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ON THE DOMAIN GEOMETRY DEPENDENCE OF THE LBB CONDITION ∗, ∗∗
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Abstract. The LBB condition is well-known to guarantee the stability of a finite element (FE)
velocity - pressure pair in incompressible flow calculations. To ensure the condition to be satisfied a
certain constant should be positive and mesh-independent. The paper studies the dependence of the
LBB condition on the domain geometry. For model domains such as strips and rings the substantial
dependence of this constant on geometry aspect ratios is observed. In domains with highly anisotropic
substructures this may require special care with numerics to avoid failures similar to those when the
LBB condition is violated. In the core of the paper we prove that for any FE velocity-pressure pair
satisfying usual approximation hypotheses the mesh-independent limit in the LBB condition is not
greater than its continuous counterpart, the constant from the Nečas inequality. For the latter the
explicit and asymptotically accurate estimates are proved. The analytic results are illustrated by
several numerical experiments.
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Introduction

Consider the Stokes problem in a bounded domain Ω ⊂ Rn, n = 2, 3 :

−∆u +∇p = f in Ω,
div u = 0 in Ω,

u = 0 on ∂Ω.
(1)

Equations (1) describe the slow motion of a viscous incompressible fluid driven by external forces f(x). The
unknowns are the vector function u(x) (velocity) and the scalar function p(x) (pressure) subject to the integral
condition

∫
Ω
p(x)dx = 0. Problem (1) serves also as a model or auxiliary problem in many CFD applications.

Let Uh and Ph be some FE approximations of the velocity space

U = H1
0(Ω)n with ||u||1 = ||∇u||L2(Ω)n
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and the pressure space

P = {p : p ∈ L2(Ω), (p, 1) = 0} with ||p||0 = ||p||L2(Ω).

Assume for a moment Uh ⊂ U and Ph ⊂ P . The discrete counterpart of (1) reads: find {uh, ph} from {Uh, Ph}
such that for any {vh, qh} from {Uh, Ph}

(∇uh,∇vh)− (ph,div vh) = (f ,vh),
(div uh, qh) = 0. (2)

It is well-known that for the well-posedness of (2) and stability of {uh, ph} the following inequality should be
valid (see [2, 7]):

inf
qh∈Ph

sup
vh∈Uh

|(qh,div vh)|
||vh||1 ||qh||0

= γh ≥ γ(Ω) > 0 (3)

with some positive constant γ(Ω) independent of the mesh parameter h. Throughout the paper, we assume
that supx and infx are taken for x 6= 0 if ||x|| appears in the denominator.

Condition (3) is commonly referred as LBB (Ladyzhenskaya - Babuška - Brezzi) or inf-sup condition and is
not satisfied by an arbitrary pair of FE spaces Uh and Ph. One example when (3) fails are piecewise-linear
continuous elements (Pn1 × P1 pair), if the same triangulation is used for both pressure and velocity grids.
For discussions and historical remarks see, e.g., [14]. Condition (3) is also crucial in proving estimates and
convergence for discrete solution. It is classic (see, e.g., [8]) to have

||ph||0 ≤ 2 γ−1
h ||f ||−1, ||uh||1 ≤ ||f ||−1 with ||f ||−1 = sup

v∈U

|〈f ,v〉|
||v||1

(4)

and

||uh − u||1 + ||ph − p||0 ≤ 3(1 + γ−1
h )

(
inf

vh∈Uh

||u− vh||1 + inf
qh∈Ph

||p− qh||0
)
.

As shown in [3], condition (3), together with the so called ellipticity in the kernel, is also a necessary condition
for (4). Moreover, the convergence rate of many iterative methods to solve (2) depends essentially on γh (see,
e.g., [6, 9, 17,23]). For example the Uzawa - CG algorithm for (2), which is generally believed to be one of the
most efficient, has the asymptotic convergence rate

κ =
1− γh
1 + γh

· (5)

Therefore for small γh one may expect poor algebraic properties of (2).
There are a lot of papers (see the overview in [14]), in which the LBB condition is checked for particular

FE pairs. The main address of these papers is commonly the mesh dependence of γh, rather than the domain
dependence. On the other hand, the degradation of (3) for some configurations, e.g. for flows in channels, is a
phenomena well known for practitioners. In this paper it is proved that at least for a certain type of domains,
such as strips and rings, γ(Ω) tends to zero if the domain becomes in some sense anisotropic. Moreover, estimates
involving a measure of anisotropy are given. This a priori information can be quite important for the prediction
of a numerical solution quality and the solvers behaviour in domains with anisotropic substructures and for
domain-decomposition methods.

The remainder of the paper is organised as follows. In Section 1 the theorem is proved that for any FE pair,
which possesses usual approximation properties, one has

γ(Ω) ≤ µ(Ω),
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where µ(Ω) is the optimal constant from the Nečas inequality:

µ(Ω)||p||0 ≤ ||∇p||−1 ∀p ∈ P. (6)

In Section 2 constant µ(Ω) is linked with the minimal eigenvalue of a certain operator associated with the Stokes
problem (1). This enables us to show that in

Ω = {(x1, x2) : 0 < xi < Li, i = 1, 2} , ` = max(L1/L2, L2/L1)

the following estimates hold:

1
2
√

15
`−1 ≤ µ(Ω) ≤ π

2
√

3
`−1. (7)

In Section 3, we show for the ring

Ω = {x = (x1, x2) : 0 < R1 < |x| < R2} , R2/R1 = 1 + δ, δ > 0

that for δ ∈ (0, 1]

µ(Ω) ≤
√

7
6
δ

2
· (8)

These results imply that for thin strips, long channels, or rings the constant γ(Ω) from the LBB condition tends
to zero at least with the linear dependence on the domain anisotropy parameter (`−1 or δ). In Section 4, results
of numerical experiments with two conforming and one non-conforming FE pair are presented. They support
the theory and indicate that this dependence is indeed linear.

Finally, we recall the result from [15], which states that for bounded simply-connected 2D domains the
following relation between µ(Ω) and the optimal constant from the 2nd Korn’s inequality, defined below by
η(Ω), holds:

η(Ω) = 2µ(Ω)−1. (9)

Therefore, as a by-product of our analysis new estimates in rectangular domains for η(Ω) are obtained, which
could be useful in elasticity. See also Remark 3.5 in Section 3 for the case of a ring.

1. LBB condition and Nečas inequality

Further we consider both conforming and non-conforming finite elements for velocity. First assume that FE
subspaces Uh and Ph are such that Uh ⊂ U and Ph ⊂ P for each h > 0. In this case the only assumption we
need is the following standard approximation hypothesis for Ph :
• A1. For each q ∈ P ∩H1(Ω) there exists a function qh ∈ Ph such that

||q − qh||0 ≤ C h ||q||H1(Ω) (10)

with C independent of q and h.
In the non-conforming case (Uh 6⊂ U) assume uh to be a polynomial on every element τ of the subdivision
T of Ω. Then it is standard to define (∇uh,∇vh) =

∑
τ∈T (∇uh,∇vh)τ . Naturally ||uh||1 = (∇uh,∇uh)

1
2 is

the mesh-depended norm, scalar product (ph,div uh) is defined similarly. In the non-conforming case we need
additionally two assumptions. These are the full elliptic regularity for the solution to the Poisson problem and
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the convergence assumption for a discrete solution of the Poisson problem:
• A2. For any f ∈ L2(Ω)n and the solution φφφ to

∆φφφ = f in Ω, φφφ = 0 on ∂Ω (11)

one gets φφφ ∈ U ∩H2(Ω)n and ||φφφ||H2(Ω)n ≤ c||f ||L2(Ω)n .
• A3. Let φφφ ∈ U ∩H2(Ω) be a solution to (11) with f = −∇q and φφφh ∈ Uh is a solution to the problem

(∇φφφh,∇vh) = (q,div vh), ∀ vh ∈ Uh,

then

||φφφ− φφφh||1 ≤ ω(h)||φφφ||H2(Ω) (12)

with ω(h)→ 0, if h→ 0.
The former assumption imposes some restriction on Ω (cf. [13]). As an example it is valid for bounded domains
with a piecewise-smooth boundary with no entering corners. The second assumption is usually the consequence
of approximation and consistency properties due to Stang’s lemma [25]. The consistency follows from by the
standard arguments (see, e.g. [5]) if the functions from Uh has continuous fluxes on the edges of elements, since
in this case ∑

τ∈T

∑
e∈∂τ

∫
e

(vh · n)q ds = 0

for any vh ∈ Uh and q ∈ H1(Ω), which implies (q,div vh) = −(∇q,vh). Examples are the Crouzeix-Raviart
element [8] or (Q̃2)n ×Q0 quadrilateral elements from [22].

Consider µ(Ω) from (6). By definition one has

||∇p||−1 = sup
v∈U

|(p,div v)|
||v||1

·

And it is clear that we can set

µ(Ω) = inf
q∈P

sup
v∈U

|(q,div v)|
||v||1 ||q||0

· (13)

Lemma 1.1. For µ(Ω) from (13) one has

µ(Ω) = inf
q∈P∩H1(Ω)

sup
v∈U

|(q,div v)|
||v||1 ||q||0

·

Proof. The inequality

µ(Ω) ≤ inf
q∈P∩H1(Ω)

sup
v∈U

|(q,div v)|
||v||1 ||q||0

(14)

is evident since P ∩H1(Ω) ⊂ P .
On the other hand

µ(Ω) ≥ inf
q∈P∩H1(Ω)

sup
v∈U

|(q,div v)|
||v||1 ||q||0

, (15)

easily follows from the density of P ∩H1(Ω) in P [16].
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Now we are in a position to prove the following theorem.

Theorem 1.2. Under the above assumptions on Uh and Ph we have

γ(Ω) ≤ µ(Ω). (16)

Proof. Thanks to Lemma 1.1 it suffices to check that

γ(Ω) ≤ inf
q∈P∩H1(Ω)

sup
v∈U

|(q,div v)|
||v||1 ||q||0

· (17)

Consider arbitrary q ∈ P ∩H1(Ω) and ε ∈ (0, 1). For sufficiently small h we have

max(C h, ω(h))||q||H1(Ω) ≤ ε||q||0 (18)

with constant C from (10) and ω(h) from (12). Hence, owing to approximation hypothesis A1 we can choose
qh ∈ Ph such that

||q − qh||0 ≤ ε||q||0.

Thus we have

γ(Ω) ≤ sup
vh∈Uh

|(qh,div vh)|
||vh||1 ||qh||0

≤ sup
vh∈Uh

|(q,div vh)|
||vh||1 ||qh||0

+ sup
vh∈Uh

|(qh − q,div vh)|
||vh||1 ||qh||0

≤ 1
(1− ε) sup

vh∈Uh

|(q,div vh)|
||vh||1 ||q||0

+
ε

1− ε

(19)

In the case of conforming FE, thanks to Uh ⊂ U and the arbitrary choice of ε ∈ (0, 1) we get from (19)

γ(Ω) ≤ sup
v∈U

|(q,div v)|
||v||1 ||q||0

,

which leads to (17).
In the case of non-conforming velocity elements we get from (19)

γ(Ω) ≤ 1
(1− ε) sup

vh∈Uh

|(q,div vh)|
||vh||1 ||q||0

+
ε

1− ε (20)

It is straightforward to check (cf. (23)–(26) below) that for a given q the supremum in (20) is attained for the
v̂h which solves the problem

(∇v̂h,∇vh) = (q,div vh), ∀ vh ∈ Uh.

Together with ûh consider û from U, which solves

(∇v̂,∇v) = (q,div v), ∀ v ∈ U.

Assumption A2 implies v̂ ∈ U ∩H2(Ω)n. Therefore, thanks to (12), (18), (6), and (26) we get

||v̂− v̂h||1 ≤ ω(h)||v̂||H2(Ω)n ≤ cω(h)||∇q||L2(Ω)n ≤ cε||q||0 ≤ cµ(Ω)−1ε||∇q||−1 = c1ε||v̂||1.
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Now the following estimates hold:

γ(Ω) ≤ 1
(1− ε) sup

vh∈Uh

|(q,div vh)|
||vh||1 ||q||0

+
ε

1− ε =
1

(1− ε)
|(q,div v̂h)|
||v̂h||1 ||q||0

+
ε

1− ε

≤ 1
(1− ε)

|(q,div v̂)|
(1− c1ε)||v̂||1 ||q||0

+
1

(1− ε)
|(q,div (v̂h − v̂))|

(1− c1ε)||v̂||1 ||q||0
+

ε

1− ε

≤ 1
(1− ε)(1− c1ε)

sup
v∈U

|(q,div v)|
||v||1 ||q||0

+
c1ε

1− c1ε
+

ε

1− ε ·

(21)

Since the choice of q ∈ P ∩H1(Ω) and ε was arbitrary, we have proved (17).

Remark 1.3. It is well known that γ2
h equals the minimal eigenvalue of a certain eigenvalue problem associated

with the discrete system (2) (cf. Sect. 4). Hence, from the observation of the next section, where µ(Ω) is linked
with the minimal eigenvalue of a certain continuous operator, and approximation properties one could conclude
that

lim
h→0

γh = µ(Ω). (22)

However, as shown in [3], besides the approximation properties the necessary condition for the convergence of
eigenvalues of mixed problems is the existence of a certain projection operator from U to Uh. The existence
of such an operator does not follow from the LBB and ellipticity conditions (see also [4]). So to establish (22)
one has to check the existence of such an operator for every particular FE pair of interest, the latter is a
non-standard task.

2. Estimates for a strip

One can rewrite the Stokes problem (1) as follows:

A0p = div ∆−1
0 f ,

u = ∆−1
0 (∇p− f)

with

A0 = div ∆−1
0 ∇,

where ∆−1
0 is the solution operator for the vector Poisson problem: Given a functional g on U find v ∈ U such

that ∆v = g.
The operator A0 : P → P is a Schur complement for problem (1). From the papers [18] and [10] it follows

that in this continuous setting the operator A0 is self-adjoint, positive definite, has a discrete spectrum, and
possesses a complete orthonormal system of eigenfunctions in P .

Below we give a link between the minimal eigenvalue of A0 and the constant µ(Ω) from (13). To this end
consider the following equalities for arbitrary function q ∈ H1(Ω) ∩ P :

(A0q, q) = (div ∆−1
0 ∇q, q) = −(∆−1

0 ∇q,∇q) (23)

= −(∆−1
0 ∇q,∆∆−1

0 ∇q) = (−∆w,w)|w = ∆−1
0 ∇q

(24)

= ||w||21 = sup
v∈U

(−∆w,v)2

||v||21
= sup

v∈U

(∇q,v)2

||v||21
= sup

v∈U

(q,div v)2

||v||21
· (25)
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Once again we use the fact that H1(Ω) ∩ P is dense in P and pass to the limit in the equalities

(A0q, q) = ||w||21 = sup
v∈U

(q,div v)2

||v||21
· (26)

Thus relations (26) are valid for arbitrary q ∈ P and w = ∆−1
0 ∇q ∈ U. In particular from (13) and (26) follows

λmin(A0) = inf
q∈P

(A0q, q)
||q||20

= inf
q∈P

sup
v∈U

(q,div v)2

||v||21 ||q||20
= µ(Ω)2,

where λmin(A0) is a minimal eigenvalue of the operator A0.
We also define operators Ap and Am. Similar to A0 these operators are Schur complements for the Stokes

problem, however they involve another boundary condition for the velocity. We assume that

Ω = {(x1, x2)| 0 < xi < Li, i = 1, 2} . (27)

By Ap denote the operator Ap : P → P defined as

Ap = div ∆−1
p ∇,

here ∆−1
p is the solution operator to the problem:

∆u = g in Ω,

u · n = 0,
∂(u · τ)
∂n

= 0 on ∂Ω,

where n and τ are the normal and tangent vectors to ∂Ω . In [19] it was shown that Ap is the identity operator
on P .

In the same fashion we define the operator Am : P → P as

Am = div ∆−1
m ∇,

where ∆−1
m is the solution operator to the problem:

∆u = g in Ω

with boundary conditions

u1 = 0,
∂u2

∂x1
= 0 for x1 = 0, L1,

u1 = 0, u2 = 0 for x2 = 0, L2.
(28)

The weak solution of this problem belongs to

Um =
{

u ∈
(
H1(Ω)

)2
: u1 = 0 and (0, u2) · n = 0 on ∂Ω

}
.

For arbitrary q ∈ P we have

(Amq, q) = sup
v∈Um

(q,div v)2

||v||21
· (29)
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The estimates (7) follow from the estimates for the minimal eigenvalues of the operators Ai (i = 0, p,m). We
state them below with ` as defined in the introduction:

1
60

1
`2
λmin(Ap) ≤ λmin(A0) ≤ λmin(Am) ≤ π2

12
1
`2

(30)

Recall that all λ(Ap) = 1 and µ(Ω)2 = λmin(A0).
The upper estimate from (30) is proved in Appendix A. The prove of the lower bound is rather technical and

can be found in [20]. The inequality

λmin(A0) ≤ λmin(Am)

follows from the embedding U ⊂ Um and thanks to (26), (29) and Rayleigh’s rule:

λmin(A0) = inf
q∈P

sup
v∈U

(q,div v)2

||v||21 ||q||20
, λmin(Am) = inf

q∈P
sup

v∈Um

(q,div v)2

||v||21 ||q||20
·

3. Estimate for a ring

In this section we assume that Ω is the ring

Ω = {x = (x1, x2) : 0 < R1 < |x| < R2} , R2/R1 = 1 + δ, δ > 0.

Since the relation µ(Ω)2 = λmin(A0) obtained from (26) is still true, we consider the eigenvalue problem
A0 p = λp. The following theorem is valid.

Theorem 3.1. Define s = R2/R1 > 1, and let (r, ϕ) be the polar coordinates on R2, then all the eigenvalues
of the problem A0 p = λp belong to

{1} ∪ L1 ∪ L2,

where

L1 =

{
1
2

(
1 +

√
s2 − 1
s2 + 1

1
ln s

)}⋃{1
2

(
1 +

(sm+1 − sm−1)
√
m2 − 1√

(s2(m+1) − 1)(s2(m−1) − 1)

)}
,

L2 =

{
1
2

(
1−

√
s2 − 1
s2 + 1

1
ln s

)}⋃{1
2

(
1− (sm+1 − sm−1)

√
m2 − 1√

(s2(m+1) − 1)(s2(m−1) − 1)

)}
for m = 2, 3, . . . . The eigenvalue λ = 1 is of infinite multiplicity and some corresponding eigenfunctions are

pk(r, ϕ) =
π k r

R2 −R1
cos π k

r −R1

R2 −R1
− 1
r

sin π k
r −R1

R2 −R1
+ Ck, k = 1, 2, . . . ,

each eigenvalue λ 6= 1 is of double multiplicity and all corresponding eigenfunctions are

p1(r, ϕ) = r

(
1∓

[
R1

r

]2
√
s4 − 1
4 ln s

)
α1(ϕ),

pm(r, ϕ) = rm

1∓
[
R1

r

]2m

sm−1

√
m− 1
m+ 1

s2(m+1) − 1
s2(m−1) − 1

αm(ϕ) , m = 2, 3, . . .

with αm(ϕ) = cos(mϕ) or αm(ϕ) = sin(mϕ).
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Proof. The proof is based on the presentation

[u1, u2, p] =
∑
j

[
uj1(r), uj2(r), pj(r)

]
exp{ijϕ}

and the possibility to decouple A0 p = λp into separate differential problems for uj1(r), uj2(r), and pj(r), which
are solved explicitly. Details can be found in Appendix B.

Remark 3.2. If R2 is fixed and R1 → 0 ( i.e. s→ ∞ ) we have λ → 1
2

for all λ 6= 1. Hence the result of

Crouzeix [10] for a circle is recovered.

Corollary 3.3. With the above assumptions on Ω we have for µ(Ω) from (13)

µ(Ω) ≤
√

7
6
δ

2
, δ ∈ (0, 1]

and

µ(Ω) ∼ δ

2
√

3
, δ → 0.

Proof. Consider the eigenvalue

λ̄ =
1
2

1−

√
s2 − 1
s2 + 1

1
ln s

 .

Substituting s = 1 + δ, we get for δ ∈ (0, 1]√
s2 − 1
s2 + 1

1
ln s

=
2δ + δ2

2 + 2δ + δ2

1

δ − δ2

2
+
δ3

3
. . .

≥ 2 + δ

2 + δ + 7
6δ

2
≥ 1− 7

12
δ2.

Therefore we have

µ(Ω)2 = λmin(A0) ≤ λ̄ ≤ 1
2

(
1−

√
1− 7

12
δ2

)
≤ 1

2

(
1− (1− 7

12
δ2)
)

=
7
24
δ2·

Thus the estimate for µ(Ω) is proved.
To verify the asymptotic for µ(Ω), when δ → 0 we substitute s = 1+ δ and calculate Taylor expansions w.r.t.

δ for the functions from the definition of the eigenvalues. It is straightforward to obtain

2δ + δ2

2 + 2δ + δ2

1
ln(1 + δ)

= 1− 1
3
δ2 + . . .

and for m = 2, 3, . . .

((1 + δ)m+1 − (1 + δ)m−1)2(m2 − 1)
((1 + δ)2(m+1) − 1)((1 + δ)2(m−1) − 1)

=
4 + 4(2m− 1)δ + (8m2 − 12m+ 5)δ2 + . . .

4 + 4(2m− 1)δ +
28m2 − 36m+ 15

3
δ2 + . . .

= 1− m2

3
δ2 + . . . .
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Figure 1. (P 1
h/2)2 × P 0 velocity-pressure FE.

Using this expansions, we get for λmin

λmin(A0) ∼ 1
2

(
1−

√
1− 1

3
δ2

)
∼ 1

2

(
1− (1− 1

6
δ2)
)

=
δ2

12
, δ → 0.

Remark 3.4. From the above expansions it is clearly seen that the asymptotic behaviour λ ∼ c δ2 holds for
all eigenvalues from the set L2 defined in Theorem 3.1.

Remark 3.5. The value of µ(Ω) compared with the value of Korns’ constant for a ring [11], shows that (9) is
not valid now. Thus the assumption on Ω to be simply-connected is necessary for (9).

4. Numerical examples

First we consider two examples of conforming FE pairs, which are known (e.g., [14]) to satisfy the LBB
condition. These are piecewise linear or bilinear velocity functions w.r.t. a subdivision of Ω into triangles or
rectangles, respectively. In both cases the discrete velocity is continuous over Ω , and the discrete pressure is
piecewise constant over Ω . We assume

Ω = (0, `)× (0, 1).

Scheme I. Consider the regular (“north-east”) triangulation Th of the domain Ω into triangles. Divide each
macro-triangle in Th into four mini-triangles by joining the mid-sides. This defines a finer triangulation Th/2.

Define

Uh =
{
v|v ∈ P 1(4)2,4 ∈ Th/2; v ∈ C0(Ω); v = 0 on ∂Ω

}
,

Ph =
{
q|q ∈ P 0(4),4 ∈ Th;

∫
Ω

qdΩ = 0
}
.

Here P r(4) denotes the space of polynomials of degree not greater then r on an element of the triangulation
4 ⊂ R2. We illustrate Scheme I in Figure 1.

Scheme II. We start with subdivision Qh of the domain Ω into rectangles. Subsequently we divide each
rectangle into four smaller rectangles by joining the opposite mid-sides. This defines another subdivision Qh/2
of Ω.
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Figure 2. (Q1
h/2)2 ×Q0 velocity-pressure FE.

The FE velocity field consists of the piecewise bilinear functions w.r.t. the subdivision Qh/2, which are
continuous over Ω and vanish on ∂Ω , i.e.

Uh =
{
v|v ∈ Q1(�)2,� ∈ Qh/2; v ∈ C0(Ω); v = 0 on ∂Ω

}
.

The pressure FE space consists of piecewise constants w.r.t. the macro subdivision Qh with zero mean
over Ω , i.e.

Ph =
{
q|q ∈ Q0(�),� ∈ Qh;

∫
Ω

qdΩ = 0
}
.

See Figure 2.
For nodal functions associated with the FE functions we can define in the standard way the nodal Laplacian

operator A, div -operator B, and pressure mass matrix Mp. Then, similar to the continuous case (cf. Sect. 2)

the constant γh from (3) equals
√
λhmin, where λhmin is the minimal eigenvalue of the eigenvalue problem

BA−1BT p = λhMp p, p ∈ P̄h,

where P̄h is the space of the nodal functions associated with the pressure FE functions.
The minimal eigenvalue was determined by the subspace iteration algorithm (see [21] ). The subroutine EA12

from the HARWELL Numerical Analysis Library was used. The process was considered as converged when the
residual, normalised by the eigenvector, was less than 10−10 in the discrete L2 norm.

In Table 1 we present the values of γh(Ω) for different ` with h1 = h2 = 1/64 and both FE schemes. In the
bottom row the value of the upper bound

µ̄ =
π

2
√

3
`−1

is given for reference.
The data from Table 1 confirms the asymptotic behaviour

γ(Ω) ≈ O(`−1) with `→∞,

that was predicted by the analysis of the paper.
Table 2 shows the calculated values of γh for different ` with h1 = ` h2, h2 = 1/256.
Compared with Table 1 numerical results from Table 2 show that the dependence of γh on the mesh aspect

ratio h1/h2 is very weak. This agrees with the numerical experience in [26] for non-conforming velocity FE
space.
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Table 1. The dependence of γh on the domain aspect ratio.

`

FE scheme 1 2 4 8

I 0.447424 0.387510 0.218469 0.112338
II 0.479624 0.388664 0.211852 0.112345
µ̄(Ω) 0.9069 0.45345 0.226725 0.113363

Table 2. The dependence of γh on the domain aspect ratio and the mesh aspect ratio.

`

FE scheme 1 2 4 8

I 0.440679 0.387417 0.218494 0.112432
II 0.460223 0.387812 0.218534 0.124900

Table 3. The dependence of γh on the mesh size.

mesh size

FE
scheme 1/8 1/16 1/32 1/64 1/128 1/256

I 0.474990 0.461353 0.452987 0.447424 0.443527 0.440679
II 0.560231 0.521009 0.496087 0.479624 0.468308 0.460222

In Table 3 we present the values of γh with different h1 = h2 = h for the unit square. These results illustrate
that in general the LBB condition (3) holds for both FE pairs, i.e. the mesh-independent limit γ(Ω) exists for
both FE schemes.

In the next example we use non-conforming quadrilateral elements (Q̃2
h)2×Q0

h from [22], i.e. on every element
the velocities are spanned by 〈x2 − y2, x, y, 1〉 and the pressure is constant. The domain and a coarse mesh are
shown on Figure 3. The length of the channel equals 2.5 m and the hight 0.41 m, a cylinder of diameter 0.1 m
is placed at 0.45 m from the inlet. For unsteady incompressible flows this is a benchmarking configuration (see
details in [24]). Here the steady Stokes flow around cylinder was calculated. The Featflow software [27] was
used.

The average convergence factors after 50 iterations of the Uzawa algorithm are presented in Table 4. The
second line of the results shows the factors for the same configuration but with the outlet placed closer to the
cylinder (1.5 m). We recall that the convergence of the Uzawa algorithm is ruled by γh (see (5)). The level
number in Table 4 indicates the number of refining steps applied to the coarse mesh. At every step each element
is divided to four finer elements by joining midpoints on opposite edges. As was expected the convergence is
mesh-independed, however decreases while the channel becomes longer.

Appendix A

In this part of the appendix we prove the upper bound in (30). Assuming that Ω is defined as in (27),
consider the eigenvalue problem Amp = λp. Introducing the auxiliary function u = ∆−1

m ∇p, we reformulate
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Figure 3. Coarse grid partition for non-conforming FE.

Table 4. The convergence rates of Uzawa algorithm.

mesh levels

Length 3 4 5 6

2.5 0.88 0.86 0.85 0.85
1.5 0.76 0.75 0.74 0.74

the problem: Find eigenvalues λ and eigenfunctions p ∈ P which satisfy{
−∆u +∇ p = 0,

div u = λp
(31)

with some function u ∈ Um subject to the boundary conditions (28).
All solutions to (31), (28) can be found by the method of splitting the variables (cf. [1]). Here it suffices to

note that the operator Am has the eigenvalue

λ̄(Am) =
1
2

(
1− t

sinh t

)
with t = π

L2

L1
.

Indeed, consider the domain Ω = (0, L1)× (−b, b) with b = L1/2. This shift of the original rectangle does not
change the eigenvalues but simplifies the analysis. Further, setting r = π/L1, by a straightforward substitution
we check that the functions

u1 =
1
2

sin rx1

[
b

sinh rb
cosh rb

cosh rx2 − x2 sinh rx2

]
,

u2 = −1
2

cos rx1

[
b
cosh rb
sinh rb

sinh rx2 − x2 cosh rx2

]
,

p = cos rx1 cosh rx2

satisfy (31), (28) together with the eigenvalue λ̄(Am).
In Section 2 it was shown that λmin(A0) ≤ λmin(Am). Thus one immediately gets

λmin(A0) ≤ λmin(Am) ≤ λ̄(Am) =
1
2

(
1− t

sinh t

)
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with t = πL2/L1 = π/`. This proves the upper bound in (30) due to trivial calculations:

1
2

(
1− t

sinh t

)
=

t2

2 · 3!

1 +
t23!
5!

+
t43!
7!

+ · · ·

1 +
t2

3!
+
t4

5!
+ · · ·

≤ π2

12
1
`2
·

Appendix B

In the appendix B we outline the proof of Theorem 3.1. Consider the eigenvalue problem A0p = λp. Intro-
ducing the auxiliary function u = ∆−1

0 ∇p, we reformulate the problem as: Find eigenvalues λ and eigenfunctions
p ∈ P which satisfy {

−∆u +∇ p = 0,
div u = λp

with some function u ∈ U0.
Let us rewrite the eigenvalue problem in the polar coordinate system:

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂ϕ2
− u

r2
− 2
r2

∂v

∂ϕ
− ∂p

∂r
= 0,

1
r

∂

∂r

(
r
∂v

∂r

)
+

1
r2

∂2v

∂ϕ2
− v

r2
+

2
r2

∂u

∂ϕ
− 1
r

∂p

∂ϕ
= 0, (32)

1
r

[
∂

∂r
(r u) +

∂v

∂ϕ

]
= λp,

where we denote u = u1, v = u2.
For λ = 1 the theorem is checked by substituting functions

pk =
∂uk
∂r

+
1
r
uk

and

uk = sin π k
r −R1

R2 −R1
, vk(r) = 0

to (32) for any integer k.
Further consider an eigenfunction p and auxiliary u, v, corresponding to some λ 6= 1. The periodical boundary

conditions for ϕ imply the representation

[u, v, p] =
+∞∑

m=−∞
[um(r), vm(r), pm(r)] exp{imϕ}.

Since the system of exponents exp{imϕ} is orthogonal in L2( [0, 2π] ), from (32) follows

1
r

∂

∂r

(
r
∂um
∂r

)
− m2

r2
um −

um
r2
− 2im

r2
vm − p′m = 0, (33)

1
r

∂

∂r

(
r
∂vm
∂r

)
− m2

r2
vm −

vm
r2

+
2im
r2

um −
im
r
pm = 0, (34)

1
r

[
∂

∂r
(r um) + imvm

]
= λpm (35)
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with boundary conditions

um(R2) = vm(R2) = um(R1) = vm(R1) = 0. (36)

For the harmonic m = 0 it is straightforward to check (using (34) to get v0 = 0) that the only possibility is
λ = 1.

Thus we are interested in m 6= 0. Eliminating um and vm we obtain from (33)–(35)

(λ− 1) ∆rpm = 0.

Hence

pm(r) =
1

2m
(
C+r

m + C−r
−m) , (37)

where C+, C− are arbitrary constants. From (33) and (34) we get

1
r

∂

∂r

(
r
∂um
∂r

)
− m2

r2
um −

um
r2
− 2im

r2
vm =

1
2
[
C+r

m−1 − C−r−m−1
]
,

1
r

∂

∂r

(
r
∂vm
∂r

)
− m2

r2
vm −

vm
r2

+
2im
r2

um =
i
2
[
C+r

m−1 + C−r
−m−1

]
.

Setting w± = um ± ivm we obtain a boundary value problem with parameter m

1
r

∂

∂r

(
r
∂w±
∂r

)
− (m∓ 1)2

r2
w± = ±C±r±m−1,

w±(R1) = w±(R2) = 0.
(38)

First, consider the case m = 1 . We get

w+ = A+ ln r +B+ +
C+

4
r2, w− = A− r

2 +B− r
−2 +

C−
4
,

where

A+ =
C+

4 ln
R2

R1

(
R2

1 −R2
2

)
, B+ =

C+

4 ln
R2

R1

(
R2

2 ln R1 −R2
1 ln R2

)
,

and

A− = − C−
4

1
R2

1 +R2
2

, B− = − C−
4

(R1R2)2

R2
1 +R2

2

.

Substituting um = (w+ + w−)/2, ivm = (w+ − w−)/2 into (35) we obtain

C+

8

(
R2

1 −R2
2

ln R2
R1

+ 2 r2

)
− C−

4
1

R2
1 +R2

2

(
2 r2 −R2

1 −R2
2

)
=
λ

2
(
C+ r

2 + C−
)
.

Since the functions r0 and r2 are linearly independent, this yields the only possible values (s = R2/R1 > 1)

λ =
1
2

1±

√
s2 − 1
s2 + 1

1
ln s

 . (39)
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We also find

p1(r) = C r

(
1∓

[
R1

r

]2
√
s4 − 1
4 ln s

)
.

The same result is valid for the case m = −1. Therefore it follows that the λ from (39) are the eigenvalues
corresponding to the eigenfunctions

p1(r, ϕ) =
1
2
p1(r)(exp (iϕ) + exp (−iϕ)),

p2(r, ϕ) =
1
2i
p1(r)(exp (iϕ) − exp(−iϕ)).

For |m| > 1 the solution to the problem (38) is

w+ = A+ r
m−1 +B+ r

−(m−1) +
C+

4m
rm+1,

w− = A− r
m+1 +B− r

−(m+1) +
C−
4m

r−(m−1),

where

A+ = −C+

4m
R2m

2 −R2m
1

R
2(m−1)
2 −R2(m−1)

1

, B+ = −C+

4m
(R2

1 −R2
2)(R1R2)2(m−1)

R
2(m−1)
2 −R2(m−1)

1

,

A− = −C−
4m

R2
2 −R2

1

R
2(m+1)
2 −R2(m+1)

1

, B− = −C−
4m

(R2m
2 −R2m

1 )(R1R2)2

R
2(m+1)
2 −R2(m+1)

1

.

Similar considerations lead to the only possible values

λ =
1
2

(
1± (sm+1 − sm−1)

√
m2 − 1√

(s2(m+1) − 1)(s2(m−1) − 1)

)

and

pm(r) = C rk

1∓
[
R1

r

]2k

sk−1

√
k − 1
k + 1

s2(k+1) − 1
s2(k−1) − 1

 , k = |m| > 1.

The theorem is proved.
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équations des Navier – Stokes stationaires, Cahiers de l’IRIA (1974) 139–244.

[11] C.M. Dafermos, Some remarks on Korn’s inequality. Z. Angew. Math. Phys. 19 (1968) 913–920.
[12] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986).
[13] P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, Boston (1985).
[14] M. Gunsburger, Finite element methods for viscous incompressible flows. A guide to the theory, practice and algorithms.

Academic Press, London (1989).
[15] C.O. Horgan and L.E. Payne, On inequalities of Korn, Friedrichs and Babuska-Aziz. Arch. Ration. Mech. Anal. 40 (1971)

384–402.
[16] G.M. Kobelkov, On equivalent norms in L2. Anal. Math. No. 3 (1977) 177–186.
[17] U. Langer and W. Queck, On the convergence factor of Uzawa’s algorithm. J. Comp. Appl. Math. 15 (1986) 191–202.
[18] S.G. Mikhlin, The spectrum of an operator pencil of the elasticity theory. Uspekhi Mat. Nauk 28 (1973) 43–82; English

translation in Russian Math. Surveys, 28.
[19] M.A. Olshanskii, Stokes problem with model boundary conditions. Sbornik: Mathematics 188 (1997) 603–620.
[20] M.A. Olshanskii and E.V. Chizhonkov, On the optimal constant in the inf-sup condition for rectangle. Matematicheskie Zametki

67 (2000) 387–396.
[21] B.N. Parlett, The Symmetrical Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, New Jersey (1980).
[22] R. Rannacher and S. Turek, A simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential

Equation 8 (1992) 97–111.

[23] D. Silvester and A. Wathen, Fast iterative solution of stabilized Stokes systems part II: Using block preconditioners. SIAM
J. Numer. Anal. 31 (1994) 1352–1367.
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