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Summary
The paper studies numerical properties of LU and incomplete LU factorizations

applied to the discrete linearized incompressible Navier–Stokes problem also known

as the Oseen problem. A commonly used stabilized Petrov–Galerkin finite element

method for the Oseen problem leads to the system of algebraic equations having a

2 × 2-block structure. While enforcing better stability of the finite element solu-

tion, the Petrov–Galerkin method perturbs the saddle-point structure of the matrix

and may lead to less favorable algebraic properties of the system. The paper ana-

lyzes the stability of the LU factorization. This analysis quantifies the effect of the

streamline upwind Petrov–Galerkin stabilization in terms of the perturbation made

to a nonstabilized system. The further analysis shows how the perturbation depends

on the particular finite element method, the choice of stabilization parameters, and

flow problem parameters. The analysis of LU factorization and its stability helps to

understand the properties of threshold ILU factorization preconditioners for the sys-

tem. Numerical experiments for a model problem of blood flow in a coronary artery

illustrate the performance of the threshold ILU factorization as a preconditioner. The

dependence of the preconditioner properties on the stabilization parameters of the

finite element method is also studied numerically.
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1 INTRODUCTION

The paper addresses the question of developing fast

algebraic solves for finite element discretizations of the

linearized Navier–Stokes equations. The Navier–Stokes

equations describe the motion of incompressible Newtonian

fluids. For a bounded domain Ω ⊂ Rd (d = 2, 3), with

boundary 𝜕Ω and time interval [0, T], the equations read

⎧⎪⎪⎨⎪⎪⎩

𝜕u
𝜕t

− 𝜈Δu + (u · ∇)u + ∇p = f in Ω × (0,T]

div u = 0 in Ω × [0,T]
u = g on Γ0 × [0,T],−𝜈(∇u) · n + pn = 0 on ΓN × [0,T]

u(x, 0) = u0(x) in Ω.
(1)

The unknowns are the velocity vector field u = u(x, t) and

the pressure field p = p(x, t). The volume forces f and

boundary and initial values g and u0 are given. Parameter 𝜈 is

the kinematic viscosity, 𝜕Ω = Γ0 ∪ΓN and Γ0 ≠ ∅. An impor-

tant parameter of the flow is the dimensionless Reynolds num-

ber Re = UL
𝜈

, where U and L are characteristic velocity and

linear dimension. Solving Equation 1 numerically is known

to get harder for higher values of Re; in particular, some spe-

cial modelling of flow scales unresolved by the mesh may be

needed. Implicit time discretization and linearization of the

Navier–Stokes system (Equation 1) by Picard fixed-point iter-

ation result in a sequence of (generalized) Oseen problems of

the form⎧⎪⎨⎪⎩
𝛼u − 𝜈Δu + (w · ∇)u + ∇p = f̂ in Ω

div u = ĝ in Ω
u = 0 on Γ0,−𝜈(∇u) · n + pn = 0 on ΓN,

(2)

where w is a known velocity field from a previous iteration

or time step and 𝛼 is proportional to the reciprocal of the time
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step. Nonhomogenous boundary conditions in the nonlinear

problem are accounted in the right-hand side.

Finite element (FE) methods for Equations 1 and 2 may

suffer from different sources of instabilities. One is a pos-

sible incompatibility of pressure and velocity FE pairs. A

remedy is a choice of FE spaces satisfying the inf-sup

or Ladyzhenskaya-Babuska-Brezzi (LBB) condition1 or the

use of pressure stabilizing techniques. A major source of

instabilities stems from dominating inertia terms for large

Reynolds numbers. There exist several variants of stabilized

FE methods, which combine stability and accuracy such as

the streamline upwind Petrov–Galerkin (SUPG) method, the

Galerkin/Least-squares, algebraic sub-grid scale, and inter-

nal penalty techniques, see, for example, these studies.2–5

These methods simultaneously suppress spurious oscillations

caused by both dominating advection and non-LBB-stable FE

spaces. The combination of LBB-stable velocity-pressure FE

pairs with advection stabilization is also often used in practice

and studied in the literature, see, for example, these studies.6,7

For numerical experiments and FE analysis in this paper, we

consider a variant of the SUPG method. Details of the method

are given later in this paper.

An FE spatial discretization of Equation 2 results in large,

sparse systems of the form(
A B̃T

B −C

)(
u
p

)
=
(

f
g

)
, (3)

where u and p represent the discrete velocity and pressure,

respectively, and A ∈ Rn×n is the discretization of the dif-

fusion, convection, and time-dependent terms. The matrix A
accounts also for certain stabilization terms. Matrices B and

B̃T ∈ Rn×m are (negative) discrete divergence and gradient.

These matrices may also be perturbed due to stabilization. It is

typical for the stabilized methods that B ≠ B̃; while for a plain

Galerkin method, these two matrices are the same. Matrix

C ∈ Rm×m results from possible pressure stabilization terms,

and f and g contain forcing and boundary terms. For the LBB

stable FEs, no pressure stabilization is required, and so, C = 0

holds. If the LBB condition is not satisfied, the stabilization

matrix C≠ 0 is typically symmetric and positive semidefinite.

For B = B̃ of the full rank and positive definite A = AT, the

solution to Equation 3 is a saddle point. Otherwise, one often

refers to Equation 3 as a generalized saddle-point system, see,

for example, this study.8

Considerable work has been done in developing efficient

preconditioners for Krylov subspace methods applied to sys-

tem (Equation 3) with B̃ = B; see the comprehensive studies

in these studies8–10 of the preconditioning exploiting the

block structure of the system. A common approach is based

on preconditioners for block A and pressure Schur comple-

ment matrix S = BA−1B̃T + C, see these studies11–13 for

recent developments. Well-known block preconditioners are

not completely robust with respect to variations of viscosity

parameter, properties of advective velocity field w, grid size

and anisotropy ratio, and the domain geometry. The search of

a more robust black-box type approach to solve algebraic sys-

tem (Equation 3) stimulates an interest in developing precon-

ditioners based on incomplete factorizations. Clearly, com-

puting a suitable incomplete LU factorizations of Equation 3

is challenging and requires certain care for (at least) the fol-

lowing reasons. The matrix can be highly nonsymmetric for

higher Reynolds number flows; even in symmetric case, the

matrix is indefinite (both positive and negative eigenvalues

occur in the spectrum); and extra stabilization terms may

break the positive definiteness of A and/or of the Schur com-

plement. Nevertheless, a progress has been recently reported

in developing incomplete LU preconditioners for saddle-point

matrices and generalized saddle-point matrices. Thus, the

authors of these studies14,15 studied the signed incomplete

Cholesky-type preconditioners for symmetric saddle-point

systems, corresponding to the Stokes problem. For the FE

discretization of the incompressible Navier–Stokes equations,

the authors of these studies16,17 developed ILU precondi-

tioners, where the fill-in is allowed based on the connec-

tivity of nodes rather than actual nonzeros in the matrix.

The papers17,18 studied several reordering techniques for ILU

factorization of Equation 3 and found that some of the result-

ing preconditioners are competitive with the most advanced

block preconditioners. Elementwise threshold incomplete LU

factorizations for nonsymmetric saddle-point matrices were

developed in this study.19 In that paper, an extension of the

Tismenetsky–Kaporin variant of ILU factorization for non-

symmetric matrices is used as a preconditioner for the FE

discretizations of the Oseen equations. Numerical analysis

and experiments with the (nonstabilized) Galerkin methods

for the incompressible Navier–Stokes equations demonstrated

the robustness and efficiency of this approach. An impor-

tant advantage of preconditioners based on elementwise ILU

decomposition is that they are straightforward to implement

in standard FE codes.

In the present paper, we extend the method and analysis

from this study19 to the system of algebraic equations result-

ing from the stabilized formulations of the Navier–Stokes

equations. Hence, we are interested in the numerically chal-

lenging case of higher Reynolds number flows. The effect

of different stabilization techniques on the accuracy of FE

solutions is substantial and is well studied in the literature.

However, not that much research has addressed the question

of how the stabilization affects the algebraic properties of the

discrete systems, see this study. 9 The present study intends

to fill this gap. We analyze the stability of the (exact) LU

factorization and numerical properties of a threshold ILU fac-

torization for Equation 3. One might expect that stabilization

adds to the ellipticity of matrices and hence, improves alge-

braic properties. This is certainly the situation in particular

cases of scalar advection-diffusion equations and linear ele-

ments. However, for saddle-point problems and higher order

elements, the situation appears to be more delicate. In par-

ticular, stability of the LU factorization may impose more

restrictive bounds on the stabilization parameters than those
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satisfied by optimal parameters with respect to FE solution

accuracy. We study the explicit dependence of algebraic prop-

erties of Equation 3 on flow, stabilization, and discretization

parameters and show that larger values of the stabilization

parameter may affect the algebraic stability. Therefore, for

those fluid flow problems, which require SUPG stabiliza-

tion, suitable parameters meet both restrictions: they are

large enough to add necessary stability for the FE solu-

tion but not too large to guarantee stable factorizations of

algebraic systems.

The remainder of the paper is organized as follows. In

Section 2, we give necessary details on the FE method for

the Oseen equations. Section 3 studies stability of the exact

LU factorizations for Equation 3. We derive the sufficient

conditions for the existence and stability of the LU factoriza-

tion without pivoting. These conditions and an estimate on

the entries of the resulting LU factors are given in terms of

the properties of the (1,1)-block A, auxiliary Schur comple-

ment matrix BA − 1BT + C, and the perturbation matrix B− B̃.

In Section 4, we apply this analysis to system (Equation 3)

arising from SUPG-stabilized FE discretization of the Oseen

system. In Section 5, we briefly discuss the implication

of our analysis of LU factorization on the stability of a

two-parameter Tismenetsky–Kaporin variant of the threshold

ILU factorization for nonsymmetric nondefinite problems.

This factorization is used in our numerical experiments. In

Section 6, we study the numerical performance of the method

on the sequence of linear systems appearing in simulation of

a blood flow in a right coronary artery. Section 7 collects

conclusions and a few closing remarks.

2 FE METHOD AND SUPG STABILIZATION

In this paper, we consider an inf-sup stable conforming FE

method stabilized by the SUPG method. To formulate it, we

first need the weak formulation of the Oseen problem. Let

V ∶= {v ∈ H1(Ω)3 ∶ v|Γ0
= 0}. Given f ∈ V′

, the problem

is to find u ∈ V and p∈L2(Ω) such that

L(u, p; v, q) = (f, v)∗ + (g, q) ∀ v ∈ V, q ∈ L2(Ω) ,
L(u, p; v, q) ∶= 𝛼(u, v) + 𝜈(∇u,∇v) + ((w · ∇) u, v)

− (p, div v) + (q, div u) ,
(4)

where (·,·) denotes the L2(Ω) inner product and (·,·)* is the

duality paring for V′ × V.

We assume Th to be a collection of tetrahedra, which is a

consistent subdivision ofΩ satisfying the regularity condition

max
𝜏∈Th

diam(𝜏)∕𝜌(𝜏) ⩽ CT , (5)

where 𝜌(𝜏) is the diameter of the subscribed ball in the tetra-

hedron 𝜏. A constant CT measures the maximum anisotropy

ratio for Th. Further, we denote h𝜏 = diam(𝜏) and hmin =

min𝜏∈Th h𝜏 . Given conforming FE spaces Vh ⊂ V and Qh ⊂

L2(Ω), the Galerkin FE discretization of Equation 2 is based

on the weak formulation: Find {uh, ph} ∈ Vh ×Qh such that

L(uh, ph; vh, qh) = (f, vh)∗+(g, qh) ∀ vh ∈ Vh, qh ∈ Qh .

(6)

In our experiments, we shall use P2-P1 Taylor–Hood FE pair,

which satisfies the LBB compatibility condition for Vh and

Qh
1 and hence, ensures well-posedness and full approxima-

tion order for the FE linear problem.

A potential source of instabilities in Equation 6 is the

presence of dominating convection terms. This necessitates

stabilization of the discrete system, if the mesh is not suffi-

ciently fine to resolve all scales in the solution. We consider

below one commonly used SUPG stabilization, while more

details on the family of SUPG methods can be found in, for

example, these studies.6,20,21 Using Equation 6 as the starting

point, a weighted residual for the FE solution multiplied by

an “advection”-depended test function is added:

L(uh, ph; vh, qh)

+
∑
𝜏∈Th

𝜎𝜏(𝛼uh − 𝜈Δuh + w · ∇uh + ∇ph − f,w · ∇vh)𝜏

= (f, vh) ∀ vh ∈ Vh, qh ∈ Qh ,
(7)

with (f , g)𝜏 ∶= ∫
𝜏
fg dx. The second term in Equation 7 is

evaluated elementwise for each element 𝜏 ∈ Th. Parame-

ters 𝜎𝜏 are element- and problem-dependent. To define the

parameters, we introduce mesh Reynolds numbers Re𝜏 ∶=‖w‖L∞(𝜏)hw∕𝜈 for all 𝜏 ∈ Th, where hw is the diameter of 𝜏

in direction w. Several recipes for the particular choice of the

stabilization parameters can be found in the literature. When

we experiment with the stabilization, we set

𝜎𝜏 =
⎧⎪⎨⎪⎩
𝜎

hw
2‖w‖L∞(𝜏)

(
1 − 1

Re𝜏

)
, if Re𝜏 > 1,

0, if Re𝜏 ⩽ 1,

with 0 < �̄� < 1.

(8)

If one enumerates velocity unknowns first and pressure

unknowns next, then the resulting discrete system has the

2 × 2-block form (Equation 3) with C = 0. The stabiliza-

tion alters the (1, 2)-block of the matrix making the latter not

equal to the transpose of the (2, 1)-block B. In this paper,

we analyze factorizations for the matrix from (Equation 3)

assuming that the perturbation of BT in the (1, 2)-block caused

by Equation 7 is relatively small due to the choice of 𝜎𝜏 . The

analysis and results of numerical experiments also show that

the perturbation of A caused by Equation 7 affects essentially

the properties of LU and ILU decompositions.

We note that there was an intensive development of stabi-

lized and multiscale FE methods for fluid problems over the

last decade, see, for example, these studies4,22 and references

in more recent review papers.5,23 While these methods can be

more accurate and less dissipative compared to Equation 7,

they add terms to the algebraic system of the same structure
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and similar algebraic properties as the SUPG method. The

streamline diffusion stabilization as in Equation 7 is a stan-

dard (and often the only available) option in many existing

computational fluid dynamics software, so we decided to con-

sider in the present studies this more classical approach as the

particular example leading to the system (Equation 3).

3 STABILITY OF LU FACTORIZATION

The 2 × 2-block matrix from (Equation 3) is in general not

sign definite, and if C = 0, its diagonal has zero entries. The

algebraic framework of this section admits a generic positive

semidefinite matrix C. An LU factorization of such matrices

often requires pivoting (rows and columns permutations) for

stability reasons. However, exploiting the block structure and

the properties of blocks A and C, one readily verifies that the

LU factorization

A =
(

A B̃T

B −C

)
=
(

L11 0
L21 L22

)(
U11 U12

0 −U22

)
(9)

with lower (upper) triangle matrices L11, L22 (U11, U22)

exists without pivoting, once det(A) ≠ 0 and there exist LU

factorizations for the (1,1)-block

A = L11U11, (10)

and the Schur complement matrix S̃ ∶= BA−1B̃T + C is

factorized as

S̃ = L22U22. (11)

Decomposition (Equation 9) then holds with U12 = L−1
11

B̃T

and L21 = BU−1
11

.

Assume A is positive definite. Then the LU factorization of

A exists without pivoting. Its numerical stability (the relative

size of entries in factors L11 and U11) may depend on how

large is the skew-symmetric part of A comparing to the sym-

metric part. To make this statement more precise, we denote

AS = 1

2
(A + AT ), AN = A − AS (similar notation will be

used to denote symmetric and scew-symmetric parts of other

matrices) and let

CA = ‖A
− 1

2

S
ANA

− 1

2

S
‖. (12)

Here and further, ‖·‖ and ‖·‖F denote the matrix spectral

norm and the Frobenius norm, respectively; and |M| denotes

the matrix of absolute values of M-entries. The following

bound on the size of elements of L11 and U11 holds (see

Equation 3.2 in this study19):

‖|L11||U11|‖F‖A‖ ⩽ n
(
1 + C2

A
)
. (13)

If C ⩾ 0, B̃ = B and matrix BT has the full column rank,

then the positive definiteness of A implies that the Schur com-

plement matrix is also positive definite. However, this is not

the case for a general block B̃ ≠ B. In the application stud-

ied in this paper, the (1, 2)-block B̃T is a perturbation of BT.

The analysis below shows that the positive definiteness of S̃
and the stability of its LU factorization are guaranteed if the

perturbation E = B̃ − B is not too large. The size of the per-

turbation will enter our bounds as the parameter 𝜖E defined as

𝜖E ∶= ‖A
− 1

2

S
ET‖. (14)

For the ease of analysis we introduce further notations:

S = BA−1BT + C, ÂN = A
− 1

2

S
AN A

− 1

2

S
. (15)

We shall repeatedly make use of the following identities:

(A−1)S = 1

2

(
A−1 + A−T) = A

− 1

2

S
(I − Â2

N)
−1A

− 1

2

S
,

(A−1)N = 1

2

(
A−1 − A−T) = A

− 1

2

S
(I + ÂN)−1ÂN(I − ÂN)−1A

− 1

2

S
.

(16)

From the identities

⟨Sq, q⟩ = ⟨Bv, q⟩ + ⟨Cq, q⟩ = ⟨v,BTq⟩
+ ⟨Cq, q⟩ = ⟨Av, v⟩ + ⟨Cq, q⟩, (17)

which are true for q ∈ Rm and v ∶= A−1BTq ∈ Rn, we see

that S is positive definite, if A is positive definite. For S̃, we

then compute

⟨S̃q, q⟩ = ⟨Sq, q⟩ + ⟨A−1ETq,BTq⟩
= ⟨Sq, q⟩ + ⟨A 1

2

S
A−1ETq,A

− 1

2

S
BTq⟩

= ⟨Sq, q⟩ + ⟨A 1

2

S
A−1ETq, (I − ÂN)(I − ÂN)−1A

− 1

2

S
BTq⟩

= ⟨Sq, q⟩ + ⟨((I + ÂN)A
1

2

S
A−1A

1

2

S

)
A
− 1

2

S
ETq,

(I − ÂN)−1A
− 1

2

S
BTq⟩.

(18)

We employ identities (Equation 16) to get

(I + ÂN)A
1

2

S
A−1A

1

2

S
= (I + ÂN)A

1

2

S
((A−1)S + (A−1)N)A

1

2

S

= (I + ÂN)((I − Â2
N)

−1

+ (I + ÂN)−1ÂN(I − ÂN)−1)

= (I − ÂN)−1 + ÂN(I − ÂN)−1

= (I + ÂN)(I − ÂN)−1.
(19)

Noting ‖(I − ÂN)−1‖ ⩽ 1 for a skew-symmetric ÂN , we

estimate
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⟨S̃q, q⟩ ⩾ ⟨Sq, q⟩ − ‖(I + ÂN)(I − ÂN)−1‖‖A
− 1

2

S
ETq‖‖(I − ÂN)−1A

− 1

2

S
BTq‖

⩾ ⟨Sq, q⟩ − ‖(I + ÂN)‖‖A
− 1

2

S
ET‖‖q‖‖(I − ÂN)−1A

− 1

2

S
BTq‖

⩾ ⟨Sq, q⟩ − (1 + CA)𝜖E‖q‖‖(I − ÂN)−1A
− 1

2

S
BTq‖

= ⟨Sq, q⟩ − (1 + CA)𝜖E‖q‖⟨(I − ÂN)−1A
− 1

2

S
BTq, (I − ÂN)−1A

− 1

2

S
BTq⟩ 1

2

= ⟨Sq, q⟩ − (1 + CA)𝜖E‖q‖⟨A− 1

2

S
BTq, (I + ÂN)−1(I − ÂN)−1A

− 1

2

S
BTq⟩ 1

2

= ⟨Sq, q⟩ − (1 + CA)𝜖E‖q‖⟨A− 1

2

S
BTq, (I − Â2

N)
−1A

− 1

2

S
BTq⟩ 1

2

= ⟨Sq, q⟩ − (1 + CA)𝜖E‖q‖⟨BTq,A
− 1

2

S
(I − Â2

N)
−1A

− 1

2

S
BTq⟩ 1

2

= ⟨Sq, q⟩ − (1 + CA)𝜖E‖q‖⟨B(A−1)SBTq, q⟩ 1

2

= ⟨Sq, q⟩ − (1 + CA)𝜖E‖q‖⟨BA−1BTq, q⟩ 1

2

= ⟨Sq, q⟩ − (1 + CA)𝜖E‖q‖⟨Sq, q⟩ 1

2

⩾
(

1 − (1 + CA)𝜖E𝜆
− 1

2

min
(SS)

)⟨Sq, q⟩.

(20)

Hence, we conclude that S̃ is positive definite if the per-

turbation matrix E is sufficiently small such that it holds

𝜅 ∶= (1 + CA)𝜖Ec
− 1

2

S < 1, (21)

where cS ∶= 𝜆min(SS).
If S̃ is positive definite, the factorization S̃ = L22U22

satisfies the stability bound similar to Equation 13:

‖|L22||U22|‖F‖S̃‖ ⩽ m
(

1 +
‖‖‖‖S̃

− 1

2

S
S̃NS̃

− 1

2

S

‖‖‖‖2)
, (22)

where S̃S = 1

2
(S̃ + S̃T ), S̃N = S̃ − S̃S.

The quotients CA = ‖A
− 1

2

S
ANA

− 1

2

S
‖ and ‖S̃

− 1

2

S
S̃NS̃

− 1

2

S
‖ are

largely responsible for the stability of the LU factorization

for Equation 3. The following lemma shows the estimate of‖S̃
− 1

2

S
S̃NS̃

− 1

2

S
‖ in terms of CA, 𝜖E, and cS.

Lemma 3.1. Let A ∈ Rn×n be positive definite and

(Equation 21) be satisfied, then it holds

‖‖‖‖‖S̃
− 1

2

S
S̃NS̃

− 1

2

S

‖‖‖‖ ⩽

(
1 + 𝜖Ec

− 1

2

S

)
CA

1 − 𝜅
. (23)

Proof. Due to the skew-symmetry of S̃
− 1

2

S
S̃NS̃

− 1

2

S
, it holds

|𝜆| = |Im(𝜆)| for 𝜆 ∈ sp(S̃
− 1

2

S
S̃NS̃

− 1

2

S
), where we use sp(·)

to denote the spectrum. We apply Bendixson’s theorem24 to

estimate‖‖‖‖S̃
− 1

2

S
S̃N S̃

− 1

2

S

‖‖‖‖ = max

{|𝜆| ∶ 𝜆 ∈ sp

(
S̃
− 1

2

S
S̃NS̃

− 1

2

S

)}
= max

{|Im(𝜆)| ∶ 𝜆 ∈ sp

(
S̃
− 1

2

S
S̃N S̃

− 1

2

S

)}
⩽ sup

q∈Cm

||⟨S̃Nq, q⟩||⟨S̃Sq, q⟩ .

(24)

Thanks to Equation 20, we estimate

‖‖‖‖S̃
− 1

2

S
S̃N S̃

− 1

2

S

‖‖‖‖ ⩽ sup
q∈Cm

||⟨S̃Nq, q⟩||
(1 − 𝜅)⟨SSq, q⟩ . (25)

Employing identities from Equation 16, we can write

SS = BA
− 1

2

S
(I − ÂT

N)
−1(I − ÂN)−1A

− 1

2

S
BT + C,

S̃N = BA
− 1

2

S
(I − ÂT

N)
−1ÂN(I − ÂN)−1A

− 1

2

S
B̃T .

(26)

With the help of the substitution vq = (I − ÂN)−1A
− 1

2

S
BTq

in the right-hand side of Equation 25 and recalling that C is

positive semidefinite, we obtain

‖‖‖‖S̃
− 1

2

S
S̃N S̃

− 1

2

S

‖‖‖‖
⩽ sup

q∈Cm

|||⟨ÂNvq, vq⟩||| + ||||⟨ÂN(1 − ÂN)−1A
− 1

2

S
ETq, vq⟩||||

(1 − 𝜅)(⟨vq, vq⟩ + ⟨Cq, q⟩)
⩽ sup

q∈Cm

‖ÂN‖‖vq‖2 + ‖ÂN‖𝜖E‖q‖‖vq‖
(1 − 𝜅)(‖vq‖2 + ⟨Cq, q⟩)

⩽ sup
q∈Cm

‖ÂN‖‖vq‖2 + ‖ÂN‖𝜖E𝜆
− 1

2

min
(SS)⟨SSq, q⟩ 1

2 ‖vq‖
(1 − 𝜅)(‖vq‖2 + ⟨Cq, q⟩)

= sup
q∈Cm

‖ÂN‖‖vq‖2 +‖ÂN‖𝜖E𝜆
− 1

2

min
(SS)(‖vq‖2 + ⟨Cq, q⟩) 1

2 ‖vq‖
(1 − 𝜅)(‖vq‖2 + ⟨Cq, q⟩)

⩽
(1 + 𝜖Ec

− 1

2

S )‖ÂN‖
1 − 𝜅

.

(27)

To estimate the entries of U12 and L21 factors in Equation 9,

we repeat the arguments from this study19 and arrive at the

following bound
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‖U12‖F + ‖L21‖F‖U11‖‖B̃‖F + ‖L11‖‖B‖F
⩽ m(1 + CA)

cA
(28)

with cA ∶= 𝜆min(AS).
We summarize the results of this section in the following

theorem.

Theorem 3.2. Assume matrix A is positive definite, C is pos-

itive semidefinite, and the inequality Equation 21 holds with

𝜖E = ‖A
− 1

2

S
(B̃ − B)T‖, CA = ‖A

− 1

2

S
ANA

− 1

2

S
‖, and cS = 𝜆min(SS),

then the LU factorization for Equation 9 exists without piv-

oting. The entries of the block factors satisfy the following

bounds: ‖|L11||U11|‖F‖A‖ ⩽ n
(
1 + C2

A
)
,

‖|L22||U22|‖F‖S̃‖ ⩽ m
⎛⎜⎜⎝1 +

(1 + 𝜖Ec
− 1

2

S )CA

1 − 𝜅

⎞⎟⎟⎠ ,‖U12‖F + ‖L21‖F‖U11‖‖B̃‖F + ‖L11‖‖B‖F
⩽ m(1 + CA)

cA
(29)

with 𝜅 from Equation 21.

The above analysis indicates that the LU factorization for

Equation 3 exists if the (1, 1)-block A is positive definite

and the perturbation of the (1, 2)-block is sufficiently small.

The stability bounds depend on the constant CA, which mea-

sures the ratio of skew-symmetry for A, the ellipticity constant

cA, the perturbation measure 𝜖E, and the minimal eigenvalue

of the symmetric part of the unperturbed Schur complement

matrix S. In Section 4 below, we estimate all these values for

the discrete linearized Navier–Stokes system.

4 PROPERTIES OF MATRICES A AND S̃

In this Section, we deduce the dependence of the critical con-

stants cA, CA, 𝜖E, and cS from Theorem 3.2 on the problem

and discretization parameters. This analysis relies on the

SUPG-FE formulation from Section 2. Starting from this

section, we assume an inf-sup FE method, and so for the

(2, 2)-block of Equation 3, we have C = 0. Let {𝜑i}1⩽i⩽n and

{𝜓j}1⩽j⩽m be the bases of Vh and Qh, respectively. For arbi-

trary v ∈ Rn and corresponding vh =
∑n

i=1 vi𝜑i, one gets the

following identity from the definition of matrix A:

⟨Av, v⟩ = 𝛼‖vh‖2 + 𝜈‖∇vh‖2

+
∑
𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏 +

1

2∫ΓN

(w · n)|vh|2 ds

+ 1

2

∑
𝜏∈Th

((div w)vh, vh)𝜏

+
∑
𝜏∈Th

𝜎𝜏(𝛼vh − 𝜈Δvh,w · ∇vh)𝜏 ,

(30)

where n is the outward normal on 𝛤N. We shall also need

the velocity mass and stiffness matrices M and K: Mij = (𝜑i,

𝜑j), Kij = (∇𝜑i, ∇𝜑j) and the pressure mass matrix Mp:

(Mp)ij = (𝜓 i, 𝜓 j).

The first three terms on the right-hand side of Equation 30

are positive and contribute to the ellipticity of the block

A. However, the remaining three terms are not necessarily

sign definite and should be properly bounded. Although a

modification of boundary conditions on 𝛤N can be done to

insure the resulting boundary integral is non-negative, see,

for example, this study,25 we shall use a FE trace inequality

to estimate this term. We remark that this term disappears in

the case of artificial outflow boundary conditions leading to

Dirichlet conditions in Equation 2 on the entire boundary.26,27

Next, w is typically an FE velocity field, w ∈ Vh, sat-

isfying only weak divergence free constraint (div w, qh) =
0 ∀ qh ∈ Qh. This weak divergence free equation does

not imply divw = 0 pointwise for most of stable FE pairs

including P2–P1 elements. Therefore, the fifth term on the

right-hand side of Equation 30 should be controlled somehow.

The last term in Equation 30 is due to the SUPG stabilization.

The 𝜈-dependent part of it vanishes for P1 FE velocities, but

not for most of inf-sup stable discretization pressure–velocity

pairs. Both analysis and numerical experiments below show

that this term may significantly affect the properties of the

matrix A, leading to unstable behavior of incomplete LU

decomposition unless the stabilization parameters are chosen

sufficiently small. We make the above statements more pre-

cise in Theorem 4.1. We need some preparation before we

formulate the theorem.

First, recall the Sobolev trace inequality

∫ΓN

|v|2 ds ⩽ C0‖∇v‖2 ∀ v ∈ H1(Ω), v = 0 on 𝜕Ω ⧵ ΓN.

(31)

For any tetrahedron 𝜏∈Th and arbitrary vh ∈ Vh, the follow-

ing FE trace and inverse inequalities hold

∫𝜕𝜏

v2
h ds ⩽ Ctrh−1

𝜏 ‖vh‖2
𝜏 , ‖∇vh‖𝜏 ⩽ Cinh−1

𝜏 ‖vh‖𝜏 , ‖Δvh‖𝜏
⩽ C̄inh−1

𝜏 ‖∇vh‖𝜏 ,
(32)

where the constants Ctr, Cin, C̄in depend only on the poly-

nomial degree k and the shape regularity constant CT from

Equation 5. In addition, denote by Cf the constant from the

Friedrichs inequality:

‖vh‖ ⩽ Cf‖∇vh‖ ∀ vh ∈ Vh, (33)

and let Cw ∶= ‖(w · n)−‖L∞(ΓN).

To avoid the repeated use of generic but unspecified con-

stants, in the remainder of the paper, the binary relation x ≲ y
means that there is a constant c such that x ⩽ c y, and c does

not depend on the parameters, which x and y may depend on,

for example, 𝜈, 𝛼, mesh size, and properties of w. Obviously,

x ≳ y is defined as y ≲ x.
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Theorem 4.1. Assume that w ∈ L∞(Ω), problem, and dis-

cretization parameters satisfy

⎧⎪⎪⎨⎪⎪⎩

CwCtrh−1
min

⩽ 𝛼

4
or CwC0 ⩽ 𝜈

4
,‖div w‖L∞(Ω) ⩽ 1

4
max{𝛼, 𝜈

−1

C
f
},

𝜎𝜏 ⩽ 1

2

(
h2
𝜏

𝜈C̄2
in

+ 𝛼h4
𝜏

𝜈2C̄2
in

C2
in

)
and 𝜎𝜏 ⩽

h𝜏
4‖w‖L∞(𝜏)Cin

∀ 𝜏 ∈ Th,

(34)

with constants defined in Equations 31 to 33. Then the matrix

A is positive definite, and the constants cA,CA,cS, and 𝜖E can

be estimated as follows:

cA ⩾ 1

4
𝜆min(𝛼M + 𝜈K),

CA ≲ 1 +
‖w‖L∞(Ω)√

𝜈𝛼 + 𝜈 + hmin𝛼
,

cS ≳
𝜆min(Mp)

(𝜈 + 𝛼 + ‖w‖L∞(Ω) + ‖div w‖L∞(Ω))(1 + C2
A)
,

𝜖E ⩽
(
�̄�

2𝜈
𝜆max(Mp)

) 1

2

.

(35)

Proof. Using the Cauchy inequality and Equation 32, we

bound the 𝜈-dependent part of the last term in Equation 30 as

follows:||||||
∑
𝜏∈Th

𝜎𝜏𝜈(Δvh,w · ∇vh)𝜏
||||||

⩽ 𝜈

(∑
𝜏∈Th

𝜎𝜏C̄2
in

h−2
𝜏 ‖∇vh‖2

𝜏

) 1

2
(∑

𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏

) 1

2

⩽ 𝜈2

2

∑
𝜏∈Th

𝜎𝜏C̄2
in

h−2
𝜏 ‖∇vh‖2

𝜏 +
1

2

∑
𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏

⩽ 𝜈2

2
C̄2

in

∑
𝜏∈Th

𝜎𝜏
𝜈‖∇vh‖2

𝜏 + 𝛼‖vh‖2
𝜏

𝜈h2
𝜏 + C−2

in
𝛼h4

𝜏

+ 1

2

∑
𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏

⩽ 1

2

∑
𝜏∈Th

𝜈2𝜎𝜏C̄2
in

C2
in

𝜈h2
𝜏C2

in
+ 𝛼h4

𝜏

(
𝜈‖∇vh‖2

𝜏 + 𝛼‖vh‖2
𝜏

)
+ 1

2

∑
𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏 .

(36)

The first term in the second line of Equation 36 is bounded due

to min{ a
c
; b

d
} ⩽ a+b

c+d
for a, b, c, d> 0. Using similar arguments,

we bound the 𝛼-dependent part of the last term in Equation 30:

||||||
∑
𝜏∈Th

𝜎𝜏𝛼(vh,w · ∇vh)𝜏
|||||| ⩽

∑
𝜏∈Th

𝛼𝜎𝜏‖w‖L∞(𝜏)‖vh‖𝜏‖∇vh‖𝜏
⩽
∑
𝜏∈Th

𝛼𝜎𝜏‖w‖L∞(𝜏)Cinh−1
𝜏 ‖vh‖2

𝜏 .

(37)

Applying Equations 31, 36, and 37 in Equation 30, we deduce

⟨Av, v⟩ ⩾ ∑
𝜏∈Th

(
1 −

𝜈2𝜎𝜏C̄2
in

C2
in

2(𝜈h2
𝜏C2

in
+ 𝛼h4

𝜏)
−

𝜎𝜏‖w‖L∞(𝜏)Cin

h𝜏

)
(
𝜈‖∇vh‖2

𝜏 + 𝛼‖vh‖2
𝜏

)
+ 1

2

∑
𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏 −

Cw
2 ∫ΓN

|vh|2 ds

− 1

2
‖div w‖L∞(𝜏)‖vh‖2

⩾
∑
𝜏∈Th

(
1 −

𝜈2𝜎𝜏C̄2
in

C2
in

2(𝜈h2
𝜏C2

in
+ 𝛼h4

𝜏)
−

𝜎𝜏‖w‖L∞(𝜏)Cin

h𝜏

)
(
𝜈‖∇vh‖2

𝜏 + 𝛼‖vh‖2
𝜏

)
− Cw

2
min{C0‖∇vh‖2,Ctrh−1

min
‖vh‖2}

+ 1

2

∑
𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏 −

1

2
‖div w‖L∞(𝜏)‖vh‖2.

(38)

To ensure that the right-hand side is positive, we assume

conditions (Equation 34) on problem parameters and coeffi-

cients. Employing conditions (Equation 34) in Equation 38,

we deduce

⟨Av, v⟩ ⩾ 1

4

(
𝛼‖vh‖2 + 𝜈‖∇vh‖2

𝜏 +
∑
𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏

)
⩾ 1

4
(𝛼⟨Mv, v⟩ + 𝜈⟨Kv, v⟩ ) ∀ v ∈ Rn ,

(39)

therefore, cA ⩾ 1

4
𝜆min(𝛼M + 𝜈K). Further, we estimate

CA ∶= ‖A
− 1

2

S
AN A

− 1

2

S
‖ = max{|𝜆| ∶ 𝜆 ∈ sp(

− 1

2

A
S

ANA
− 1

2

S
)}

= max{|𝜆| ∶ 𝜆 ∈ sp(
−1

A
S

AN)}

⩽ ‖A−1
S

AN‖∗,
(40)

and for ‖·‖*, we choose a matrix norm induced by the vector

norm ⟨(𝛼M + 𝜈K)·, ·⟩ 1

2 . For a given v ∈ Rn and u = A−1
S

AN v,

consider their FE counterparts vh,uh ∈ Vh. Then, ASu = ANv
can be written in a FE form as

𝜈(∇uh,∇𝝓h)

+ 𝛼(uh,𝝓h) +
1

2∫ΓN

(w · n)uh · 𝝓h ds

+
∑
𝜏∈Th

𝜎𝜏(w · ∇uh,w · ∇𝝓h)𝜏

+ 1

2

∑
𝜏∈Th

((div w)uh,𝝓h)𝜏 +
1

2

∑
𝜏∈Th

𝜎𝜏[(𝛼uh −𝜈Δuh,w · ∇𝝓h)𝜏

+ (𝛼𝝓h − 𝜈Δ𝝓h,w · ∇uh)𝜏]

= 1

2

∑
𝜏∈Th

(1 + 𝛼𝜎𝜏)[(w · ∇vh,𝝓h)𝜏 − (w · ∇𝝓h, vh)𝜏]

− 1

2

∑
𝜏∈Th

𝜎𝜏𝜈[(Δvh,w · ∇𝝓h)𝜏 − (Δ𝝓h,w · ∇vh)𝜏] ∀𝝓h ∈ Vh.

(41)
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We set 𝝓h = uh. For the left-hand side of Equation 41, the

lower bound Equation 39 holds. To estimate the right-hand

side, we apply the Cauchy–Schwarz inequality, the second

restriction on 𝜎𝜏 from Equation 34, and FE inverse inequality:∑
𝜏∈Th

(1 + 𝛼𝜎𝜏)[(w · ∇vh,uh)𝜏 − (w · ∇uh, vh)𝜏]

⩽
∑
𝜏∈Th

(1 + 𝛼h𝜏‖w‖L∞(𝜏)Cin

)[(w · ∇vh,uh)𝜏 − (w · ∇uh, vh)𝜏]

⩽ ‖w‖L∞(Ω)(‖∇vh‖‖uh‖ + ‖∇uh‖‖vh‖)
+
∑
𝜏∈Th

𝛼h𝜏

Cin

(‖∇vh‖𝜏‖uh‖𝜏 + ‖∇uh‖𝜏‖vh‖𝜏)
⩽ ‖w‖L∞(Ω)(‖∇vh‖‖uh‖ + ‖∇uh‖‖vh‖) + ∑

𝜏∈Th

2𝛼‖vh‖𝜏‖uh‖𝜏
⩽ ‖w‖L∞(Ω)(‖∇vh‖‖uh‖ + ‖∇uh‖‖vh‖)
+ 32𝛼‖vh‖2 + 𝛼

32
‖uh‖2.

(42)

Further, we estimate terms on the right-hand side by employ-

ing Young’s, Friedrichs, and FE inverse inequalities. Thus, the

product ‖uh‖‖∇vh‖ one can estimate in three different ways:

‖w‖L∞(Ω)‖uh‖‖∇vh‖ ⩽ 1

32
𝛼‖uh‖2

+ 8‖w‖L∞(Ω)
1

𝛼𝜈
(𝜈‖∇vh‖2)

‖w‖L∞(Ω)‖uh‖‖∇vh‖ ⩽ 1

32
𝜈‖∇uh‖2

+ 8‖w‖L∞(Ω)
C2

f

𝜈2
(𝜈‖∇vh‖2)

‖w‖L∞(Ω)‖uh‖‖∇vh‖ ⩽ 1

32
𝛼‖uh‖2

+ 8‖w‖L∞(Ω)
C2

in

𝛼2h2
min

(𝛼‖vh‖2).

(43)

Combining all three estimates gives

‖w‖L∞(Ω)‖∇vh‖‖uh‖ ⩽ 1

32
(𝜈‖∇uh‖2 + 𝛼‖uh‖2)

+ 8‖w‖2
L∞(Ω) min

⎧⎪⎨⎪⎩
1

𝛼𝜈
,

2

C
f

𝜈2
,

2

C
in

𝛼2h2
min

⎫⎪⎬⎪⎭ (𝜈‖∇vh‖2 + 𝛼‖vh‖2).

(44)

Using same argument to treat the second term on the

right-hand side of Equation 42, we arrive at

‖w‖L∞(Ω)‖∇uh‖‖vh‖ ⩽ 1

32
(𝜈‖∇uh‖2 + 𝛼‖uh‖2)

+ 8‖w‖2
L∞(Ω) min

⎧⎪⎨⎪⎩
1

𝛼𝜈
,

2

C
f

𝛼2
,

2

C
f

𝜈2

⎫⎪⎬⎪⎭ (𝜈‖∇vh‖2 + 𝛼‖vh‖2).

(45)

Hence, we derive using min{a1, a2, a3} ⩽
3(a−1

1
+ a−1

2
+ a−1

3
)−1, the estimate for the first term on the

right-hand side of Equation 41

1

2

∑
𝜏∈Th

(1 + 𝛼𝜎𝜏)[(w · ∇vh,uh)𝜏 − (w · ∇uh, vh)𝜏]

≲

(
1 +

‖w‖2
L∞(Ω)

𝜈𝛼 + 𝜈2 + h2
min

𝛼2

)
(𝜈‖∇vh‖2 + 𝛼‖vh‖2)

+ 3

32
(𝜈‖∇uh‖2 + 𝛼‖uh‖2).

(46)

Now, we estimate the second term on the right-hand side

of Equation 41 with the help of the third condition from

Equation 34:∑
𝜏∈Th

𝜎𝜏𝜈[(Δvh,w · ∇uh)𝜏 − (Δuh,w · ∇vh)𝜏]

⩽
∑
𝜏∈Th

[𝜎𝜏𝜈C̄inh−1
𝜏 ‖∇vh‖𝜏‖w · ∇uh‖𝜏

+ 𝜎𝜏𝜈C̄in‖w‖L∞(𝜏)h−1
𝜏 ‖∇uh‖‖∇vh‖𝜏]

⩽ 1

32
(𝜈‖∇uh‖2 +

∑
𝜏∈Th

𝜎𝜏‖w · ∇uh‖2
𝜏)

+
∑
𝜏∈Th

8(𝜎𝜏𝜈C̄2
in

h−2
𝜏 + 𝜎2

𝜏 C̄2
in
‖w‖2

L∞(𝜏)h
−2
𝜏 )𝜈‖∇vh‖2

𝜏

≲
1

32
(𝜈‖∇uh‖2 +

∑
𝜏∈Th

𝜎𝜏‖w · ∇uh‖2
𝜏) + (𝜈‖∇vh‖2 + 𝛼‖vh‖2).

(47)

Summarizing Equations 41 to 47, we obtain

7

8

(
𝛼‖uh‖2 + 𝜈‖∇uh‖2 +

∑
𝜏∈Th

𝜎𝜏‖w · ∇uh‖2
𝜏

)
+ 1

2∫ΓN

(w · n)|uh|2 ds

−
∑
𝜏∈Th

𝜎𝜏(𝛼uh − 𝜈Δuh,w · ∇uh)𝜏 +
1

2

∑
𝜏∈Th

((div w)uh,uh)𝜏

≲

(
1 +

‖w‖2
L∞(Ω)

𝜈𝛼 + 𝜈2 + h2
min

𝛼2

)
(𝜈‖∇vh‖2 + 𝛼‖vh‖2).

(48)

The left-hand side of Equation 41 equals

⟨ASu, u⟩ − 1

8

(
𝛼‖uh‖2 + 𝜈‖∇uh‖2 +

∑
𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏

)
,

(49)

and due to Equation 39, it is estimated from below by
1

2
⟨ASu, u⟩. Recalling 4⟨ASu, u⟩ ⩾ ‖u‖2

∗ = 𝜈‖∇uh‖2+𝛼‖uh‖2,

we obtain with the help of Equation 40

CA ⩽ ‖A−1
S

AN‖∗ = sup
v∈Rn

‖u‖∗‖v‖∗ ⩽ 2 sup
v∈Rn

⟨ASu, u⟩ 1

2‖v‖∗
≲

(
1 +

‖w‖L∞(Ω)√
𝜈𝛼 + 𝜈 + hmin𝛼

)
.

(50)

Denote c̃w ∶= ‖w‖L∞(Ω), ĉw = ‖div w‖L∞(Ω). To bound from

below the ellipticity constant cS for the auxiliary Schur com-

plement matrix S, we first observe the following upper bound
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⟨ASv, v⟩ = ⟨Av, v⟩ ⩽ 2(𝛼‖vh‖2 + 𝜈‖∇vh‖2

+
∑
𝜏∈Th

𝜎𝜏‖w · ∇vh‖2
𝜏) + C0c̃w‖∇vh‖2 + 1

2
ĉw‖vh‖2

⩽ 2(𝛼‖vh‖2 + 𝜈‖∇vh‖2 +
∑
𝜏∈Th

𝜎𝜏‖w‖2
L∞(𝜏)‖∇vh‖2

𝜏)

+ C0c̃w‖∇vh‖2 + 1

2
ĉw‖vh‖2

⩽ 2(𝛼‖vh‖2 + 𝜈‖∇vh‖2 +
∑
𝜏∈Th

h𝜏‖w‖L∞(𝜏)

4Cin

‖∇vh‖2
𝜏)

+ C0c̃w‖∇vh‖2 + 1

2
ĉw‖vh‖2 ⩽ 2(𝛼‖vh‖2

+ (𝜈 + c̃w)‖∇vh‖2) + C0c̃w‖∇vh‖2 + 1

2
ĉw‖vh‖2

≲ (𝜈 + 𝛼 + c̃w + ĉw)‖∇vh‖2.
(51)

The above bound and the inf-sup stability of the FE spaces

yield the following relations:

⟨BA−1
S

BTq, q⟩= sup
v∈Rn

⟨Bv, q⟩2⟨ASv, v⟩ ≳ sup
vh∈Vh

(div vh, qh)2

(𝜈 + 𝛼 + c̃w + ĉw)‖∇vh‖2

≳
‖qh‖2

𝜈 + 𝛼 + c̃w + ĉw
=

⟨Mpq, q⟩
𝜈 + 𝛼 + c̃w + ĉw

.

(52)

With the help of the first identity from Equation 16 and using

C = 0 and Equation 52, we obtain

⟨Sq, q⟩ = ⟨A−1BTq,BTq⟩
= ⟨(I − (A

− 1

2

S
AN A

− 1

2

S
)2)−1A

− 1

2

S
BTq,A

− 1

2

S
BTq⟩

⩾
⟨A− 1

2

S
BTq,A

− 1

2

S
BTq⟩

1 + ‖(A− 1

2

S
AN A

− 1

2

S
)2‖ =

⟨BA−1
S

BTq, q⟩
1 + ‖(A− 1

2

S
AN A

− 1

2

S
)2‖

≳
1

(𝜈 + 𝛼 + c̃w + ĉw)(1 + ‖(A− 1

2

S
AN A

− 1

2

S
)‖2)

⟨Mpq, q⟩.
(53)

The desired bound for cS follows from Equation 53.

To estimate 𝜖E, we use similar technique. For arbitrary

given q ∈ Rm, let u = A−1
S

ETq. We have

‖A
− 1

2

S
ETq‖2 = ⟨A−1

S
ETq,ETq⟩ = ⟨ASu, u⟩. (54)

For arbitrary v ∈ Rn, it holds ⟨ASu,v⟩ = ⟨ETq,v⟩. For

corresponding FE functions, this yields

𝜈(∇uh,∇vh)

+ 𝛼(uh, vh) +
1

2∫ΓN

(w · n)uh · vh ds

+
∑
𝜏∈Th

𝜎𝜏(w · ∇uh,w · ∇vh)𝜏 +
1

2

∑
𝜏∈Th

((div w)uh, vh)𝜏

+ 1

2

∑
𝜏∈Th

𝜎𝜏[(𝛼uh − 𝜈Δuh,w · ∇vh)𝜏

+ (𝛼vh − 𝜈Δvh,w · ∇uh)𝜏] =
∑
𝜏∈Th

𝜎𝜏(w · ∇vh,∇qh)𝜏

⩽
∑
𝜏∈Th

𝜎𝜏

(
1

8
‖w · ∇vh‖2

𝜏 + 2‖∇qh‖2
𝜏

)
⩽
∑
𝜏∈Th

𝜎𝜏

(
1

8
‖w · ∇vh‖2

𝜏 + 2C2
in

h−2
𝜏 ‖qh‖2

𝜏

)
.

(55)

We set vh = uh and invoke Equation 39 to conclude in the

vector notation

⟨ASu, u⟩ ≲ max
𝜏

(𝜎𝜏h−2
𝜏 )𝜆max(Mp)‖q‖2 ⩽ �̄�

2𝜈
𝜆max(Mp)‖q‖2.

(56)

The last inequality follows from the definition of 𝜎𝜏 in

Equation 8 for Re𝜏 > 1:

𝜎𝜏 = �̄�
hw

2‖w‖L∞(𝜏)

(
1 − 1

Re𝜏

)
⩽ �̄�

hw
2‖w‖L∞(𝜏)

Re𝜏

= �̄�
h2

w
2𝜈

⩽ �̄�
h2
𝜏

2𝜈
.

(57)

Recalling the definition of 𝜖E, the inequality Equation 56

together with Equation 54 proves the last bound in

Equation 35.

The theorem shows that matrices A and S̃ are positive def-

inite if conditions (Equation 34) on the parameters of the FE

method are satisfied. In this case, the matrix in Equation 3

admits LU factorization without pivoting. The first condition
in (34) is trivially satisfied with Cw = 0 if ΓN ≠ ∅ or the

entire 𝛤N is outflow boundary. The second condition may

not be restrictive, since w approximates velocity field of an

incompressible fluid, and hence, ‖div w‖L∞(Ω) decreases for

a refined grid. However, the w-divergence norm depends on

fluid velocity field and may be large for 𝜈 small enough.

Fortunately, one can choose such small Δt that the second

condition holds due to 𝛼 ∼ (Δt) − 1. The third condition in

Equation 34 puts an upper bound on stabilization parame-

ters. Naturally, the same or a similar condition appears in

the literature on the analysis of SUPG-stabilized methods

for the linearized Navier–Stokes equations, see, for example,

this study.21 The reason is that the positive definiteness of

A is equivalent to the coercivity of the velocity part of the

bilinear form from Equation 7, which is crucial for deriving

FE method error estimates. Therefore, stabilization parame-

ter design suggested in the literature typically satisfies 𝜎𝜏 ≲
h2
𝜏

𝜈
and 𝜎𝜏 ≲

h𝜏‖w‖L∞(𝜏)
asymptotically, that is, up to a scal-

ing factor independent of discretization parameters. As fol-

lows from Equation 57, the conditions Equation 34 on the

SUPG stabilization parameters Equation 8 are valid if �̄� ⩽
min{C̄−2

in
,

1

2
C−1

in
}. In practice, however, larger values of �̄� are

often found optimal for FE solution accuracy. The possible

reason of the inconsistency is that smooth harmonics dom-

inate in the solution, and hence, the bounds on parameters

are less tight. The situation is different when one is con-

cerned with iterative convergence of algebraic solvers, since

an algebraic solver has to reduce all possible harmonics in the

decomposition of the error vector.

To get an idea about the values of the critical constants cA,

CA, and cS in practice and to illustrate their dependence on

flow and discretization parameters, we compute these con-

stants for a series of matrices of the FE Oseen problem. We

consider a 3D analogue to the Taylor vortex problem sug-

gested in this study28 for the purpose of benchmarking. This
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TABLE 1 Computed values of cA, CA, and cS as well as the estimated
values of right-hand side expressions in Equation 35 for varying 𝛼 and 𝜈

𝜈 𝛼 cA CA Cest
A cS cest

S

.1 10 0.0090 1.0627 1.58 6.4455e-04 7.96e-04

.1 100 0.0223 0.3278 1.08 1.8526e-04 9.17e-05

.01 10 0.0021 3.7766 1.80 0.0014 8.70e-04

.01 100 0.0056 0.8133 1.09 2.0927e-04 9.23e-05

.001 10 5.8437e-04 8.1484 1.91 0.0015 9.03e-04

.001 100 0.0024 1.4904 1.09 2.1458e-04 9.24e-05

TABLE 2 Computed values of cA, CA, and cS for varying stabilization
scaling parameter �̄�

�̄� cA CA cS 𝜅

0 0.0024 1.4908 2.1458e-04 0

1/144 0.0024 1.4699 2.1451e-04 0.9362

1/96 0.0024 1.4603 2.1447e-04 1.3951

1/12 0.0025 1.3274 2.1367e-04 10.1030

1/3 0.0027 1.4161 2.1038e-04 50.3507

flow has no principle direction and shows a nontrivial vortical

structure. Applying Taylor–Hood elements on a regular tetra-

hedral subdivision of the unit cube leads to a discrete problem

with 11,802 velocity and 596 pressure unknowns. First, we

experiment with nonstabilized FE method and vary 𝜈 and 𝛼.

The results are reported in Table 1. We also show the com-

puted values of the quantities Cest
A = 1 + ‖w‖L∞(Ω)√

𝜈𝛼+𝜈+hmin𝛼
and

cest
S = 𝜆min(Mp)

(𝜈+𝛼+‖w‖L∞(Ω)+‖div w‖L∞(Ω))(1+C2
A)

appearing in the bounds

(Equation 35). We observe a very good agreement of these

bounds with the computed values of CA and cS. We recall that

the signs “≳” and “≲” in Equation 35 denote upper and lower

estimates up to a generic constant independent of all relevant

parameters. In Table 2, we show cA, CA, and cS for the same

discrete problem, but now, with SUPG stabilization. The table

also reports the parameter 𝜅 from Equation 21. The results

indicate that the sufficient condition 𝜅 < 1 can be too pes-

simistic in practice, and stable factorization is done without

pivoting for certain values of 𝜅 greater than 1.

5 A TWO-PARAMETER THRESHOLD ILU
FACTORIZATION

Incomplete LU factorizations of Equation 3 can be written in

the form A = LU − E with an error matrix E. How small is the

matrix E can be ruled by the choice of a threshold parameter

𝜏 > 0. The error matrix E is responsible for the quality of pre-

conditioning, see, for example, this study29 for estimates on

generalized minimal residual method convergence written in

terms of ‖E‖ and subject to a proper prescaling of A and the

diagonalizability assumption. In general, the analysis of ILU

factorization is based on the following arguments. For posi-

tive definite matrices A, one can choose such a small 𝜏 that

the product LU of its incomplete triangular factors L and U is

also positive definite, and so, estimates from this study30 can

be applied to assess the numerical stability of the incomplete

factorization: for cA = 𝜆min(AS), the sufficient condition is

𝜏 < cAn − 1. In practice, however, larger 𝜏 is used, and in the

case of nonsymmetric matrices, nonpositive or close to zero

pivots may encounter, and breakdown of an algorithm may

happen. Although most of remedies were developed for the

self-adjoint positive definite case,31 some of them are appli-

cable to nonsymmetric and nondefinite matrices. We use the

matrix two-side scaling19 in our applications.

Stability of ILU factorization for saddle point matrices with

positive definite (1, 1)-block and B̃ ≠ B deteriorates in

comparison with positive definite matrices and saddle point

matrices with B̃ = B. Theorem 4.1 shows that for cer-

tain flow regimes, the ellipticity constants cA and cS for A
and S approach zero. To ameliorate the performance of the

preconditioning in such extreme situations, we consider the

two-parameter Tismenetsky–Kaporin variant of the thresh-

old ILU factorization. The factorization was introduced and

first studied in this study32–34 for symmetric positive defi-

nite matrices and recently for nonsymmetric matrices in this

study.19

Given a matrix A ∈ Rn×n, the two-parameter factorization

can be written as

A = LU + LRu + R𝓁U − E, (58)

where Ru and R𝓁 are strictly upper and lower triangular matri-

ces, while U and L are upper and lower triangular matrices,

respectively. Given two small parameters 0 < 𝜏2 ⩽ 𝜏1, the

off-diagonal elements of U and L are either zero or have abso-

lute values greater than 𝜏1; the absolute values of R𝓁 and Ru
entries are either zero or belong to (𝜏2, 𝜏1]; entries of the

error matrix are of order O(𝜏2). We refer to Equation 58 as the

ILU(𝜏1, 𝜏2) factorization of A. Of course, a generic ILU(𝜏)

factorization can be viewed as Equation 58 with Ru = R𝓁 = 0

and 𝜏1 = 𝜏2 = 𝜏. The two-parameter ILU factorization goes

over a generic ILU(𝜏) factorization: the fill-in of L and U is

ruled by the first threshold parameter 𝜏1, while the quality

of the resulting preconditioner is mainly defined by 𝜏2, once

𝜏2
1
≲ 𝜏2 holds. In other words, the choice 𝜏2 = 𝜏2

1
∶= 𝜏2

may provide the fill-in of ILU(𝜏1, 𝜏2) to be similar to that

of ILU(𝜏), while the convergence of preconditioned Krylov

subspace method is better and asymptotically (for 𝜏→0) can

be comparable to the one with ILU(𝜏2) preconditioner. For

symmetric positive definite matrices, these empirical advan-

tages of ILU(𝜏1, 𝜏2) are rigorously explained in this study,34

where estimates on the eigenvalues and K-condition number

of L − 1AU − 1 were derived with LT = U and RT
𝓁 = Ru. The

price one pays is that computing L, U factors for ILU(𝜏1,

𝜏2) is computationally more costly than for ILU(𝜏1), since

intermediate calculations involve the entries of Ru. However,

this factorization phase of ILU(𝜏1, 𝜏2) is still less expen-

sive than that of ILU(𝜏2). We note also that ILU(𝜏1, 𝜏2) with

𝜏1 = 𝜏2 is similar to the ILUT(p, 𝜏) dual parameter incomplete

factorization35 with p = n (all elements passing the threshold

criterion are kept in the factors). If no small pivot modifi-
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FIGURE 1 The velocity waveform on the inflow as a function of time and the coarse grid in the right coronary artery

TABLE 3 The performance of ILU(𝜏1 = 0.03, 𝜏2 = 7𝜏2
1
) for right coronary

artery. The number and the time of iterations accumulated for 147 time steps

Mesh �̄� #it Tit

63k 0 20908 2267.

63k 1/12 20292 2182.

120k 0 26209 6188.

120k 1/12 26446 6132.

cation is done, the only differences between the algorithms

(for 𝜏1 = 𝜏2 and p = n) are a different scaling of pivots and

a row dependent scaling of threshold values used in ILUT.

A pseudocode of a row-wise ILU(𝜏1, 𝜏2) can be found in

this study.19

Analysis of the decomposition (Equation 58) of a general

nonsymmetric matrix is limited to simple estimate (2.5) from

this study36 applied to the matrix (L + R𝓁)(U + Ru) = A +

R𝓁Ru + E. The low bound for the pivots of the Equation 58

factorization is the following:

|LiiUii| ⩾ min
v∈Rn

⟨(A + R𝓁Ru + E)v, v⟩‖v‖2
⩾ cA − ‖R𝓁Ru‖ − ‖E‖,

(59)

with the ellipticity constant cA and the norms ‖R𝓁Ru‖, ‖E‖
proportional to 𝜏2

1
and 𝜏2, respectively. Hence, we may con-

clude that the numerical stability of solving for L − 1x and

U − 1x is ruled by the second parameter and the square of

the first parameter, while the fill-in in both factors is defined

by 𝜏1 rather than 𝜏2
1
. The Oseen problem setup may be such

that the estimates from Theorem 4.1 predict that the coerci-

tivity constant cA and the ellipticity constant cS are small.

This increases the probability of the breakdown of ILU(𝜏)

factorization of the saddle-point matrix, and demonstrates the

benefits of ILU(𝜏1, 𝜏2) factorization.

6 NUMERICAL RESULTS

In this section, we demonstrate the performance of the ILU(𝜏)

factorization for different values of discretization, stabiliza-

tion, and threshold parameters. As a testbench, we simulate

a blood flow in a right coronary artery within a single car-

diac cycle. For numerical test, we use the implementation

of ILU(𝜏1,𝜏2) available in the open source software.37,38 The

optimal values of ILU thresholds 𝜏1 = 0.03, 𝜏2 = 7𝜏2
1

are

taken from this study19 where detailed analysis of ILU(𝜏1,𝜏2)

and ILU(𝜏): = ILU(𝜏,𝜏) preconditioners for the Oseen sys-

tems without stabilization is given. In all experiments, we use

biconjugate gradient stabilized (BiCGstab) method with the

right preconditioner defined by the ILU(𝜏1,𝜏2) factorization.

The geometry of the flow domain was recovered from a

real patient coronary computed tomography angiography. The

diameter of the inlet cross section is about 0.27 cm and is

imbedded in the box 6.5cm × 6.8cm × 5cm. The ANI3D

package38 was used to generate two tetrahedral meshes; the

coarse mesh is shown in Figure 1. The meshes consist of

63k and 120k tetrahedra leading to the discrete (P2-P1 FEM)

Navier–Stokes system with about 300k and 600k unknowns,

respectively. The Navier–Stokes system (Equation 1) was

integrated in time using a semi-implicit second-order method

with Δt = 0.005 and systems (Equation 3) were solved at

every time step. Other model parameters are 𝜈 = 0.04cm2/s

and 𝜌= 1g/cm; one cardiac cycle period was 0.735s. The inlet

velocity waveform39 shown in Figure 1 defines the Poiseuille

flow rate through the inflow cross section. The vessel walls

were treated as rigid, and homogeneous Dirichlet boundary

conditions for the velocity are imposed on the vessel walls.

On all outflow boundaries, we set the normal component of

the stress tensor equal zero.

Table 3 shows the total number of the preconditioned

BiCGstab iterations, and the CPU time needed to perform all

147 time steps within a single cardial cycle. For each sys-

tem, the initial residual due to the solution from the previous

time step is reduced by 10 orders of magnitude. We gener-

ated sequences of the discrete Oseen problems (Equation 2)

with (�̄� = 1∕12) and without (�̄� = 0) SUPG stabilization.

The choice of parameters 𝜏1, 𝜏2 leads to stable computations

over the whole cardiac cycle. The total number of iterations

depends on the size of the system and the mesh and appears

to be very similar for both examples with and without stabi-

lization. The total number of iterations is 20% larger for the
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fine grid, which should be expected for the preconditioner

based on an incomplete factorization. Over the cardiac cycle,

the variations of the iteration counts and CPU times per lin-

ear solve are rather modest, see the top and bottom plots in

Figures 2 and 3. The difference in otherwise similar perfor-

mance of liner solvers for the cases �̄� = 1∕12 and �̄� = 0

is the following: For �̄� = 1∕12, when the maximum flow

rate on the inlet is achieved, and the number of iterations and

times needed to build preconditioner increase significantly

(approximately twice as much as average). This happens over

a few time steps. In these cases, when factorization is per-

formed, several small pivots occur, and their modification is

performed during the incomplete factorization.

The next series of experiments shows that restrictions

(Equation 34) on 𝜎𝜏 are important in practice. According

to Theorems 3.2 and 4.1, exact LU factorization of with-

out pivoting is stable if 𝜎𝜏 is small enough. In particular,

according to estimate (Equation 57), sufficient conditions

FIGURE 2 Right coronary artery, computations on grid 63k (left) and grid 120k (right) without streamline upwind Petrov–Galerkin stabilization and

𝜏1 = 0.03: The top plots show the number of biconjugate gradient stabilized (BiCGstab) iterations, the bottom plots show the time of BiCGstab iterations at

each time step

FIGURE 3 Right coronary artery, computations on grid 63k (left) and grid 120k (right), streamline upwind Petrov–Galerkin stabilization with �̄� = 1∕12 and

𝜏1 = 0.03: The top plots show the number of biconjugate gradient stabilized (BiCGstab) iterations, the bottom plots show the time of BiCGstab iterations at

each time step
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(Equation 34) are satisfied by parameters from Equation 8 if

�̄� ⩽ min{C̄−2
in
,

1

2
C−1

in
}. In this experiment, we increase �̄� two

times setting �̄� = 1∕6. It occurs that the matrices associated

with the coarse grid are more difficult to solve now. For the

first threshold parameter 𝜏1 as small as 10 − 4, we observe no

pivot modifications, and the average number of BiCGstab iter-

ations per linear solve is only 8. This suggests that the exact

LU factorization is still stable. Such small 𝜏1 is nonpracti-

cal because of enormous memory demands and factorization

time. However, already for 𝜏1 equal 3·10 − 4 on two time steps,

the algorithm makes 12 and 4 modifications of nearly zero

pivots in order to avoid the breakdown. This caused the con-

vergence slowdown, as many as 135 iterations for one system.

Certain Oseen systems with �̄� = 1∕6 on the fine grid can

not be solved by the ILU-preconditioned BiCGstab iterations

with any values of threshold parameters that we tried. Note

that for smaller �̄� = 1∕12, the algorithm performs without

pivot modifications even for 𝜏1 = 0.03.

Further, we decrease the viscosity of the fluid to

𝜈 = 0.025cm2/s and try to run the same simulation on

the coarse grid. For this value of the viscosity, the simu-

lation without SUPG stabilization fails (solution blow-up is

observed on t = 0.23 s). Adding SUPG stabilization allows

to obtain physiologically meaningful solution, however, for

large enough parameter �̄�, the linear systems are harder to

solve: �̄� = 1∕6 requires smaller threshold parameter 𝜏1,

whereas �̄� = 1∕3 generates unsolvable systems, see Table 4.

This experiment confirms that restrictions on �̄� come both

from stability of the FE method and algebraic stability of the

LU factorization.

We finally note that in experiments with varying inlet

velocity, which leads to varying Reynolds number, the

two-parameter ILU preconditioner demonstrated a remark-

able adaptive property. The fill-in of the L and U blocks

decrease or increase depending on the Reynolds number; see

TABLE 4 The performance of ILU(𝜏1, 𝜏2 = 7𝜏2
1
) for right coronary artery

with less viscous blood 𝜈 = 0.025cm2/s. Threshold values allowing to run
the entire SUPG-stabilized simulation with different stabilization
parameters �̄�. ‘⋆’ means solution blow-up, ‘–’ means untracktable systems
for any applicable 𝜏1

�̄� 0 1/96 1/48 1/24 1/12 1/6 1/3

𝜏1 ⋆ 0.03 0.03 0.03 0.03 0.003 –

Figure 4 and compare to the inlet waveform in Figure 1. We

will study this property of the two-parameter ILU precondi-

tioner in more detail in a subsequent paper.

7 CLOSING REMARKS
AND CONCLUSIONS

In this paper, we studied the stability of the LU factoriza-

tion for the stabilized FE formulations of the incompressible

Navier–Stokes equations. Further, the two-parameter thresh-

old ILU factorization was applied to define a preconditioner

in the Krylov subspace method. Advantages and shortcom-

ings of incomplete elementwise factorization preconditioners

are well known: On the one hand, they are rather insensitive

to discretization, boundary conditions for governing PDEs,

domain geometry, and flow directions; on the other hand,

even for discrete elliptic problems, ILU preconditioners do not

scale optimally with respect to the number of unknowns. We

observed such nonoptimality in the numerical experiments for

generalized saddle-point problem as well. For 3D problems,

when the mesh size is not too small, such dependence can

be an acceptable price for other robustness properties of the

preconditioner: in our experiments, the two-time increase of

the number of mesh cells led only 20% increase of the itera-

tion counts. Similar to the previous studies in this literature,19

we found that natural u-p ordering of unknowns is suffi-

cient for numerical stability of exact LU-factorization, when

stabilization parameters satisfy certain bounds. In the alge-

braic language, this translates as the positive definiteness of

the A block and the sufficiently small size of perturbation

in the (1,2)-block. In this paper, the stability bounds for the

factorization are rigorously formulated in terms of algebraic

properties of subblocks of the original saddle-point matrix.

In general, higher Reynolds numbers lead to efficiency loss

for most well-known preconditioners for Equation 3. In case

of 3D blood flow in coronary arteries, the actual viscosity and

velocity are such that P2-P1 stable FE discretization still pro-

vides the non-oscillatory solution on tetrahedral meshes with

∼ 105 cells. However, the coronary blood flow parameters are

close to the limit of non-oscillatory discretization, and SUPG

stabilization may be in-demand. SUPG stabilization alters the

FIGURE 4 The fill-in of the LU factors for �̄� = 0 (left) and �̄� = 1∕12 (right)
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(1,1)-block and (1,2)-block of the Oseen matrix (Equation 3)

and, hence, changes open new questions about the stability

of factorizations. Theorem 4.1 show how the constants in

the algebraic stability estimates depend on the flow and dis-

cretization parameters. This gives a certain insight into the

performance of incomplete factorizations as preconditioners

for flow problems. The present numerical analysis of incom-

plete factorizations for such nonsymmetric matrices is still

limited to the lower estimate (Equation 59) of the diagonal

entries of the triangular factors.

The two-parameter ILU preconditioner was applied to

hemodynamic flow in a right coronary artery reconstructed

from a real patient coronary computed tomography angiog-

raphy. The performance of the preconditioner is good for a

suitable choice of SUPG-stabilization parameters.
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