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We study the helicity balance of the Galerkin method for the 3D Navier–Stokes equations, and show that
although it does not appear to correctly balance helicity in the usual sense, it instead admits a slightly
altered helicity balance that matches that of the underlying physics, up to boundary conditions.
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1. Introduction

We consider helicity treatment in the commonly used Galerkin
discretization for the 3D Navier–Stokes equations (NSE). It is well
known that the NSE conserves helicity [13] in the absence of vis-
cous or body forces, and admits a precise helicity balance when
these forces are present. This balance is believed critical in flow
structure development [12], and is the basis for the cascade of
helicity (joint with energy) through the inertial range [4]. There-
fore, it is very desirable that the helicity balance be preserved in
a numerical scheme. However, in contrast to the energy balance,
the helicity balance does not hold in the usual way for the standard
Galerkin approximations (see (2.7)), and thus creative and natu-
rally more expensive discretizations have been developed that do
so (first in [10] for axisymmetric flow and later in [14] for the full
3D NSE). We show herein that the standard Galerkin method in-
stead balances a slightly altered discrete helicity-type quantity,
which is computed as H ¼

R
X u �wdx, but w is the solution of a dis-

crete vorticity equation instead of simply being the curl of the
velocity. For any helicity balance to be discretely preserved is rare
and naturally of fundamental physical importance, and hence this
work provides additional insight into a physical treatment of helic-
ity by this commonly used method.

To better understand the subtleties of the discrete helicity bal-
ance, we first recall the derivation of the helicity balance in the
ll rights reserved.
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continuous case. Begin with the incompressible NSE on a domain
X� ð0; T�,

ut þ u � ruþrp� mDu ¼ f; ð1:1Þ
divu ¼ 0; ð1:2Þ
uð0Þ ¼ u0; ð1:3Þ

where u denotes velocity, u0 the initial velocity, p pressure, and f
body force. We assume further that the body force is potential,
f ¼ ru. Applying the rot operator to momentum equation (1.1)
gives the following equation for the vorticity vector w :¼ rotu

wt � mDwþ ðu � rÞw� ðw � rÞu ¼ 0; ð1:4Þ

with initial condition wð0Þ ¼ rotu0.
Let VðtÞ be a volume moving with a fluid such that for a given

moment t P 0 the boundary @VðtÞ is a vortex surface, i.e.
w � n ¼ 0 on @VðtÞ where n is a unit normal vector to @VðtÞ. The
scalar function h :¼ u �w denotes helical density. It holds that

d
dt

Z
VðtÞ

hdx ¼
Z

VðtÞ
ht þ u � rhdx

¼
Z

VðtÞ
½ut �wþ ðu � ruÞ �w� þ ½wt � uþ ðu � rwÞ � u�dx:

ð1:5Þ

Multiplying (1.1) with w and (1.4) with u and integrating over
VðtÞ one gets due to w � n ¼ 0 and divw ¼ 0:Z

VðtÞ
ut �wþ ðu � ruÞ �wdx ¼ m

Z
VðtÞ
ðDuÞ �w dx; ð1:6ÞZ

VðtÞ
wt � uþ ðu � rwÞ � udx ¼ m

Z
VðtÞ
ðDwÞ � u dx: ð1:7Þ
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Assume for a moment that the fluid is inviscid, then the right-
hand sides in (1.6) and (1.7) vanish and so does the righthand side
in (1.5), implying d

dt

R
VðtÞ h dx ¼ 0. Since under the evolution gov-

erned by Euler equations of an ideal fluid vortex surfaces are ‘‘fro-
zen in the fluid” (behave like material surfaces), the condition
w � n ¼ 0 on @VðtÞ is satisfied for all t P 0 if it holds for t ¼ 0. This
implies that the helicity associated with VðtÞ is conserved:Z

VðtÞ
uðtÞ �wðtÞdx ¼

Z
Vð0Þ

u0 � rotu0 dx; 8t P 0:

The situation becomes more delicate in the viscous case: the
viscous terms enter the helicity balance and condition w � n ¼ 0
is no longer preserved on @VðtÞ. The latter means that helicity
can be created or destroyed on the boundary of VðtÞ [11], and thus
the helical phenomenon is much more complicated in a viscous
fluid.

We shall study the global helicity balance of a viscous flow, set-
ting VðtÞ :¼ X for all t. For the problem (1.1) and (1.2) to be well-
posed one should prescribe a boundary condition on @X. To ana-
lyze the global helicity budget, a natural choice is to assume X is
a periodic box or a polyhedron with u ¼ 0 on @X. While the peri-
odic case is of a limited practical interest, homogeneous Dirichlet
boundary conditions for velocity describes internal flows well
and is a common assumption in numerical analysis of discretiza-
tion techniques in fluid dynamics. Thus we assume

u ¼ 0 on @X: ð1:8Þ

Note that (1.8) implies w � n ¼ 0. Thus we set VðtÞ :¼ X in (1.5)–
(1.7) and use divw ¼ divu ¼ 0, vector identity D ¼ rdiv� rotrot ,
and integration by parts to reduce the viscous terms:Z

X
ðDuÞ �wdx ¼ �

Z
X
ðrotrotuÞ �w dx

¼ �
Z

X
ðrotwÞ � ðrotuÞdx ¼ �

Z
X
ðrotrotwÞ � udx

¼
Z

X
ðDwÞ � udx ¼ �

Z
X
ðrwÞ : ðruÞdx:

Integrating over time we get the following NSE helicity balance
equation

HðTÞ þ 2m
Z T

0
ðruðtÞ;rwðtÞÞdt ¼ Hð0Þ; with HðtÞ :¼ ðuðtÞ;wðtÞÞ:

ð1:9Þ

Here and further ð�; �Þ denotes the L2ðXÞ scalar product, e.g.
ðu;wÞ :¼

R
X u �wdx. We desire numerical schemes to admit some

discrete analog of (1.9), as it provides evidence of physical rele-
vance of solutions.

2. Helicity balance for Galerkin approximations

Consider now the Galerkin formulation of the NSE. We assume a
finite element method, although other choices of discrete spaces,
see e.g. [8], are also suitable for further discussion. Denote inf-
sup stable discrete velocity and pressure spaces by Xh � H1

0ðXÞ
3

and Qh � L2
0ðXÞ :¼ fp 2 L2ðXÞj

R
X pdx ¼ 0g respectively (see [3,6]

for examples of such spaces), denote Vh to be the space of dis-
cretely divergence-free functions in Xh;Vh ¼ fvh 2 Xh : ðdiv
vh; qhÞ ¼ 0 8qh 2 Qhg, and define the operators PVh

and PQh
to be

the L2 projections into Vh and Qh respectively. Formally, for
/ 2 L2ðXÞ; PVh

/ is the unique solution in Vh to

ðPVh
/� /;vhÞ ¼ 0 8vh 2 Vh:

The projection operator PQh
is defined analogously. The treat-

ment of the nonlinear terms is typically done through the defini-
tion of the skew-symmetric trilinear form,
bðu;v;wÞ :¼ ðu � rv;wÞ þ 1
2
ððdivuÞw;vÞ

¼ 1
2
ðu � rv;wÞ � 1

2
ðu � rw;vÞ;

which provides a more accurate energy balance than the usual con-
vective formulation.

Suppressing a particular time discretization, which is not
important at the moment, the semi-discrete Galerkin method is
then to find ðuhðtÞ; phðtÞÞ 2 ðXh;Q hÞ8t > 0 satisfying

ððuhÞt ;vhÞ þ bðuh;uh;vhÞ � ðph;divvhÞ þ mðruh;rvhÞ
¼ �ðPQh

u;divvhÞ; ð2:1Þ
ðdivuh; qhÞ ¼ 0; ð2:2Þ

8ðvh; qhÞ 2 ðXh;QhÞ and 8t > 0; uhð0Þ ¼ PVh
ðu0Þ. This scheme has

been well-studied [9,7], and it is known that it preserves a discrete
analog of the NSE energy balance:

NSE :
1
2
kuðTÞk2 þ m

Z T

0
kruðtÞk2 dt ¼ 1

2
kuð0Þk2

; ð2:3Þ

Galerkin method :
1
2
kuhðTÞk2 þ m

Z T

0
kruhðtÞk2 dt ¼ 1

2
kuhð0Þk2

: ð2:4Þ

However, no such discrete analog has been proven for helicity.
The discussion below of the helicity balance of the Galerkin meth-
od brings us to the following conclusions:

� The usual Galerkin method (2.1) and (2.2) does not properly bal-
ance the discrete helicity ðuh; rotuhÞ, unless rotuh 2 Vh, which is
a rare event for most practical choices of discrete spaces Xh and
Qh.

� The usual Galerkin method (2.1) and (2.2) better balances the
modified discrete helicity ðuh;whÞ where wh is a solution of a
discrete vorticity equation. Although, this balance is up to pro-
ducing (numerical) helicity on boundaries.
2.1. Discrete helicity balance

Due to the definition of PVh
and integration by parts it holds for

sufficiently smooth uhðtÞ

ððuhÞt ; PVh
rotuhÞ ¼ ððuhÞt ; rotuhÞ ¼

1
2

d
dt
ðuh; rotuhÞ: ð2:5Þ

Testing (2.1) with vh ¼ 2PVh
rotuh and using (2.5) gives

d
dt
ðuh; rotuhÞ þ 2bðuh;uh; PVh

rotuhÞ þ 2mðruh;rPVh
rotuhÞ ¼ 0:

Integrating in time leads to the following relation:

HGðTÞ þ 2m
Z T

0
ðruh;rPVh

rotuhÞdt þ 2
Z T

0
bðuh;uh; PVh

rotuhÞdt

¼ HGð0Þ; ð2:6Þ

with HGðtÞ :¼ ðuhðtÞ; rotuhðtÞÞ. Define the defect: nh ¼ rotuh�
PVh

rotuh. The function nh is non-zero since rotuh does not belong
to the discrete velocity space. Moreover, nh may experience a large
variation near @X since Vh imposes no-slip boundary condition,
which may not be satisfied by rotuh. Recalling a vector identity
and integrating by parts gives

ðuh � ruh; rotuhÞ ¼ ðrotuh � uh; rotuhÞ þ
1
2
ðrjuhj2; rotuhÞ

¼ 1
2
ðrotrjuhj2;uhÞ ¼ 0;

which allows the helicity balance (2.6) to be written as

HGðTÞ þ 2m
Z T

0
ðruh;rrotuhÞdt ¼ HGð0Þ þUðnhÞ; ð2:7Þ
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where

UðnhÞ ¼
Z T

0
2ðuh � ruh; nhÞ þ 2mðruh;rnhÞ þ ð divuh;uh � rotuhÞ

þ ððdivuhÞuh; nhÞdt

¼
Z T

0
2ðuh � ruh; nhÞ þ 2mðruh;rnhÞ

þ inf
qh2Qh

ðdivuh;uh � rotuh � qhÞ

þ inf
qh2Qh

ðdivuh;uh � nh � qhÞdt:

If the convective approximation of the nonlinear term is used,
i.e. bðu;v;wÞ :¼ ðu � rv;wÞ, then the extra terms are reduced to

UðnhÞ ¼ 2
Z T

0
ðuh � ruh; nhÞ þ mðruh;rnhÞdt:

However in the latter case the discrete energy balance (2.4) is
altered.

In either case the relation (2.7) does not act as a discrete analog
of the continuous NSE’s helicity balance (1.9), because of the extra
term UðnhÞ. Specifically, in (2.7) the term UðnhÞ does not necessarily
vanish, unless rotuh 2 Vh (and divuh ¼ 0 for skew-symmetric con-
vection approximation), which is a rare event for most practical
choices of discrete spaces Xh and Qh; in particular, the nonlinear
term in UðnhÞwas unable to be proven small without an unrealistic
small data condition. Thus the behavior of this term is unknown, as
is its possibly nonphysical effect. The extra dissipation term
2m
R T

0 ðruh;rnhÞ may create an error due to a large variation of nh

near boundary. The last two entries of UðnhÞ for the skew-symmet-
ric approximation does not vanish with the exception of special
choice of Xh and Qh (for example the Scott–Vogelius finite ele-
ments), which enforce the discrete Galerkin solution to be strongly
divergence-free.

2.2. Modified discrete helicity balance

The apparent lack of a physically accurate discrete helicity bal-
ance for the Galerkin discretization of the 3D NSE suggests a draw-
back to the scheme. However, by slightly altering the discrete
definition of helicity, we find that the method indeed admits an
accurate balance. If the vorticity used is instead the solution of a
particular vorticity equation, then the physical balance is recov-
ered up to the boundary effect. This alternative balance does not
change the Galerkin scheme, since the vorticity equation is com-
puted a posteriori.

The discrete counterpart of the vorticity equation (1.4) is de-
fined by applying the Galerkin method to (1.4) subject to appropri-
ate boundary and initial conditions. The discrete vorticity
boundary condition needs to be different than that for velocity be-
cause it is not physical that vorticity satisfy homogeneous Dirichlet
boundary conditions when the velocity does. Since the system (2.1)
and (2.2) does not include vorticity, we can take its velocity solu-
tion uhðtÞ as input to a vorticity equation.

An appropriate definition for the vorticity space eXh would be
the same elements as is chosen for Xh (which we have left general),
but without enforcing homogeneous Dirichlet boundary condition.
This leads us to the discrete vorticity equation: For given uhðtÞ, find
ðwhðtÞ; khðtÞÞ 2 ðeXh;QhÞ satisfying 8ðvh; qhÞ 2 ðXh;Q hÞ and 8t > 0

ððwhÞt ;vhÞ þ bðuh;wh;vhÞ � bðwh;uh;vhÞ
þ mðrwh;rvhÞ þ ðkh;divvhÞ ¼ 0; ð2:8Þ

ðdivwh; qhÞ ¼ 0; ð2:9Þ
wh ¼ IhðrotuhÞ on @X; ð2:10Þ
wh ¼ Ihðrotu0Þ for t ¼ 0: ð2:11Þ
Here Ih is an interpolation operator from rot ðXhÞ to eXh, and kh is a
formal Lagrange multiplier corresponding to the discrete diver-
gence-free condition for vorticity.

Apart of the boundary condition, wh belongs to the same dis-
crete space as velocity and due to (2.9), satisfies the discrete diver-
gence-free constraint imposed for functions in Vh, and due to
properties of L2-orthogonal projection, the defect nh ¼ ðI � PVh

Þwh

satisfies

knhk ¼ inf
vh2Vh

kwh � vhk:

For the Galerkin discretization of the 3D NSE, denote by HhðtÞ
the alternative discrete helicity at time t:

HhðtÞ :¼
Z

X
uhðtÞ �whðtÞdx;

where uhðtÞ is the velocity solution of (2.1) and (2.2) and whðtÞ is the
vorticity solution of (2.8)–(2.11). Using this definition of discrete
helicity we prove the following result.

Theorem 2.1. The solution of (2.1), (2.2) satisfies the following
discrete helicity balance.

HhðTÞ þ 2m
Z T

0
ðruh;rwhÞdt ¼ Hhð0Þ þUðnhÞ; ð2:12Þ

where

UðnhÞ ¼
Z T

0
bðuh;uh; nhÞ þ mðruh;rnhÞdt:

Proof. Choose vh ¼ PVh
wh in (2.1) and vh ¼ uh in (2.8), and since

PVh
wh and uh are in Vh, this vanishes the pressure terms and one

of the trilinear terms in (2.8), yielding

ððuhÞt;whÞ þ bðuh;uh; PVh
whÞ þ mðruh;rPVh

whÞ ¼ 0;
ððwhÞt;uhÞ þ bðuh;wh;uhÞ þ mðrwh;ruhÞ ¼ 0:

Note that by definition the trilinear term changes sign if we
switch the order of the second and third arguments. Thus adding
the equations leaves only trilinear term with nh ¼ wh � PVh

wh:

ððuhÞt ;whÞ þ ððwhÞt ;uhÞ � bðuh;uh; nhÞ þ 2mðruh;rwhÞ
� mðruh;rnhÞ ¼ 0:

This can be rewritten as

d
dt
ðuh;whÞ � bðuh;uh; nhÞ þ 2mðruh;rwhÞ � mðruh;rnhÞ ¼ 0:

Integrating over time for t 2 ½0; T� yields (2.12). h

The relation (2.12) can be observed as a consistent discrete
counterpart of the NSE helicity balance (1.9) if UðnhÞ on the right-
hand side of (2.12) vanishes. This is the case for a periodic problem,
as stated in the following corollary.

Corollary 2.1. If (2.1) and (2.2) is equipped with periodic boundary
conditions, then its solutions satisfy the following exact discrete
helicity balance

HhðTÞ þ 2m
Z T

0
ðruh;rwhÞdt ¼ Hhð0Þ: ð2:13Þ

Proof. This follows from Theorem 2.1 since we can take the vortic-
ity space eXh ¼ Xh, which implies nh ¼ 0 and thus UðnhÞ ¼ 0. h

For more practical boundary conditions, however, UðnhÞ does
not necessarily vanish; the gradient of the driving function nh can
be large in a near boundary. Thus the discrete helicity balance
(2.12) can be altered (only) by boundary effects.
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Remark 1. While the results in this note were shown for the semi-
discrete method, an extension to many particular time discretiza-
tions, e.g. Crank–Nicolson, semi-implicit or Chorin–Temam split-
ting methods, is an easy exercise. One should be careful to make
sure the time-discretization of the vorticity equation is consistent
with the one chosen for the velocity equation, and perform a
summation over discrete times instead of time integration.
3. Discussion

One important goal for the design of numerical schemes is to
match as much of the problems true conservation laws as possible,
while reducing the problem to one that can be efficiently com-
puted. Beginning with Arakawa and his 2D energy and enstrophy
preserving scheme for the NSE [1], it has been observed that some-
times small modifications of known methods increase physical
accuracy without a significant increase in computational work.
For the shallow water equations, alterations of energy conserving
schemes became energy and potential enstrophy conserving
schemes [2,5]. For the 3D NSE, energy and helicity conserving
schemes were developed to mirror the analogous conservation
laws; the scheme of [10] is restricted to axisymmetric flow, and
that of [14] is for the full 3D NSE but in the perioidic setting. To
our knowledge, no numerical scheme exists that correctly matches
the discrete physical behavior of energy and helicity to that of the
continuous 3D NSE for homogeneous Dirichlet boundary condi-
tions, the simplest relevant case.

This work shows that, in the periodic setting, the usual Galerkin
method with explicitly skew-symmetrized nonlinear term accu-
rately balances both energy and a discrete helicity. Unfortunately,
when we look to extend this result to homogeneous Dirichlet
boundary conditions, we find the scheme may generate numerical
helicity near the boundary. The complete understanding of the
case of non-periodic boundary conditions is an important open
problem.
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