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relate both approaches.

In this paper the grad-div stabilization for the incompressible Navier-Stokes finite element approxima-
tions is considered from two different viewpoints: (i) as a variational multiscale approach for the pres-
sure subgrid modeling and (ii) as a stabilization procedure of least-square type. Some new error
estimates for the linearized problem with the grad-div stabilization are proved with the help of norms
induced by the pressure Schur complement operator. We discuss the stabilization parameter choice aris-
ing in the frameworks of least-square and multiscale methods and consider assumptions which allow to
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1. Introduction

Numerical simulation of laminar and turbulent incompressible
flows is an important subtask in many industrial applications
and remains within the focus of intensive scholar research. Incom-
pressible viscous flows of a Newtonian fluid are modeled by the
system of the Navier-Stokes equations, which read: Given a
bounded, connected domain Q c R? (d = 2,3) with a piecewise
smooth boundary 9%, the simulation time T, and a force field
f:(0,T] x Q2 — R find a velocity fieldu: (0,T] x @ — R? and a
pressure field p : (0, T] x @ — R such that

%—vAu+(u~V)u+Vp:f in (0,T] x Q, (1)
divu=0 in[0,T] x @, (2)
ul,_,=u, inQ, 3)

where v > 0 is the kinematic viscosity coefficient. Some boundary
conditions have to be imposed on 9Q to obtain a closed set of
equations.
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Among various discretization techniques for the Navier-Stokes
equations the finite element (FE) method is one of the most popu-
lar and mathematically sound variants. Nevertheless, it is well-
known that FE methods for (1)-(3) may suffer from several sources
of instabilities. One is a possible incompatibility of pressure and
velocity FE pairs. A remedy is a choice of FE spaces passing the
inf-sup or LBB condition [8] or the use of pressure stabilizing tech-
niques [25]. Another source of instabilities stems from domination
of advection terms over viscous terms, which is typically character-
ized by large mesh Reynolds numbers. This shortcoming can be
overcome to some extent by a variety of stabilizing techniques,
including streamline-upwind Petrov-Galerkin, the use of resid-
ual-free bubbles enrichment, local projection stabilization, and
interior-penalty methods, see, e.g. [6,10-12]. There exist several
variants of stabilized FE methods of arbitrary accuracy order which
simultaneously suppress instabilities caused by both, dominating
advection and non-LBB-stable FE spaces, see, e.g. [14,18,24,26]. Be-
sides being widely used these methods enjoy nowadays a solid
mathematical foundation, e.g. [44].

While the instability caused by dominating advection terms can
be related to the failure of a given mesh to resolve sharp layers
(small scales) in velocity, there is another less well-studied insta-
bility source in the Galerkin discretization method related to a pos-
sible poor resolution of pressure. Due to connections between
variables already present in the linear Stokes problem, the loss of
accuracy in pressure may destructively affect the velocity approx-
imation in a way that Velocity Error ~ Re * Pressure Error, cf. [41]
and Remark 8. In laminar flows, the kinematic pressure is often a
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(much) more smooth function than the velocity; hence this insta-
bility phenomenon is less pronounced, especially if equal-order
discretizations are applied to model flows with moderate Reynolds
numbers. This can be a reason why the phenomenon has not
drawn much attention in the FE literature until recently. If inf-
sup stable elements are used, then the LBB condition places a
strong link between velocity and pressure degrees of freedom. This
condition roughly implies that, for higher order elements, the poly-
nomial degree of pressure approximations is less than the polyno-
mial degree of velocity approximations. In this case the pressure
may be under-resolved by lower order polynomials and an addi-
tional modeling for suppressing the related instability is needed
[7,20,29,40]. The situation becomes even more critical if the formu-
lation of the Navier-Stokes equations involves the Bernoulli pres-
sure variable®. The Bernoulli pressures exhibit the same complex
dynamic as velocities and if a mesh fails to resolve it, an additional
stabilization is vital [30,31,40]. Such instabilities can be suppressed
with the grad-div stabilization introduced below.

Assume a finite element partition {7} of Q and conforming FE
spaces for velocities and pressures V, and Q. Consider the semi-
discrete version of (1)-(3): Find {us, p,} € V,x Qy, Vt e (0,T]
solving

ouy,

(W,V;J +v(Vuy, Vvy) + (- V)up, viy) — (py, divvy)

+ (@ diva) + 3 9 / divu,divy, dx
K

Kegy,
30

We wuse the notation (.,-) for the scalar product in
LZ(Q)“, k=1,2,.... The choice of element dependent parameters
V¢ = 0 defines the last term on the left-hand side of (4); y, =0
for all elements K corresponds to the plain Galerkin method. Adding
such a term is known as the grad-div stabilization (the name reflects
the fact that adding —Vydivu with varying y to (1) can be seen as
the continuous counterpart of the stabilization). Parameters 7y, are
constant on each element and each time t € (0, T], but may in gen-
eral depend on t and the discrete solution u,, p;, leading in the lat-
ter case to a non-linear stabilization.

V{Vn, qn} € Vi x Qp, VEe (0,T]. (4)

Remark 1. To focus the discussion and analysis below we inten-
tionally do not include any other stabilization terms in (4) and
further on. However this still may be needed in practice in order to
stabilize the advection operator and/or allow arbitrary velocity-
pressure FE pairs. In fact, including such terms does not alter the
main results and conclusions of this paper.

Generally speaking, adding the penalization of the continuity
constraint to the FE formulation is not a new idea at all. These terms
are part of the streamline-upwinding Petrov-Galerkin method
(SUPG) in [18,24]. However, in practice these terms are often omit-
ted, and until recently it was not clear if they are needed for technical
reasons of the analysis of SUPG type methods only or play an impor-
tant role in computations. The role of the grad-div stabilization was
again emphasized in recent studies of (stabilized) FE methods for
incompressible flow problems, see [7,29,37,38,40,41,46], also in
conjunction with the rotation form in [30,31,40]. Its relation to the
variational multiscale approach was revealed in [14,22]. In particu-
lar, numerical studies in [29] and [31] show that the grad-div stabil-
ization is highly important for the practical use of some turbulence
models (both with convection and rotation forms of non-linearities).

3 A different from (1) formulation is based on the identity
(u-V)u=rotu x u+ V% and P= “72 +p as the new pressure variable (Bernoulli
pressure) leading to what is known as the rotation form of the N.-S. eqs. This form is
widely used in turbulence modeling. For example, a popular and well-mathematically
supported NS-alpha model [17] of turbulence uses the rotation form.

At the same time, the right choice of parameters ), remains a contro-
versial issue. Few receipts can be found in the literature, but the
question of there relevance and optimality remains open.

In this paper, the grad-div stabilization for the incompressible
Navier-Stokes finite element approximations is considered from
two different viewpoints:

(i) as a variational multiscale approach for the pressure subgrid
modeling and
(ii) as a stabilization procedure of least-square type.

We discuss the design of parameters y,, arising in the frameworks
of least-square and multiscale methods and look for assumptions
which allow to relate both approaches. In particular, we show that
currently adopted assumptions in the multiscale framework lead
to some inconsistency in the choice of y’s. Using the least-square
framework we prove an error estimate for the grad-div stabilized fi-
nite element method applied to the linearized Navier-Stokes prob-
lem. Moreover, with the help of norms induced by the pressure
Schur complement operator we show that, in the Stokes case, the
estimate is optimal in a certain sense. The estimate leads to an ‘opti-
mal’ choice of y,, which is based, however, on higher-order norms of
the unknown continuous solution. To obtain computationally feasi-
ble formulas we introduce different modeling assumptions. Doing
this we are able to show the interrelation of different receipts known
from the literature, to identify the possible limitations of their appli-
cability and to deduce few improved formulas.

As a prototypical model for our studies we adopt the steady lin-
earized Navier-Stokes problem (the Oseen problem) with homoge-
neous Dirichlet boundary conditions given by:

—VAu+a-Vu+Vp=f inQ,
divu=0 in Q, (5)
u=0 onoQ.

The mean value condition [, pdx =0 should be imposed to make
the pressure solution unique; a is a given approximation of the
solution from the previous time step or non-linear iteration. For
the sake of analysis we assume a € Lm(Q)d7 diva=0.

The remainder of the paper is organized as follows: In Section 2,
we discuss the grad-div stabilization as a subgrid pressure model
in the framework of variational multiscale methods. Then, Section
3 provides refined error estimates of the grad-div stabilized meth-
od for linearized problems of Stokes and Oseen type. The problem
of numerical dissipation and mass balance for grad-div terms is
discussed in Section 4. Finally, some numerical experiments for
the Oseen and the Navier-Stokes problem are given in Section 5.

2. Grad-div stabilization and the subgrid modeling

In this section, the grad-div stabilization is observed as a sub-
grid pressure model in the framework of the variational multiscale
method of Hughes and coauthors [2,27,28]. We will show that cur-
rent models known from the literature lead, however, to a some-
what questionable conclusion for the unresolved subgrid
pressure behavior and hence to a possibly inconsistent design of
y’s. Define the following spaces

V.= {veH(Q)/v=00n0Q}, Q:= {q eLZ(Q)/quO}
Q

and the bilinear form

a(u,p;v,q) = v(Vu, Vv) + (a- Vu,v) — (p,divv) + (g, divu).
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The weak formulation of the Oseen problem (5) reads: Given
f c*Q)"findueVandp e @ such that

a(w,p;v,q)=(f,v) VveV, geQ. (6)

For the discretization of (5) we introduce a family .77, of triangula-
tions of Q (triangles or quadrilaterals in 2D, tetrahedra or hexahe-
dral elements in 3D) without hanging nodes, parameterized with
mesh size parameter h = maxg.hg, and hy = diam(K). We use con-
forming finite elements with piecewise polynomial functions. This
results in FE spaces V, and Qj, for velocity and pressure.

Consider the orthogonal decomposition of pressure and velocity
spaces (e.g., H'-orthogonal for u and [*-orthogonal for p):

V=V,aV, Q=09 Q.

Let {u, p} be the strong solution of the Oseen equations (5). We
have the decomposition of the solution on resolved and unresolved
parts:

u=u"+a, p=p'+p. (7)

In general, u", p" in (7) are unknown and we are looking for equa-

tions which allow us to find an accurate approximation to u”, p".

Testing the weak formulation of the Oseen problem (6) with arbi-

trary {vp, q,} € Vp x Q we get

a(u",p";vh,qy) +a(W,p; Vi, qy) = (£,v4) Vi €Vy, g € Qp. (8)

With () standing for a [*-duality pairing between V x @ and

V* x @, and .~ for the adjoint of the Oseen operator

—-VA+a-V V

L = . , 9

—div 0 ®

Eq. (8) can be rewritten as

a(u", p";Vh, qy) + (0, P; £ (Vi q4)") = (. Vi) ¥V Vh €V, gy € Qn.
(10)

Furthermore, since u", p" are polynomials in any K € 7 and {u, p}
is the strong solution, it holds

- f N

f{l}}z{ }4“} in K (11)
p 0 p

for all K € 7. To ensure the well-posedness of (11) on each ele-

ment K as a problem for unresolved scales one has to supply some
additional conditions, for example

il = (u—u"), and / pdx = / (p— p")dx. (12)

Up to this point (5) is clearly equivalent to the set of Egs. (10)-(12).
Now the intention is to obtain from (10) an equation only for the
resolved scales u", p" in a way that the influence of the unresolved
scales through the second term in (10) is modeled. To this end, one
typically accepts several simplifications in order to deduce from
(11) simple expressions for u and p in terms of resolved scales
residual [f, 0] — #[u", p"]. Below we outline some typical model-
ling assumptions:

Assumption 1. Following [9,22,27,28,35,39] one may assume that
the unresolved velocity vanishes on element boundaries:

il = 0. (13)

It is also natural to assume the zero mean of the unresolved pres-
sure on every K:

K'pdx: 0. (14)

Assumption (13) is rather strong, although in [43] it is argued
that, for small enough hy, this should not introduce a significant

modeling error. In some variational multiscale models a similar
assumption is made less explicit by neglecting boundary integrals
arising in integration by parts relations, as for example in the sec-
ond term in (10).

Note that (11) with (13),(14) is a well-posed problem for u and p.

Another common simplification is assuming that, for all ele-
ments K € 7, the Oseen operator . from (9), which has a natu-
ral 2 x 2 block structure, can be reasonably well-approximated by
a block-diagonal one, see e.g. [2,14,22]. This is the same as
admitting:

Assumption 2. u depends only on the residual of momentum
equation in [f, 0]' — #[u", p"]' and p depends only on the residual
of the continuity equation:

B} ~ {liu ;p} (Lf)} 3{::]) for all K € 7. (15)

The simplification coming from (15) is not completely ad hoc:
for example, from the theory of algebraic saddle point problems
it is well-known that, multiplying # with such block-diagonal
approximations, leads to a matrix with well-clustered eigenvalues
if #," and #," are good approximations to velocity (1,1)-block of
% and the pressure Schur complement operator, respectively, cf.
[45]. Thus it is reasonable to set

L, :=(—vA+a-V)"' and
Ly = —(div(—vA+a-V)"'v), (16)

where (—vA+a- V)™ is the solution operator for the velocity con-
vection-diffusion problem in element K with boundary conditions
from (13).

The final modeling step consists of replacing the operators .%,
and %, in (15) on each element K by the scaled identity operators
T¢I and y,I where t¢ and y, are element-dependent constants
[9,27,28]. This leads to:

Assumption 3. Relations (15) are replaced by the model:

u~T(f+vAu" —a-vVu' - Vp"), p=ycdiva" forall K e 7.
(17)

Thanks to (13), (17) and the orthogonality (Va, Vu") = 0 we get
from (10) the following discrete model: Find {u,,p,} € Vi x Qp
solving

a(n, Py Vi, Gn) + Y Yk [ divupdivvgdx+ Y i

KeTy K Ke7,
X /(—vAu,1 +a-Vu,+Vp,—1f)-(a-Vv, + Vg,)dx
JK

={f,vy) VVvieuw, q,€Q, (18)

The solution to (18) can be observed as an approximation to
{u" p"} from (7) up to the modeling Assumptions 1-3. The third
term in (18) models the effect of the unresolved velocity on the re-
solved velocity and pressure. Its stabilizing effect is well-known for
a long time and has been studied within the theory of SUPG-meth-
ods [11,18,26]. The second term in (18) corresponds to the modeling of
the effect of unresolved pressure and coincides with the grad-div
stabilization.

One possible way to define the parameters tx and 7, on element
K is based on ensuring
T~ [|Zu]l and  ye~ ([ ZLpll,

with %, and %, from (16). The operator norms are understood as
the norms on L*(K), see [14]. Letting a be a constant vector on an
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element K, the Fourier analysis leads to the choice (cf. Remark 1 in
[14]): ¢ = (c1vhe* + 2 |alche') ™" and

Vi = €3V + callallchk. (19)

with some constants c, ..., Cs.

Note that the order of velocity and pressure finite elements was
never taken into account in the considerations above. In particular,
the design of y, from (19) is assumed for both, equal-order pairs
and LBB stable elements of any order. This leads, however, to the
following inconsistency: From the condition divu =0 and (17) we
get

P~ —pdiva inK, VKe 7. (20)

If y, is independent of a relation between the velocity and pressure
elements, than ||p|| is completely determined by the resolution
properties of the resolved-scale velocity space V. This contradicts
to the possibility of using both, equal order and different order
(LBB stable) elements, for V, x @, with the same sets of parameters.
As an example, consider the equal order P, — P, and the Taylor-
Hood P, — P,_; pairs for some k > 2 and the same fixed quasi-uni-
form triangulation 7, i.e. hx = hfor allK € 7. Let also ||a||, = O(1)
for all K € 77, yielding y, ~ y for all K € 7, for some constant
7 > 0. Thanks to (20)

IpIl ~ ylldival. (21)

The subgrid velocity @ (the projection of u on V) is the same func-
tion for both FE pairs and thus the right-hand side of (21) is also the
same. At the same time, we get from (7) and the L*-orthogonality of
Qp and @I

hk+1 |p|Hk-1 @ for Pk — Pk,

pll=|lp—p"l = inf |p—q"| ~
L e P
Assume pressure solution p to be sufficiently smooth, such that
CIPlyes1 gy = Pl With some finite constant ¢* = O(1), which has
the physical dimension of the length-scale. In this case, norms of
subgrid pressures for equal order p., and Taylor-Hood p,, would
scale as

C[IPeoll = hl[pen]l- (22)

This indicates that (21) and so (20) could not be relevant in all sit-
uations unless parameters y, account on the order of velocity and
pressure elements or depend on some norms of the unknown con-
tinuous solution.

Assume that (19) is appropriate for equal order elements, which is
not unreasonable since (19) has been also derived for equal-order
elements by other approaches [18,34]. Then, due to (22) and (21), it
is natural to introduce for Taylor-Hood (or similar) elements the
extra scaling of y with h™'. On the elementwise level this would
lead to 7y, « c*(vhe' + ||all). The latter choice is not optimal, how-
ever, for the Stokes case (a = 0), see Section 3.2. Hence, based on
the bound (54), we assume

Tk = v+l (23)

to be a reasonable choice for different order velocity-pressure ele-
ments. The above considerations suggest that the best choice of c*
depends on the behavior of the pressure on element K. Since this
information is in general not available, we set c* to be a global con-
stant of order 1. Furthermore, numerical experiments with inf-sup
stable Q, — Q; elements from Section 5 clearly show the h-indepen-
dence of optimal (in the sense of minimizing certain error norms)
parameters )’s. Hence the design (23) is more plausible for LBB sta-
ble elements compared to (19).

The above discussion shows that, within the variational multi-
scale framework, the choice of the best parameter 7y, is still an is-
sue. In our opinion, the Assumption 2 might be too strong in some
cases since it decouples the resolution of pressure and velocity.
Probably, it is advantageous to replace the block-diagonal approx-
imation of .# on K by a block-triangular or another approximation
which accounts for both, momentum and continuity residuals, in a
subgrid pressure model. This would lead, however, to a bulk of
additional terms in the variational FE formulation. We will study
such a model elsewhere. In this paper, we attempt to cure the sit-
uation by applying different designs of parameters y, depending
on the relative order of FE pairs.

3. Grad-div stabilization and finite element error analysis
3.1. Preliminaries

The finite element velocity and pressure spaces are based on
polynomials of degrees k and s, respectively. Since we avoid using
additional pressure stabilization we assume the discrete LBB
condition

divuy,
sup LV o

Vp, € Q 24
WV, HvuhH ph h ( )

to be valid with a constant ¢, independent of h. Throughout the pa-
per || - || denotes the norm in L*(Q) and H® := L2(Q)". The following
approximation properties of FE spaces are standard: There exist
interpolation operators I, : V—V, and I, : @ — Qj, such that for
sufficiently smooth v and g and any K € 77,

¢=0,1,

k+1-¢
IV = LuVllygy < hg Ve K)? (25)

+1
g —Ipqllgog hi [Plest -

Moreover, if divv = 0, then in the first estimate from (25), the inter-
polant I,v can be assumed to belong to the subspace
VO = {v, € V4|(divvy,q,) =0, Vg, € Qy} and the norm on the
right-hand side is replaced by \V\HW(E), where K is a suitable neigh-
borhood of K, cf. [21].

For a given triangulation 7, denote by ) a piecewise constant
non-negative function with respect to the partitioning 77, i.e.
Y(X)|x = V¢ = 0 for any K € 7, where {y,} is a set of constants.
Denote

Vmin = MUINY(X), gy = MAX)(X).

XeQ

On V and @, we introduce the norms:

. 3 divv,q)
v, = (v|VV|? + [yrdivv]?)’, = sup GVV-9) 26
IVl = (VIVVIP + I divel ) gl = sup St (26)
On the product space V x @, we define the product norm

1
2

vl = (IvI7 +llal)
and the bilinear form

aV(u,pav7q)
=y(Vu,Vv) + (ydiva,divv) + (@- Vu,v) — (p,divv) + (g,divu).

The discrete problem with grad-div stabilization is given by: Find
u, € Vy,, p, € @, such that
@, (Un, Py; Vi, Gn) = (£, Vi)V v €V, gy € Q. (27)

Thanks to (24) there is a unique solution to (27). Note that
(ydivu,,divvy) is the y-term in (4) or (18).
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Besides the product norm |-, ;]| defined above we endow each FE
subspace pair V;, x @, with the product norm:
. .
2 2\ (divv, py)
Vi, = ([|vnlly + with = sup ——
v, @ully = (vl + Nl ) lallg, = sup =g

The latter relation defines a norm on @, due to the LBB condition
(24).

Assume y > 0 and consider the constant dy defined through the
following inf-sup relation:

do = inf sup M (28)

PO wyev, (|73 |77 dive |
For the sake of analysis, we assume that
0<c<do (29)
holds with some mesh -and parameter-independent constant c.

Remark 2. Assumption (29) is quite plausible. Thanks to
ldiv v|| < ||1Vv\| for v € V and (24), we have the obvious bound
0< co(;{:z )2 <dy and the assumption is trivially fulfilled for
y = const. Otherwise dy may depend on the variation of ). The
following analysis shows that this dependence is very mild: In [13]
and [23] the preconditioning for the Stokes problem with variable
viscosity was studied. Its performance and analysis relies on an

estimate from below for the constant d, defined through

do= inf sup —(dVUnPw) (30)
pre@y WneVi (|72 [[|72Dug|

where Du =} (Vu + V'u) is the rate of deformation tensor (and
y >0 has the physical meaning of variable viscosity). Due to
|ly2divul|| < ||y2Dul|, we get do < do. Numerical experiments with
highly variable y in [23] (for the regularized Bingham models)
and [13] (for geophysical models of magma migration and mantle
convection) suggest that d, is almost insensitive to variations of
7. Furthermore, some lower bounds for the continuous counterpart
(30) can be found in [23]. Moreover, the continuous counterpart of
(29) trivially gives dy = 1 with Q@ ={q € [*(Q)| [,7 'qdx =0},
since in this case y~' - Q c 3(div|,).

In order to avoid the repeated use of generic but unspecified
constants, further by x <y we mean that there is a constant c such
that x < ¢y, and ¢ does not depend of the parameters which x, y
may depend on, e.g. v, {yx}, a, and mesh size. Obviously, x 2 y
is definedasy < x,and x =y whenbothx < yandy < x.

The following Lemma provides some technical results.

Lemma 1. Assume (24) and (29). Then there holds

_1
1 +79) 2Pall=lPallg, =lPully  VPh € Qi (31)
and
Ipllg < Iv+7)p| Vpea. (32)

Proof. Applying the Cauchy inequality and the inequality

ldivv] < ||VVv] for v € V, we get

(divy,p) _ g 10+ 7 divel 0+ 7)

1
< [v+y)2pl.-
HVHV veV HVHV

=su
IPlle Sup
Thus, (32) is proved. The bound ||p,llq, < [IPullqimmediately fol-
lows from the definition of the norms and the embedding
V, C V. To prove (31) it remains to show, for arbitrary p, € Q,
the following estimate

N divvy,
10+ il < Il = sup —— P (33
VneVh \/vHVvhH + [lyzdivvy||

The key relation below follows from the theory of sums and inter-
sections of vector spaces, see the Appendix A:

(divvi, py)
sup - ’1’ -
Y [y vy + [lpdiv v

. 2
— inf <su (CIVAZ i (YRS
vpeVy

1
divvy, g,

> p ( h qh) ) (34)

0o Vvl

eV, [[7idivey |
Due to (24) and (29) we get from (34)
(divvy, py)

inf 1 2 =1 2
sup Iz inf (v p - 4l + 1Rl
w [y OV + phdivwg

1
2

(35)

An elementary variation analysis shows that the minimum on the

1
right-hand side of (35) is attained for g, = ( z >2p,,. This leads to

vy

1
. _ 1 2 _1
inf (v gy — ull? + 17 3al”)" = 10 +7) Pl
qn€Qp
This together with (35) proves (33) and so (31). The lemma is
proved. O

Remark 3. Consider the operator S:=div(—vA—Vydiv)'V,
where —(vA + Vydiv) " is the solution operator to

—vAu - Vydivu=f in Q,
u=0 onJQ.

Since 7y is not necessarily continuous, the problem should be under-
stood in the weak sense. One can easily check that S is a self-adjoint
positive definite operator on @ and

(Sq.q) = |lgqlly for g€ . (36)

Thus the || - [|,-norm can be observed as the norm induced by the
pressure Schur complement matrix of the linearized problem (5)
for a = 0. Similar observation w.r.t. the algebraic Schur complement
operator holds for the || - ||, -norm.

We will refer to the following H*-regularity condition: The do-
main Q is such that the Stokes problem (i.e. Eq. (5) with v=1
anda=0)is Hz—regular, i.e., there are constants ¢, and ¢, such that,
for any f e [*(Q)Y, the solution {u,p} is an element of
H*(@)? x H'(Q) and satisfies

[l < cullfll, VDI < 6]l 37)

The condition is satisfied for convex domains [15].
3.2. Stokes problem

First we treat the case of the Stokes problem, ie. a=0.
Although the Vdiv-stabilization is usually not applied to the Stokes
problem (see, however, [19,41]), we begin our analysis with treat-
ing this case, since the problem is symmetric and accurate optimal
bounds can be attained. The norms in (26) are based on the “veloc-
ity part” of the Stokes problem and its pressure Schur complement
operator (cf. Remark 3). In this way, the y-dependence is taken into
account in the norms and the uniform stability and continuity re-
sults for a,(-;-) in (38)-(40) easily follow from an abstract analysis
as, for example, in [8]. It holds

pls sup EEPYD gy pyevica (39)
v,geVxQ | [V, q} |
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as well as
a, (Up, Pp; Vi, qp)

V{uy, eV, x Q. 40
Vg, Pk €V Gn o (40)

[un,ppllp < sup
Vi Gh €V xQp

Remark 4. Using the L norm for the pressure instead of || - llg and
[-llo, in general leads to parameter dependent stability and
continuity constants, see [41].

Further in this section, we prove several FE convergence results for
the grad-div stabilized Stokes problem.

Theorem 2. Assume (24), (29) and a = 0. Let (u,
(6) and (up, py,) a solution of (27), then it holds

p) be a solution to

|[w—uy,p—pyl|= inf inf |[u—vi,p—qy]l- (41)
VieVy qreQp
Assume further the H?- regularity condition and maxgc, hx < h, then
1
O+ ma) , S\
u—ul (2 h|[u —uy, p —pll. 42
Ju = ( P Rl wp -y (42)

Proof. Let u; be the best approximation to u in V, with respect to
the || - ||, norm and p,; be the best approximation to p in Q, with
respect to the || - ||, norm. The norm equivalence (31), stability
(40), continuity (38) estimates, and the orthogonality property of
the FE error function give:

[[ur —up, py — ppll < [ — Wy, Py — pp]ly
< sup (W — Wy, Py — Py Vs Gn)
Vi dn €V xQp |[Vh7 qh] |h
< sup a,(W; — Wy, Py — Pp; Vi, Gp)
Vi qn€Vp xQp | [vfh qh] ‘
_ sup MWDV Gh)
Vi, qp €V xQp ‘ [v’h qh} |

< | —wa,p,—pl.
With the help of this estimate and the triangle inequality we get

[[w—uy,p—pyl| < [w—wp —p]= inf mf U= Vi, p— gyl
VheVp PreQ

Since {u;, py} € Vi x Qp the inverse mequallty

inf mf [[—Vh,p—qp)| < |u—upp—pyl
vy € Vy ppe

is ev1dent. The equivalence (41) is proved.
With the help of a standard duality argument we prove (42).

Denote e, =u—Uuy, 'y =p—Pp. Consider
w e H3(Q)%, ¢ € H'(Q) nQ solving the Stokes problem

- VAw-Vq=e¢e;, divw=0 in Q,

w=0 on Q.

Thanks to the H>-regularity assumption, the following a priori esti-

mate holds
VIwllge < cullenll, IVl < cpllenl. (43)

Using the weak form of the problem and the orthogonality property
for ey, 1, we get

len|” = a,(W — W, q — q;; €, )
with arbitrary w, € V;,, q, € Q. Thanks to (38), (32), interpola-
tion properties (25), and a priori estimate (43), we obtain

lenll” < W — Wi, q — g, [en, ]|
< (Iw = wyl§ + 1V + ) 2(q — qy)[1*)? e, ]l
SV + V) VW = W) [P+ (V4 Pin) ' 11G = Gl*)2 (€8,

_ 1
SRV + Vo) W + (V + Vi) VG2 €8, 13|
1
2 2
V+Vmax
< <Cﬁ ) +V+/mm> hilenll[ex, rx]l-

Thus (42) is proved. O

Theorem 2, interpolation properties (25), and estimate (32)
immediately yield the following corollary.

Corollary 3. Let (u, p) be a smooth solution to (6) and (uy, p,) a
solution of (27), then the following error estimate holds

5 b (v + polu g + 5 P )

KeTy

[u—w,p—plf* s

(44)
Finding the minimum of the right-hand side from (44) with re-
spect to ), gives the optimal value

P2 max{ LT v,o}. (45)

‘u‘Hk”(K)

Remark 5. The assumption (29) can be avoided. In this case, one
can show (see, e.g. [20]):
o — a7 +

Ip—pull* < inf inf [u—vy,p—q,l. (46)
VheVh qpeQp

v + ymax
The norm on the left-hand side of (46) is somewhat weaker than in
(41). More important, however, is that (41) gives the equivalence re-
sult, while (46) is only the upper bound. Thus the bound in the |[-, |
norm is tight. This suggests that the choice of y’s from (45) is likely
to minimize the left-hand side in (41) as well.

Since the norms of solution on the right-hand side of (45) are
not accessible, different assumptions and/or simplifications can
be made to obtain computable expressions for y,. Below we review
few different approaches to handle this problem.

e Regularity based approach is typical for analysis in the framework
of least-squares and Petrov-Galerkin methods [20,34,44,47].
Based on the regularity theory for the Navier-Stokes equations,
one assumes that for many flows of interest |u]| et (7
Il e Wthh yields for small enough v the choice

Vg = 1‘ (47)

This choice, however, is rather questionable for the Stokes prob-
lem alone, since the resulting method does not pass the simple
scaling criteria: for u — Ju the parameters should scale like
v — 2 'vand y — 27'y. We will revisit this approach for the
Oseen problem below.

e In the f-based approach one supposes that some a priori esti-
mates provide useful information about the unknown solution.
Thus the regularity estimate for the Stokes problem gives:
vlullyen g < Cullfllger o and [Pl < Cplifllyer ) Therefore,
the error estimate (44) yields

~2 ~2
2 _ 2k [ GV + Vmax) % 2
u-u _ < h u max f -
H hy D ph” ~ < V2 + VF Yo H ”Hk Q)
An optimal parameter is given now by the choice

P = max{(¢,c;' —1)v,0}. (48)
Note that, for the Stokes problem, (48) is similar to the choice of
y = v based on the bubble functions enrichment [19] and the
analysis of the SUPG method for equal-order velocity—pressure
elements [18].

e One may also think of an L*-norm approach based on the esti-
mate (42) for the L,-norm of velocity. Thus, instead of mini-
mizing the error estimate in the v-dependent norm as in
(44), one may minimize the right-hand side of (42) assuming
that the |[,,-]|-norm of the error is almost y-independent (the
assumption is somewhat vague, of course). This also leads to
(48).
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The situation for the “simple” case of the Stokes problem is now
clear: there is the optimal choice of ’s in (45), which can be
simplified in different ways depending on some a priori knowledge
of the solution behavior. Further we extend the above analysis to
the Oseen problem (a is not necessarily zero). We shall see that
similar conclusions hold in this more general case.

3.3. Oseen problem: a=0

Most of the analysis for the Stokes problem from the previous
section can be extended to the Oseen equations. However, the opti-
mality (tightness) of the error representation as in (41) will be lost
since the problem is not symmetric anymore.

In addition to the norms used before we will need the following
norm on V:

1
2 - 2\2
IVl == (V1 + v Ja e viP).
The product space norm in this section is altered by the a-depen-
dent scaling of the pressure norm:

1
2 \ _ 21122
1.l = (VI + 6oV + P+ v 1210l
with an appropriate mesh- and parameter-independent constant
cp > 0.

Remark 6. The error for the Oseen problem will be estimated in
the |[-, ]|, norm defined above. If we also assume the alternative
inf-sup condition for @, c H'(Q):

sup (@1VUDY)

> Co Vp
w, eV, Huh” = ” hH

Vpy, € Qy, (49)

then the error analysis can be done with the stronger pressure norm:

2 _ (divv,q)*
llqllg := sup — A2 o2
vev [vly +vallS v

instead of (v + . + v '[1a]%) " llq||*. Condition (49) is satisfied by
Taylor-Hood or Mini element [42,36]. However, we shall not elab-
orate details, since this improvement is tangential to the main topic
of the paper.

The following result generalizes Theorem 2 for the Stokes
problem.

Theorem 4. Let (u,p) be a solution to (6) and (u,,py) a solution of
(27). Then it holds

[[u—uy,p—pyllg
1
2
< ( inf ju— v/} + inf |(v+7) 3 (p - Qh)||2> . (50)
VeV qn<Qp

Proof. The result is a special case of [37] where additionally a
reduced variant of the streamline-diffusion stabilization is consid-
ered. Following [37], we obtain in the first step the stability
estimate

1
0 (Vi Qi Vi G) > 5 (Vi Gille V(VaiGp) € Vi x Qi (51)

Let w; = I,u be the interpolant to u in V}, with the divergence-pre-
serving interpolation operator I, of Girault-Scott [21]. Moreover,
let p, be the best approximation to p in @,. Using the property
(g, div(u — u))) = 0, we obtain in a second step the estimate

a,(u—u;,p —p;; Vi, qy)
< lu—wlly|[v, gull, + (0 — P divvy) — (@@ (U —w), Vvy)

< (o= w3+ 10+ 7) 2@ = )P Vi, Gl (52)

Then we set (v, g,) = (uy —wy, p, — p;) and derive from (51), (52),
together with the Galerkin orthogonality a,(u—wu,, p—py;
Vi, q,) = 0, the estimate:

1 1
[y —w,py = pilly < (U —w)? + (v +7) 20— p)IPP)>.

The triangle inequality concludes the proof of (50). O

Corollary 5. Let (u, p) be a smooth solution to (6) and (uy, py) a solu-
tion of (27). Then it holds

|[w —uy, p— py)2

< 2k hglag\ 2 1 2 53
N Z K (\ VTVt ‘“‘Hm(})+v+y’(|p‘H"(K) (53)

Ke7 )y

. 2
with [af == [[a]|}< k).

Proof. The interpolation property (25) for the pressure and the
corresponding estimates for the divergence-constraint preserving
interpolator I, see (25), immediately yield the bound (53). O

Finding the minimum of the right-hand side from (53) with re-
spect to y, gives the optimal value in (45) up to the extension of
the velocity semi-norm to a neighborhood K of K. Attempting to
deduce computable expression for 7y, one may follow the same
arguments as for the Stokes case:

e Assuming |lul| i [Ipllxk, together with the scaling of equa-

H 1 (K)
tion in a way that ||aj| = 1 (for some norm of a) yields the choice
7k = 1 again. This design of y’s can be found in [20,29,37,44]. The
drawback of this parameter design is that the local behavior of
flow is not taken into account.

e Compared to the Stokes problem it is not easy to obtain sharp
estimates for the higher derivatives of u and p due to the pres-
ence of the convection term a - Vu. In the case when the contri-
bution of body forces f in the momentum can be neglected, the
approximate equality —vAu +a - Vu ~ Vp yields

k=1
\p|Hk(K) < V|u|Hk‘1(E) + n;) Ha||Wm.x<7(l)‘u|Hk,m('lz).
hold with

Now assume that the bounds |u| , ~ < Cm\“\Hm

(K)

some finite constants ¢, v@hic(ﬁ) have dimension of
[length-scale]™!. This provides the upper bound for optimal
parameters
k-1
< (v Cm|la ~ . 54
nex (ve Y ealal ) (54

Note that the design deduced in the multiscale framework in
(23):

Y=Vl (55)

perfectly fits the condition (54) for k = 1.

e Finally, note that the Dirichlet inflow boundary conditions for
(5) lead to Dirichlet outflow boundary conditions and thus poor
regularity for the adjoint problem. Then, we are not able to
deduce reasonable formulas for 7, based on a L*-norm error esti-
mate for a # 0.

Remark 7. The above analysis suggests that for shear/channel
flows where the inertia terms a - Vu vanish the estimate (54) is not
sharp in its a-dependent part and thus the design (55) is not
perfect. This explains the well-known numerical observation (see,
e.g. [33]) that for laminar channel flows the choice y = v is optimal,
which is in contrast to flows with an intense inertia phenomenon,
see examples in Section 5. For flow exhibiting mixed dynamics or
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in the lack of additional information about the continuous problem
solution {u, p}, the design of the stabilization parameter y is a
controversial issue. Thus, there is no surprise that different
recommendations can be found in the literature. To amend this
situation one may try a ‘dynamic’ choice of parameter 7y directly
based on (45) setting, for example,

7 = max M—vo , (56)

|u |Hk+1(E)

where K is a macro-element such that K ¢ K, and w*,p* are
approximations to u,, p, from the previous Picard iteration or time
step, that the semi-norms in (56) makes sense. Some other approx-
imations to (45) can be considered as well.

Remark 8. The norm of the velocity error on the left-hand side of
(50) depends on v and 7. For y = 0 the estimate allows the O(v-1)
scaling of the velocity error with respect to the best possible pres-
sure approximation. Note that in the Stokes case such estimate is
optimal, cf. (41). For y = O(1) only O(v*%) scaling of the velocity
error is allowed by (50). Moreover, in this case one gets additional
control of mass conservation for the discrete solution. In particular,
for y = O(1) estimate (50) implies

1

2
Idiven| < (mf Ju— vyl + inf ||pfqh\|2) .
vpeVy qreQy

3.4. Equal order elements

The error estimates (44) and (53) and hence the basic formula
(45) were deduced for the case of different order LBB stable veloc-
ity and pressure elements. Here we extend the analysis to pres-
sure-stabilized discretizations of the Oseen problem which allow
equal-order pairs. The error analysis basically follows the lines of
Section 3.3, so we outline the necessary modifications. To avoid
additional, but non-important for our purpose complications, we
assume that the convection is not numerically dominant, i.e.
a|¢hk < 1v for all elements K and @, ¢ H'(Q). The bilinear form
of the pressure stabilized FE method is augmented with an addi-
tional term as:

a;t(umph;vthh) = a}'(uhaph;vhv qh)

+ )T /(—vAuh +a-Vu, + Vpy,) - Vg, dx

KeTy

and the discrete problem now reads: Find u, € Vy,p, € @ such that

+ )T f-thdx Vv, e Vi, q, € Qp.

KeTy

a; (Un, Py; Vi, 4n) = (£, Vi)

(57)

Following [14], the stabilization parameter is designed through
Ty = hi(v + |aj¢hk) . The product norm is altered as

[

v, qlf5 = (|v|2v + (V4 Ve + VA1) P + DD mwi) :

KeTy

Instead of the LBB condition (24) we need the following weak
inf-sup condition (e.g. [5]):

1
divuy, :
sup [AVURPY) o o (Z th) Wy ey (58)

w,eV, ||Vlth KeT),

with positive constants ¢y, ¢c; independent of h. Following the same
arguments as in [37], we obtain the stability estimate

@ (Vi Gus Vi Gn) = €|V Gull (Vi Gn) € Vi x Qp

with some positive parameter independent constant c. Further,
repeating arguments from the proof of Theorem 4, we get the error
estimate

. 2 . -1 2
= .p—pyll < (J:@& o =il + inf {0+ Hp - an)|

+ > rKnV(p—qhnﬁ(}) 7

Ke7y,

where (u, p) and (u;, p,) are solutions to (6) and (57
Interpolation properties of FE spaces now yield

Ia\
<<V+V1< K ‘“‘Hm )
KeTy

> h

), respectively.

[w—uyp—pyls <

J’_

v + )} |p‘Hk+1 (K) + TK|p‘Hk+l (K )

Thus, if equal-order elements are used, then the error analysis leads
to the different optimal parameter:

th ~v,0%. (59)

V= Max
‘ |Hk+1(K)

For smooth solutions, this would scale the parameter from (45) with
hi. Note that this conclusion is similar to the one obtained by different
arguments within the variational multiscale framework of Section 2.

The next section studies dissipation properties of the grad-div
stabilization.

4. Numerical dissipation vs. mass balance for grad-div terms

In this section, we show that in general the grad-div stabiliza-
tion introduces some numerical dissipation into the method. In
particular, this suggests an explanation why such grad-div
enhancement alone was shown to be useful for stable calculations
of turbulent solutions, see [29]. Introducing too large numerical
dissipation is also related to over-stabilization effects when 7 is ta-
ken too large, see numerical examples in the next section. Let uj(t)
be the FE solution to (4). Assuming the skew-symmetric approxi-
mation of the convection term, the discrete energy balance for
u,(t) is given by

o) +v [ IVun(s) P ds + / ' Iptdivun(s) ds
(@) + (,un(®)) for £ € (0,7). (60)

The second term in (60) corresponds to the viscous dissipation of
the energy, while the third term in (60) (non-negative for all t
and thus potentially dissipative) has no matching in the energy bal-
ance for the continuous solution. Thus the rate of numerical dissipa-
tion introduced by the grad-div stabilization at time t can be
measured as

yAdivu, (6)]°
IV (0)]*
Let VO := {v, € V|(divvy,q,) = 0, Vg, € @4} be the set of discrete

divergence free velocity functions. Since the solution u;(t) belongs
to VY, the quantities

diss(t) = (61)

Iyidiv |

o [yidivvy|
=inf ~ =——— and M, = su
luh h p vah”

62
Tl ©2
give us bounds for the numerical diffusion from (61):
w2 < diss(t) < M7

Denote by G the FE matrix representation of the grad-div term.
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When numerically evaluating p? with element order p > 2,
there are true divergence-free functions in V2, thus u, would be
zero (see Figs. 1 and 2). We can still calculate the minimal diffusion
on the complementary orthogonal subspace V{ \ ker(G) to gain
some insight. For this we look at the quantity

_ : [[yAdivvy||
= inf H——2
vheVh\ker g IV
instead of the lower bound .

For the following calculation we assume ) = 1 and denote the
FE matrices for the diffusion and divergence terms with A and B,
respectively. Further, let P be the L?-orthogonal projection from
V), onto V9. The matrix counterpart of this projection will be also
denoted by P, thus P is the orthogonal projector from R" onto
V° := ker(B). Note that P G is a symmetric operator on V° and P A
is a symmetric positive definite operator on V°.

Now the bounds M; and 2 can be expressed via generalized
Rayleigh quotients:

1. 2
Mﬁ — sup [ly2divvy|| _

. (Gu,u) (PGu, u)
et [[Vvi?

= =:
uevd (Au ) yevo (PAU, ) e

adiv)® _ . (Gu.w)

~ min (PGu, u)
uev® <Au7u> a

ey <PAU,U> = ;Lmina

y
W, = inf
weVy Vv

and can be determined by the minimal and maximal eigenvalues
Zmin aNd Amax Of
JPAu =PGu, ueV’ (63)

By the definition of P, Pv = 0 is equivalent to v = B'q with some
q € R™. This makes (63) equivalent to

(C ()3 2)0) oo

which can be solved with a generalized eigenvalue solver. In Fig. 2,
one can see the spectra for different element orders and mesh

refinements. In Table 1, we present our results of lower and upper
bounds for the numerical dissipation for different element orders
and refinements; “’-sign means that computing the whole spectra
for this case was beyond available computer resources.

We can draw a few observations and conclusions from these re-
sults. Table 1 shows that for Q; velocity approximation at least
O(yh?) numerical dissipation is introduced. Note that Q; velocities
can be used with both LBB unstable equal order and LBB stable iso
Q, —Q; and iso Q, — Q elements. For higher order elements,
numerical dissipation acts only on a subspace of VJ. The relative
dimension of this subspace decreases and the relative dimension
of the strongly divergence-free velocity subspace increases for
higher order elements. Fig. 2 and Table 1 show that for certain
modes the O(y) numerical dissipation is introduced; the properties
of these modes and the relation of such anisotropic non-uniform
dissipation to the turbulence modeling character of the grad-div
stabilization deserves further studies. At the same time, the exis-
tence of eigenmodes of (63) with 2 = O(1) warns us against possi-
ble over-diffusion (over-stabilization) for larger y’s.

Note that the FE method imposes only global mass balance
through the identity (divuy,q,) = 0 for all g, € Q. The resulting
FE solution is not necessarily div-free since div (V) ¢ Qp, and even
element-wise mass balance can be violated if Q, does not contain
piecewise constant functions (as, for example, happens with Tay-
lor-Hood elements). Another role of the grad-div stabilization is
to enforce mass balance in a stronger way. This can be seen in
two ways; more investigation in this direction can be found in
[32]. First of all, as already discussed in Remark 8, the stabilization
leads to a better scaled estimate of |divu,|. Also, assuming
y = const and u;, € V9, it holds:

[y¥divu,|® = y(divuy, diva, —q,) Yg, € Qy
Therefore

[y3divuy|| = y* inf ||diva, —q,|| Vua, € V) (65)
qneQy

AN - i \ 7’ ( N '

,(‘\. Iala)

Fig. 1. Four basis functions of the (strongly) divergence-free subspace for Q, and h = 1/4.
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Fig. 2. Eigenvalue spectra for different element orders and h = 1/8 (left) and for Q3 with different refinements (right). X-axis is rescaled to [0,1].
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Table 1
Dimension of truly div-free functions subspace of Vj(G = kerG) and bounds for
numerical dissipation on its orthogonal complement subspace in Vj.

h 1/4 1/8 1/16 1/32
Q1

dim(G)/dim(Vy) 0/ 18 0/ 98 0/ 450 0/ 1922

12 4.8812e-2 1.1864e-2 2.9564e-3  7.3869e—4
Q.

dim(G)/dim(V/G) 4/ 94 36/ 414 196/ 1726 900/ 7038

i 8.9596e—3 24653e—-3 6.3427e-4  1.6002e—4

M? 9.9302e-1 9.996le-1 9.9998e-1  1.0000e—0
Qs

dim(G)/dim(vg/G) 36/ 206 196/ 862 900/ 3518 o

2 43242e-3 1.0953e-3  2.7497e-4  6.9336e-5

M? 9.9876e—1 9.9992e—1 9.9999e—-1  1.0000e—0
Q4

dim(G)/dim(Ve/G) 100/350 4841438 21165822 */*

i 2.4296e-3  6.1053e-4 1.5289%e-4  3.8241e-5

M2 9.9955e-1 9.9997e—1  1.0000e-0  1.0000e—0

and the stabilization can be also observed as a way to penalize the
discrepancy between div (V,) and Qj.

Summarizing the above discussion, we may consider the search
of optimal parameters ) as a trade-off between mass and energy bal-
ance in the FE system.

5. Numerical experiments

Let us start with two examples for the Oseen problem (5) where
the grad-div parameter is designed according to (56) or according
to the simplified settings y, = y,(v + ||allx) and Y, = v, We note
that, although the latter choice does not account for the local
behavior of flow, it has the following attractive property: the addi-
tional stabilization matrix should be assembled only once, while
(23) requires the matrix to be updated every time step or every
non-linear iteration. In either case y, is an additional parameter,
which has to be specified. The calculation in all examples were per-
formed with Q,/Q-approximations for velocity/pressure with the
grad-div stabilized Galerkin scheme using the library deal1.11 [1].

Example 1. We solve the Oseen problem on Q= (0,1)* for
viscosity v = 107 with the flow field a(x) = (sin(27x; ) cos(27x, ),
— cos(27x;) sin(27x,))T, source term f(x) := 8m2vh(x), but with
inhomogeneous Dirichlet data u(x) =a(x) on 9Q. The exact
solution wu(x):=a(x) and p(x):=1(cos(4mx;) + cos(4mxy)) is
smooth and v-independent. For this example there holds

—e—h=1/12
—o—h=1/32
10°[| ——nh=1/64
—A— h=1/122

GradDiv-parameter 5o

(u-V)u = 7(sin(4mx;), —sin(47mx,))". Moreover, one observes a
strong variation of the mesh Reynolds number Rey := w over
the domain between 0 and .

We present in Fig. 3 the plots of the H'- and L?-errors for the
solution with the "dynamic” variant of the grad-div stabilization
according to the optimal choice (56), i.e., with y, =y “ﬁl‘“?’“. The
seminorms in (56) were approximated using the 1-$t “order
quadrature formulas and the explicitly computed higher order
derivatives for given pressure and velocity solution. We observe a
distinguished and h-independent minimum of the errors for
parameter }o ~ 1 which leads (as compared to the unstabilized
case) to improved values of the norms by a factor of nearly 1072 on
the finest grid. In the paper we discussed several simplified designs
for yx. In numerical experiments we try the constant choice and
(23).

Thus, we present in Fig. 4 the plots of the H'- and [?-errors for
the solution with the simple grad-div stabilization, i.e., with
Yk = Yo- We observe again a distinguished and h-independent
minimum of the errors for parameter y, ~ 10~' which leads to
very similar results as for the "dynamic” choice. Note that

maXK“ﬁ‘“i"; ~ 107" which explains that 7y, ~ 0.17.

I3

Further, we show in Fig. 5 the corresponding plots of the H'-
and L?-errors for the solution with different values of viscosity v
and fixed h ~ Z;. We observe that the pronounced and h-indepen-
dent minimum of the errors is more and more pronounced with
decreasing v. At the same time, no degradation of the error occurs
in the diffusion-dominated case.

The results for this example suggest that a globally constant
value of the grad-div parameter 7, is reasonable and, of course,

much cheaper than the "dynamic” design.

Example 2. As a second example, we consider a problem with a
boundary layer proposed in [4]. We solve the Oseen problem on
Q = (0,1)* with a = u and solution

_ 2m(efy —1)\\ . /2m(ef*2 —1)\ R, efx
ul(x)f(l—cos< o ))sm( o 1 )ﬁ(eRZ—l)’

o 2m(efn — 1) 2m(efXe —1)\\ R; efix
UZ(X)*_S‘H<76RI_1 )(1—cos( o 1 ))ﬁ(e&—lf

_ : zn(eR]Xl - 1) . 2TC(€RZX2 — 1) eRax1 gR2xz
po0 = Riysin (S5 sin (75 Sy

The velocity field resembles a counter-clockwise vortex with the
center at

X 3 — 1lo el +1 1lo efe +1
(Xo1,X02) = R 108 (5 ) 108 .

—e—h=1/12
—o—h=1/32

1 —=—h=1/64
10 ¢ —A—h=1/122

10° 10° 10° 10 10 100 10

GradDiv-parameter 7o

Fig. 3. Plots of H'- and L*-errors vs. scaling parameter J, of “dynamic” grad-div stabilization for Example 1 with v =10"%, ¢ = 0 and different values of h.
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Fig. 4. Plots of H'- and L-errors vs. scaling parameter 7}, of grad-div stabilization for Example 1 with v = 10"°, ¢ = 0 and different values of h.
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Fig. 5. Plots of H'- and L*-errors vs. scaling parameter 7, of grad-div stabilization for Example 1 with different values of v and ¢ = 0, h~ .
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Fig. 6. Errors in H'-seminorm and L?-norm vs. scaling parameter 7y, of grad-div stabilization for Example 2 with v = 10~* and different values of h.

The parameters are chosen as R, = 0.1 leading to xq; = 0.5125 and
R: such that xo; = 1 — 4, i.e. the center moves with decreasing v
to the right boundary. This leads to a v-dependent solution with
IVully ~ v-03% and [|p[j, ~ v-012.

In Fig. 6, we present results for v = 10~ and y, = y,(v + ||a|)-
The value of the viscosity allows a resolution of the boundary layer
on the finest meshes. The errors in the H'-seminorm and L?-norm
are again plotted against the scaling parameter 7. The tests reflect
again robustness of the discrete solution with respect to y, and a
pronounced, h-independent minimum. In comparison to the unsta-
bilized case y, =0, we observe for an optimal value of y, a
reduction of the errors on the finer meshes by a factor of nearly

1072. This reduction is clearly pronounced as in Example 1. We
note that the simplified choice y, = y, was found for this problem
to produce very similar results.

Remark 9. Results in Figs. 4 and 6 show that the optimal value of
7o is problem dependent, which is a typical situation with any sta-
bilization parameter. We have no a priori rule how to pick up the
optimal value of 7y, for a given problem. Although in the log-scale
of Figs. 4 and 6 the minima with respect to the variation of y, looks
rather sharp, the results suggest that any a priori choice of
Yo € [0.1,1] is not overstabilizing and would lead to a significant
improvement in accuracy compared to the unstabilized problem.
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Example 3. As a last example, we consider the time-dependent
Navier-Stokes flow of generalized Beltrami type, see [16]. This flow
is defined in Q = (—1,1)%. The exact solution is

e™ sin(ax, + bxs) + €™ cos(ax; + bx;)

u(t,x) = —a| e™ sin(axs + bx;) + e™ cos(ax, + bxs) |e "
e™s sin(ax;, + bx,) + e™ cos(axs + bx;)
and
1 2[p2ax 20X 2ax:
p(t,x) = —ja (5% + g7 4 %%

+ 2sin(ax; + bx,) cos(axs + bx; )e?®2*3)
+ 2sin(ax, + bxs) cos(ax; + bx,)e®s )

+ 2sin(axs + bx;) cos(ax, + bxz)e i +x2))e-20"t

with parameters a = /4 and b = /2. This flow is a series of coun-
ter-rotating vortices intersecting one another at oblique angles.

The numerical solution is obtained on a series of equidistant
meshes with h =2k € {2,3,4,5}. The time discretization is
performed by means of a stiff-stable diagonally implicit Runge-
Kutta method of order 2 with time step At = Z. This is sufficient
to guarantee that the discretization error in time does not domi-
nate the spatial error.

We present in Fig. 7 (left) the plots of the error in L?(€) (as func-
tion of t) for Re = 10° and different values of h for the Galerkin
scheme, i.e. without grad-div stabilization, (left) and for fixed h
and different values of the grad-div parameter (right). The
improvement even with the simple (time-independent) grad-div
stabilization y, = 7, is obvious. Moreover, as we observe in the left

10
107}
_°
=
T 107
>
10°}
- = =h=1/4
- = h=1/8
h=1/16
o . h=1/8y,=1
10

0 010203 04 0506 07 08 09 1
t
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part, the error with grad-div stabilization for h =} is better than
the error without stabilization for h = {%. This is a problem reduc-
tion by a factor 8.

We present in Fig. 8 (left) the plots of the error in L?(2) (as func-
tion of t) for fixed h and different Reynolds numbers. The case
without grad-div stabilization is shown on the left whereas the
grad-div stabilized case is presented on the right. Again, the stabi-
lizing influence of grad-div terms is obvious in case of high Rey-
nolds numbers.

6. Summary, outlook

In this paper, we considered the grad-div stabilization as a sub-
grid pressure model in the framework of variational multiscale
methods and critically discussed the choice of corresponding
parameters.

For linearized problems of Stokes and Oseen type, we derived
refined error estimates of the grad-div stabilized method in the
case of inf-sup stable and equal-order interpolations of velocity/
pressure. It turns out that the design of the set of stabilization
parameters for inf-sup stable elements differs from the case of
equal-order elements. Unfortunately, the optimized parameters
depend on the (unknown) solution. Therefore, we discussed some
variants of a simplified parameter design. Both the analysis and
numerical experiments show that for inf-sup stable elements the
optimal choice of the stabilization parameters is h-independent.

Moreover, we discussed the influence of the grad-div stabiliza-
tion terms on energy and mass balance of the discrete flow prob-
lem. Finally, some numerical experiments for the Oseen and the
Navier-Stokes problem support the theoretical considerations. In

10
h=1/8,Re=te6 ="
_o et i
= T e
Tt
S i P
1" —%0
’ o _y=le-3
,I - y2:1e72
’ —
-3 - -
100707 02 03 04 05 06 07 08 09

t

Fig. 7. Error in [>-norm vs. t € [0, 1] without stabilization for different values of h (left) and with grad-div stabilization for fixed h for v = 10~° for Example 3.
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Fig. 8. Error in L?>-norm vs. t < [0, 1] for different values of Re = 1 without stabilization (left) and with grad-div stabilization (right) for Example 3.
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future research, it seems to be important to study the role of grad-
div stabilization as a subgrid pressure model for turbulent flows.

Appendix A

We use the concept of sums and intersections of vector spaces
(cf. [3]). Let X, Y be compatible normed spaces, i.e., both X and Y
are subspaces of some larger topological vector space Z. Then we
can form their sum X + Y and intersection X N'Y. The sum X + Y con-
sistsofallz € Zsuchthatz=x+y withx € X, y € Y. The spaces
XnNY and X +Y are normed vector spaces with norms

1
Xy = (Il + IxI3) (xeXnY)
1
lellx.y = jinf (IIZ+IyI3)" (xeX, yey).

If X and Y are complete then both X n'Y and X + Y are complete. If X
and Y are Hilbert spaces such that XNY is dense in both X and Y,
then (XNY) =X + Y holds and

Igllxoyy = lIglx,y forallge (XnY). (66)

Here X’ denotes the dual space to X. Proofs of these assertions can
be found in [3] or [42].

In the proof of Lemma 1 we apply the result in (66) setting
X =V, with the norm v}|V-|| and Y =V, with the norm
(|ly2div - |* + || - Hz)% with an arbitrary ¢ > 0. Further, g is the func-
tional on Vy, defined as (g, vy,) := (p,,,divvy) for a given p, € @, and
any v, € Vy. This leads to

sup (divvy, pp)
WY\ [TV 4 [ divey | + el vl

. 2
(divvy, qp)
eV |73 divva|® + &l[va]?

(divvy,py, — q,)°

= inf 3
VIV

9h€0h \ v,ev,

Letting ¢ — O yields the desired relation (34).
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