the above discussion, we may consider the search
of optimal parameters c as a trade-off between mass and energy bal-
ance in the FE system.

5. Numerical experiments

Let us start with two examples for the Oseen problem (5) where
the grad–div parameter is designed according to (56) or according
to the simplified settings cK ¼ c0ðmþ kakKÞ and cK � c0. We note
that, although the latter choice does not account for the local
behavior of flow, it has the following attractive property: the addi-
tional stabilization matrix should be assembled only once, while
(23) requires the matrix to be updated every time step or every
non-linear iteration. In either case c0 is an additional parameter,
which has to be specified. The calculation in all examples were per-
formed with Q 2=Q 1-approximations for velocity/pressure with the
grad–div stabilized Galerkin scheme using the library deal.II [1].

Example 1. We solve the Oseen problem on X ¼ ð0;1Þ2 for
viscosity m ¼ 10�6 with the flow field aðxÞ ¼ ðsinð2px1Þ cosð2px2Þ;
� cosð2px1Þ sinð2px2ÞÞT , source term fðxÞ :¼ 8p2mbðxÞ, but with

inhomogeneous Dirichlet data uðxÞ ¼ aðxÞ on @X. The exact
solution uðxÞ :¼ aðxÞ and pðxÞ :¼ 1

4 ðcosð4px1Þ þ cosð4px2ÞÞ is
smooth and m-independent. For this example there holds
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Fig. 3. Plots of H1- and L2-errors vs. scaling parameter ~c0 of ‘‘dynamic” grad–div
ðu � rÞu ¼ pðsinð4px1Þ;� sinð4px2ÞÞT . Moreover, one observes a
strong variation of the mesh Reynolds number ReK :¼ kuk1;K hK

m over
the domain between 0 and hK

m .
We present in Fig. 3 the plots of the H1- and L2-errors for the

solution with the ”dynamic” variant of the grad–div stabilization
according to the optimal choice (56), i.e., with cK ¼ ~c0

jpjH2 ðKÞ
jujH3 ðKÞ

. The
seminorms in (56) were approximated using the 1-st order
quadrature formulas and the explicitly computed higher order
derivatives for given pressure and velocity solution. We observe a
distinguished and h-independent minimum of the errors for
parameter ~c0 
 1 which leads (as compared to the unstabilized
case) to improved values of the norms by a factor of nearly 10�2 on
the finest grid. In the paper we discussed several simplified designs
for cK . In numerical experiments we try the constant choice and
(23).

Thus, we present in Fig. 4 the plots of the H1- and L2-errors for
the solution with the simple grad–div stabilization, i.e., with
cK ¼ c0. We observe again a distinguished and h-independent

minimum of the errors for parameter c0 
 10�1 which leads to
very similar results as for the ”dynamic” choice. Note that

maxK
jpjH2 ðKÞ
jujH3 ðKÞ


 10�1 which explains that c0 
 0:1~c0.

Further, we show in Fig. 5 the corresponding plots of the H1-
and L2-errors for the solution with different values of viscosity m
and fixed h 
 1

64. We observe that the pronounced and h-indepen-
dent minimum of the errors is more and more pronounced with
decreasing m. At the same time, no degradation of the error occurs
in the diffusion-dominated case.

The results for this example suggest that a globally constant
value of the grad–div parameter c0 is reasonable and, of course,
much cheaper than the ”dynamic” design.

Example 2. As a second example, we consider a problem with a
boundary layer proposed in [4]. We solve the Oseen problem on
X ¼ ð0;1Þ2 with a ¼ u and solution

u1ðxÞ ¼ 1� cos
2pðeR1x1 � 1Þ

eR1 � 1

� �� �
sin

2pðeR2x2 � 1Þ
eR2 � 1

� �
R2

2p
eR2x2

ðeR2 � 1Þ ;

u2ðxÞ ¼ � sin
2pðeR1x1 � 1Þ

eR1 � 1

� �
1� cos

2pðeR2x2 � 1Þ
eR2 � 1

� �� �
R1

2p
eR1x1

ðeR1 � 1Þ ;

pðxÞ ¼ R1R2 sin
2pðeR1x1 � 1Þ

eR1 � 1

� �
sin

2pðeR2x2 � 1Þ
eR2 � 1

� �
eR2x1 eR2x2

ðeR1 � 1ÞðeR2 � 1Þ :

The velocity field resembles a counter-clockwise vortex with the
center at

ðx01; x02Þ ¼
1
R1

log
eR1 þ 1

2

� �
;

1
R2

log
eR2 þ 1

2

� �� �
:
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The parameters are chosen as R2 ¼ 0:1 leading to x02 ¼ 0:5125 and
R1 such that x01 ¼ 1� m1

4, i.e. the center moves with decreasing m
to the right boundary. This leads to a m-dependent solution with
kruk0 � m�0:35 and kpk0 � m�0:12.

In Fig. 6, we present results for m ¼ 10�4 and cK ¼ c0ðmþ kakKÞ.
The value of the viscosity allows a resolution of the boundary layer
on the finest meshes. The errors in the H1-seminorm and L2-norm
are again plotted against the scaling parameter c0. The tests reflect
again robustness of the discrete solution with respect to c0 and a
pronounced, h-independent minimum. In comparison to the unsta-
bilized case c0 ¼ 0, we observe for an optimal value of c0 a
reduction of the errors on the finer meshes by a factor of nearly
10�2. This reduction is clearly pronounced as in Example 1. We
note that the simplified choice cK ¼ c0 was found for this problem
to produce very similar results.

Remark 9. Results in Figs. 4 and 6 show that the optimal value of
c0 is problem dependent, which is a typical situation with any sta-
bilization parameter. We have no a priori rule how to pick up the
optimal value of c0 for a given problem. Although in the log-scale
of Figs. 4 and 6 the minima with respect to the variation of c0 looks
rather sharp, the results suggest that any a priori choice of
c0 2 ½0:1;1� is not overstabilizing and would lead to a significant
improvement in accuracy compared to the unstabilized problem.
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Example 3. As a last example, we consider the time-dependent
Navier-Stokes flow of generalized Beltrami type, see [16]. This flow
is defined in X ¼ ð�1;1Þ3. The exact solution is

uðt; xÞ ¼ �a
eax1 sinðax2 þ bx3Þ þ eax3 cosðax1 þ bx2Þ
eax2 sinðax3 þ bx1Þ þ eax1 cosðax2 þ bx3Þ
eax3 sinðax1 þ bx2Þ þ eax2 cosðax3 þ bx1Þ

0B@
1CAe�b2mt

and

pðt; xÞ ¼ �1
2

a2½e2ax1 þ e2ax2 þ e2ax3

þ 2 sinðax1 þ bx2Þ cosðax3 þ bx1Þeaðx2þx3Þ

þ 2 sinðax2 þ bx3Þ cosðax1 þ bx2Þeaðx3þx1Þ

þ 2 sinðax3 þ bx1Þ cosðax2 þ bx3Þeaðx1þx2Þ�e�2b2mt

with parameters a ¼ p=4 and b ¼ p=2. This flow is a series of coun-
ter-rotating vortices intersecting one another at oblique angles.

The numerical solution is obtained on a series of equidistant
meshes with h ¼ 2�k; k 2 f2; 3; 4; 5g. The time discretization is
performed by means of a stiff-stable diagonally implicit Runge-
Kutta method of order 2 with time step Dt ¼ 1

64. This is sufficient
to guarantee that the discretization error in time does not domi-
nate the spatial error.

We present in Fig. 7 (left) the plots of the error in L2ðXÞ (as func-
tion of t) for Re ¼ 106 and different values of h for the Galerkin
scheme, i.e. without grad–div stabilization, (left) and for fixed h
and different values of the grad–div parameter (right). The
improvement even with the simple (time-independent) grad–div
stabilization cK ¼ c0 is obvious. Moreover, as we observe in the left
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Fig. 7. Error in L2-norm vs. t 2 ½0; 1� without stabilization for different values of h
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Fig. 8. Error in L2-norm vs. t 2 ½0; 1� for different values of Re ¼ 1
m without s
part, the error with grad–div stabilization for h ¼ 1
8 is better than

the error without stabilization for h ¼ 1
16. This is a problem reduc-

tion by a factor 8.
We present in Fig. 8 (left) the plots of the error in L2ðXÞ (as func-

tion of t) for fixed h and different Reynolds numbers. The case
without grad–div stabilization is shown on the left whereas the
grad–div stabilized case is presented on the right. Again, the stabi-
lizing influence of grad–div terms is obvious in case of high Rey-
nolds numbers.

6. Summary, outlook

In this paper, we considered the grad–div stabilization as a sub-
grid pressure model in the framework of variational multiscale
methods and critically discussed the choice of corresponding
parameters.

For linearized problems of Stokes and Oseen type, we derived
refined error estimates of the grad–div stabilized method in the
case of inf–sup stable and equal-order interpolations of velocity/
pressure. It turns out that the design of the set of stabilization
parameters for inf–sup stable elements differs from the case of
equal-order elements. Unfortunately, the optimized parameters
depend on the (unknown) solution. Therefore, we discussed some
variants of a simplified parameter design. Both the analysis and
numerical experiments show that for inf–sup stable elements the
optimal choice of the stabilization parameters is h-independent.

Moreover, we discussed the influence of the grad–div stabiliza-
tion terms on energy and mass balance of the discrete flow prob-
lem. Finally, some numerical experiments for the Oseen and the
Navier-Stokes problem support the theoretical considerations. In
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future research, it seems to be important to study the role of grad–
div stabilization as a subgrid pressure model for turbulent flows.

Appendix A

We use the concept of sums and intersections of vector spaces
(cf. [3]). Let X, Y be compatible normed spaces, i.e., both X and Y
are subspaces of some larger topological vector space Z. Then we
can form their sum X + Y and intersection X \ Y . The sum X + Y con-
sists of all z 2 Z such that z = x + y with x 2 X; y 2 Y . The spaces
X \ Y and X + Y are normed vector spaces with norms

kxkX\Y ¼ kxk2
X þ kxk

2
Y

� �1
2 ðx 2 X \ YÞ

kzkXþY ¼ inf
z¼xþy

kxk2
X þ kyk

2
Y

� �1
2 ðx 2 X; y 2 YÞ:

If X and Y are complete then both X \ Y and X + Y are complete. If X
and Y are Hilbert spaces such that X \ Y is dense in both X and Y,
then ðX \ YÞ0 ¼ X0 þ Y 0 holds and

kgkðX\YÞ0 ¼ kgkX0þY 0 for all g 2 ðX \ YÞ0: ð66Þ

Here X0 denotes the dual space to X. Proofs of these assertions can
be found in [3] or [42].

In the proof of Lemma 1 we apply the result in (66) setting
X ¼ Vh with the norm m1

2kr � k and Y ¼ Vh with the norm
ðkc1

2div � k2 þ ek � k2Þ
1
2 with an arbitrary e > 0. Further, g is the func-

tional on Vh defined as hg;vhi :¼ ðph;divvhÞ for a given ph 2 Qh and
any vh 2 Vh. This leads to

sup
vh2Vh

ðdivvh;phÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkrvhk2 þ kc1

2 divvhk2 þ ekvhk2
q

¼ inf
qh2Qh

sup
vh2Vh

ðdivvh;ph � qhÞ
2

mkrvhk2 þ sup
vh2Vh

ðdivvh; qhÞ
2

kc1
2 divvhk2 þ ekvhk2

 !1
2

:

Letting e! 0 yields the desired relation (34).
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[46] P. Sváček, Application of finite element method in aeroelasticity, J. Comput.
Appl. Math. 215 (2008) 586–594.

[47] L. Tobiska, R. Verfürth, Analysis of a streamline diffusion finite element
method for the Stokes and Navier–Stokes equations, SIAM J. Numer. Anal. 33
(1996) 107–127.


	Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations
	Introduction
	Grad–div stabilization and the subgrid modeling
	Grad-div stabilization and finite element error analysis
	Preliminaries
	Stokes problem
	Oseen problem: {\bf{a}} \ne 0
	Equal order elements

	Numerical dissipation vs. mass balance for grad–div terms
	Numerical experiments
	Summary, outlook
	Appendix A
	References


