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Abstract—The paper studies several approaches to numerical integration over a domain defined
implicitly by an indicator function such as the level set function. The integration methods are
based on subdivision, moment–fitting, local quasi-parametrization and Monte-Carlo techniques.
As an application of these techniques, the paper addresses numerical solution of elliptic PDEs
posed on domains and manifolds defined implicitly. A higher order unfitted finite element method
(FEM) is assumed for the discretization. In such a method the underlying mesh is not fitted to the
geometry, and hence the errors of numerical integration over curvilinear elements affect the accuracy
of the finite element solution together with approximation errors. The paper studies the numerical
complexity of the integration procedures and the performance of unfitted FEMs which employ these
tools.
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1. INTRODUCTION

Numerical approaches for solving PDEs that integrate the underlying geometric information, such
as isogeometric analysis [14], are in the focus of research over the last decade. In the isogeometric
analysis, the functions used for geometry representation are also employed to define functional spaces in
the Galerkin method. Several other approaches try to make the grid generation and geometry description
independent. Unfitted finite element methods, such as immersed boundary methods [16], extended
FEM [4, 9], cut FEM [5], or trace FEM [19], use a sufficient regular background grid, but account
for geometric details by modifying the spaces of test and trial functions or the right-hand side functional.

The accuracy of unfitted FEM depends on several factors. These are the approximation property of
basic finite element space, the accuracy of underlying geometry recovering, and the error introduced
by numerical integration. The present paper first reviews the analysis of two higher order finite element
methods: one is an unfitted FEM for the Neumann problem in a bounded curvilinear domain, another one
is a narrow-band FEM for an elliptic PDE posed on a closed smooth manifold. In both cases, the domain
(a volume or a surface) is given implicitly by a discrete level-set function. Practical implementation of
these methods (as well as many other unfitted FEM) leads to the following problem: Given a simplex
K ∈ R

N , a smooth function f defined on K and a polynomial φh of degree q such that |∇φh| ≥ c0 > 0
on K, evaluate the integral

IK(φh, f) :=
∫

Q

f dx, with Q = {x ∈ K : φh(x) > 0}. (1)
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The paper focuses on several numerical approaches to problem (1) in R
2. In the context of numerical

solution of PDEs, f is typically a polynomial; q + 1 is the order of geometry recovery.
We note that for q = 1 one has to integrate f over a polygon (or polyhedron). Then for a polynomial

function f an exact numerical integration is straightforward through subdividing the polygon (polyhe-
dron) into a finite number of triangles (tetrahedra) and applying standard Gauss quadratures on each
triangle. However, for q > 1 the problem appears to be less trivial and building an exact quadrature
rule for IK(φh, f) does not look feasible. This can be realised by considering the simple 1D example
with K = (0, 1) and f ≡ 1. Solving (1) becomes equivalent to finding the root of φh ∈ (0, 1). The
latter problem is resolved (only) in radicals for 2 ≤ q ≤ 4 and is well known to have no general algebraic
solution for q > 4 by the Abel theorem.

The problems of building numerical quadratures for the implicitly defined volume integrals (1) and the
implicitly defined surface integrals

∫
S f ds, with S = {x ∈ K : φh(x) = 0} have been already addressed

in the literature and several techniques have been applied in the context of XFEM and other unfitted FE
methods. One straightforward approach consists of employing the smeared Heaviside function Hε, see,
e.g., [22]. Then for the regularized problem, one applies a standard Gaussian quadrature rule on the
simplex K with weights ωi and nodes xi:

IK(φh, f) =
∫

K

fH(φh) dx ≈
∫

K

fHε(φh) dx ≈
∑

i

ωif(xi)Hε(φh(xi)).

However, for a general superposition of K and the zero level set of φh, the smearing leads to significant
integration errors which are hard to control. Another numerical integration technique is based on an
approximation of Q by elementary shapes. Sub-triangulations or quadtree (octree) Cartesian meshes
are commonly used for these purposes. On each elementary shape a standard quadrature rule is
applied. The sub-triangulation is often adaptively refined towards the zero level of φh. The approach
is popular in combination with higher order extended FEM for problems with interfaces, see, e.g., [1,
8, 17], and the level-set method [13, 15]. Although numerically stable, the numerical integration
based on sub-partitioning may significantly increase the computational complexity of a higher order
finite element method, since the number of function evaluations per K scales with h−p for some p > 0
depending on the order of the FEM. In several recent papers [10, 18, 21] techniques for numerical
integration over implicitly defined domains were devised that have optimal computational complexity.
The moment–fitting method from [18] uses polynomial divergence free basis of vector function to
approximate the integrand and further reduce the volume integrals to boundary integrals to find the
weights of a quadrature formula by a least-square fitting procedure. We recall the moment–fitting
method in Section 3. For the case when K is a hyper-rectangle, the approach in [21] converts the
implicitly given geometry into the graph of an implicitly defined height function. The approach leads
to a recursive algorithm on the number of spatial dimensions which requires only one-dimensional root
finding and one-dimensional Gaussian quadrature. In [10], a zero level-set of φh is approximated by
higher order interface elements. These elements are extended inside K so that K is covered by regular
and curvilinear simplexes. For curvilinear simplexes a mapping to the reference simplex is constructed.
Further standard Gauss quadratures are applied.

In this paper, we develop an approach for (1) based on the local quasi-parametrization of the zero
level set of φh. Similar to [21] the zero level set is treated as a graph of an implicitly given function. With
the help of a 1D root finding procedure the integration over Q is reduced to the integration over regular
triangles and the recursive application of 1D Gauss quadratures. The technique is also related to the
method of local parametrization for higher order surface finite element method of [11]. We compare
the developed method with several other approaches for the numerical integration in the context of
solving partial differential equations in domains with curvilinear boundaries and over surfaces. For the
comparison purpose we consider the method of sub-triangulation for Q, the moment–fitting method,
and the Monte-Carlo method.

The rest of the paper is organized as follows. We first recall unfitted finite element method for solving
an elliptic PDE in a domain with curvilinear boundary and an elliptic PDE posed on a surface. For the
surface PDE we use the method from [20] of a regular extension to a narrow band around the surface.
The error analysis of these unfitted FE methods is also reviewed. Further in Section 3 we discuss
the methods for numerical integration of (1), which further used to build the FEM stiffness matrices.
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Section 4 collects the result of numerical experiments. Section 5 concludes the paper with a few closing
remarks.

2. UNFITTED FEM
We assume that Ω is an open bounded subset in R

N , N = 2, 3, with a boundary Γ, which is a
connected C2 compact hypersurface in R

N . In this paper we apply unfitted FE methods to elliptic
equations posed in Ω and on Γ. As model problems, let us consider the Poisson and the Laplace–
Beltrami problems:

−Δu + α u = f in Ω,
∂u

∂n
= 0 on Γ, (2)

and
−ΔΓu + α u = g on Γ, (3)

with some strictly positive α ∈ L∞(Ω) or α ∈ L∞(Γ), respectively.

2.1. Preliminaries
To define finite element methods, we need a formulation of the surface PDE (3) based on normal

extension to a narrow band. First, we introduce some preliminaries. Denote by Ωd a domain consisting
of all points within a distance from Γ less than some d > 0:

Ωd = {x ∈ R
3 : dist(x,Γ) < d}.

Let φ : Ωd → R be the signed distance function, |φ(x)| := dist(x,Γ) for all x ∈ Ωd. The surface Γ is the
zero level set of φ:

Γ = {x ∈ R
3 : φ(x) = 0}.

We may assume φ < 0 on the interior of Γ and φ > 0 on the exterior. We define n(x) := ∇φ(x) for all
x ∈ Ωd. Thus, n is the normal vector on Γ, and |n(x)| = 1 for all x ∈ Ωd. The Hessian of φ is denoted
by H:

H(x) = D2φ(x) ∈ R
3×3 for all x ∈ Ωd.

For x ∈ Γ, the non-zero eigenvalues of H(x) are the principal curvatures. Hence, one can choose
such sufficiently small positive d = O(1) that I − φH is uniformly positive definite on Ωd. For x ∈ Ωd

denote by p(x) the closest point on Γ. Assume that d is sufficiently small such that the decomposition
x = p(x) + φ(x)n(x) is unique for all x ∈ Ωd. For a function v on Γ we define its extension to Ωd:

ve(x) := v(p(x)) for all x ∈ Ωd.

Thus, ve is the extension of v along normals on Γ.
We look for u solving the following elliptic problem

−divμ(I − φH)−2∇u + αeμ u = geμ in Ωd,
∂u

∂n
= 0 on ∂Ωd, (4)

with μ = det(I − φH). The Neumann condition in (4) is the natural boundary condition. The following
results about the well-posedness of (4) and its relation to the surface equations (3) have been proved
in [20]:

(i) For g ∈ L2(Γ), the problem (4) has the unique weak solution u ∈ H1(Ωd), which satisfies
||u||H1(Ωd) ≤ C ||ge||L2(Ωd), with a constant C depending only on α and Γ;

(ii) For the solution u to (4) the trace function u|Γ is an element of H1(Γ) and solves a weak formulation
of the surface equation (3);

(iii) The solution u to (4) satisfies (∇φ) · (∇u) = 0. Using the notion of normal extension, this can be
written as u = (u|Γ)e in Ωd;

(iv) Additionally assume Γ ∈ C3, then u ∈ H2(Ωd) and ||u||H2(Ωd) ≤ C ||ge||L2(Ωd), with a constant C

depending only on α, Γ, and d.
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2.2. FEM Formulations

Let Ωbulk ⊂ R
N , N = 2, 3, be a polygonal (polyhedral) domain such that Ω ⊂ Ωbulk for problem (2)

and Ωd ⊂ Ωbulk for problem (3). Assume we are given a family {Th}h>0 of regular triangulations of Ωbulk

such that maxT∈Th
diam(T ) ≤ h. For a triangle T denote by ρ(T ) the diameter of the inscribed circle.

Denote

β = sup
T∈Th

diam(T )/ inf
T∈Th

ρ(T ). (5)

For the sake of presentation, we assume that triangulations of Ωbulk are quasi-uniform, i.e., β is uniformly
bounded in h. It is computationally convenient not to align (not to fit) the mesh to Γ or ∂Ωd. Thus, the
computational domain Ωh approximates Ω or Ωd and has a piecewise smooth boundary which is not
fitted to the mesh Th.

Let φh be a continuous piecewise, with respect to Th, polynomial approximation of the surface
distance function φ in the following sense:

||φ − φh||L∞(Ω) + h||∇(φ − φh)||L∞(Ω) ≤ c hq+1 (6)

with some q ≥ 1 (for problem (2) a generic level-set function φ can be considered, not necessary a signed
distance function). Then one defines

Ωh = {x ∈ R
3 : φh(x) < 0} for problem (2),

Ωh = {x ∈ R
3 : |φh(x)| < dh} for problem (3),

where dh = O(h), dh ≤ d. Note, that in some applications the surface Γ may not be known explicitly
and only a finite element approximation φh to the distance function φ is known. Otherwise, one may
set φh := Jh(φ), where Jh is a suitable piecewise polynomial interpolation operator. Estimate (6) is
reasonable, if φh is a polynomial of degree q and φ ∈ Cq+1(Ωd). The latter is the case for Cq+1-smooth Γ.

The space of all continuous piecewise polynomial functions of a degree r ≥ 1 with respect to Th is our
finite element space:

Vh := {v ∈ C(Th) : v|T ∈ Pr(T ) ∀ T ∈ Th}. (7)

The finite element method for problem (2) reads: Find uh ∈ Vh satisfying∫

Ωh

[∇uh · ∇vh + αe uhvh] dx =
∫

Ωh

f evh dx ∀ vh ∈ Vh, (8)

where αe, f e are suitable extensions of α and f to Ωbulk. For problem (3), the finite element method is
based on the extended formulation (4) and consists of finding uh ∈ Vh that satisfies∫

Ωh

[
(I − φhHh)−2∇uh · ∇vh + αe uhvh

]
μhdx =

∫

Ωh

gevh μhdx ∀ vh ∈ Vh. (9)

It should be clear that only those basis functions from Vh contribute to the finite element formulations (8),
(9) and are involved in computations that do not vanish everywhere on Ωh. Error estimates for the
unfitted finite element methods (8), (9) depend on the geometry approximation and the order of finite
elements. Let Γ ∈ Cr+1 and assume u ∈ Hr+1(Ω) solves the Neumann problem (2) and uh ∈ Vh

solves (8). Then it holds

||ue − uh||L2(Ωh) + h||ue − uh||H1(Ωh) ≤ C (hr+1 + hq+1), (10)

where a constant C is independent of h, r is the degree of the finite element polynomials, and q + 1 the
geometry approximation order defined in (6).

For the Neumann problem with α = 0 and a compatibility condition on the data, the estimate in (10)
is proved in [3] subject to an additional assumption on Ωh. In that paper it is assumed that ∂Ωh and Γ
match on the edges of K ∈ Th intersected by Γ. This is not necessary the case for Ωh defined implicitly
from the discrete level function φh. For implicitly defined domains, the convergence result in (10) follows
from the more recent analysis in [12], where a suitable mapping of Ωh on Ω was constructed.
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For the FE formulation (9) of the Laplace–Beltrami problem (3), approximations to φ and H are
required. If Γ is given explicitly, one can compute φ and H and set φh = φ, Hh = H and μh =
det(I − φhHh) in (8). Otherwise, if the surface Γ is known approximately as, for example, the zero
level set of a finite element distance function φh, then, in general, φh �= φ and one has to define a discrete
Hessian Hh ≈ H and also set μh = det(I − φhHh). A discrete Hessian Hh can be obtained from φh

by a recovery method, see, e.g., [2, 23]. Assume that some Hh is provided and denote by p ≥ 0 the
approximation order for Hh in the (scaled) L2-norm:

|Ωh|−1/2||H − Hh||L2(Ωh) ≤ chp, (11)

where |Ωh| denotes the area (volume) of Ωh.

The convergence of the finite element method (8) is summarized in the following result from [20].
Let Γ ∈ Cr+2, f ∈ L∞(Γ), and assume u ∈ W 1,∞(Γ) ∩ Hr+1(Γ) solves the surface problems (3) and
uh ∈ Vh solves (8). Then it holds

||u − uh||H1(Γ) ≤ C (hr + hp+1 + hq), (12)

where a constant C is independent of h, and r ≥ 1, p ≥ 0, q ≥ 1 are the finite elements, Hessian recovery,
and distance function approximation orders defined in (7), (6), and (11), respectively. Numerical
experiments in [20] show that ||u − uh||L2(Γ) typically demonstrates a one order higher convergence
rate than the H1(Γ) norm of the error.

Note that both error estimates (10) and (12) assume exact numerical integration. In the introduction,
we discussed that for q > 1 the exact numerical integration is not feasible. The error of the numerical
quadrature should be consistent with the finite element interpolation and geometric error to ensure that
the FEM preserves the optimal accuracy.

Remark 1. For the purpose of improving algebraic properties of an unfitted finite element method
a stabilization procedure was suggested in [6] for elliptic equations posed in volumetric domains and
further extended to surface PDEs in [7]. The procedure consists of adding a special term penalizing the
jump of the solution normal derivatives over the edges (faces) of the triangles (tetrahedra) cut by ∂Ωh.

Let T h
Γ := {K ∈ Th : measN−1(K ∩ ∂Ωh) > 0} (T h

Γ is the set of all elements having non-empty
intersection with the boundary of the numerical domain Ωh). By Fh

Γ denote the set of all edges in 2D or
faces in 3D shared by any two elements from T h

Γ . Define the term

J(u, v) =
∑

F∈Fh
Γ

hF σF

∫

F

[[nF · ∇u]] [[nF · ∇v]] .

Here, [[nF · ∇u]] denotes the jump of the normal derivative of u across F ; σE ≥ 0 are stabilization
parameters (in our computations we set σF = 1). The edge-stabilized trace finite element reads: Find
uh ∈ Vh such that

ah(uh, vh) + J(uh, vh) = fh(vh), (13)

for all vh ∈ Vh. Here ah(uh, vh) and fh(vh) are the bilinear forms and the right-hand side functional
corresponding to the finite element methods (8) or (9).

For P1 continuous bulk finite element methods on quasi-uniform regular tetrahedral meshes, the
optimal orders of convergence for (13) were proved in [6]. In our numerical studies we tested the
stabilized formulation (13) with higher order elements. We observed very similar convergence results
for the formulations for and without J(uh, vh) term, including sub-optimal/irregular behaviour with
moment-fitting quadratures and optimal with other integration techniques. For the systems of linear
algebraic equations we use exact ‘backslash’ solves in either case. Therefore, we shall not report results
for (13) in addition to finite element formulations (8) and (9).
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3. NUMERICAL INTEGRATION

For a simplex K ⊂ R
N , K ∈ Th we are interested in computing integrals over Q = {x ∈ K :

φh(x) > 0} with a certain accuracy O(hm), i.e., for a sufficiently smooth f we look for a numerical
quadrature Ih,K(φh, f) such that

|IK(φh, f) − Ih,K(φh, f)| ≤ c hm, m = min{q, r} + N, (14)

with a constant c uniformly bounded over K ∈ Th. We restrict ourselves with the two-dimensional case,
N = 2.

As a pre-processing step we may compute a simple polygonal approximation QK to the curvilinear
integration domain Q. To find the polygonal subdomain QK , we invoke a root finding procedure (several
iterations of the secant method are used in our implementation) to find all intersection points of the zero
level set of φh(x) with the edges of K. QK is defined as a convex hull of these intersection points and
the vertices of K lying in Ωh. The integration of a polynomial function f over QK can be done exactly
using Gaussian quadratures on a (macro) triangulation of QK . The integration over Q̃ = QQK has to
be done approximately. We can write∫

Q

f dx =
∫

QK

f dx +
∫

Q̃

sgn(φh)f dx.

For the numerical integration over Q̃ or directly over Q, we consider several approaches. We start with
the most straightforward technique, the Monte-Carlo method.

For the Monte-Carlo method we seed M � 1 points {xi} using a uniform random distribution over
a narrow rectangular strip S containing Q̃. Further compute

∫

Q̃

sgn(φh)f dx ≈ |S|
M

M∑
i=1

g(xi), g(x) = f(x)sgn(φh(x))χQ̃(x). (15)

Further we calculate the variance
∣∣∣
(∑M

i=1 g(xi)
)2

/M −
∑M

i=1(g(xi)2)
∣∣∣1/2

|S|/M . If the variance

exceeds a predefined threshold ε = O(hm), then we increase the set of points used and update the sum
on the right-hand side of (15). Noting |S| = O(h3), a conservative estimate gives M � O(h3−2m).

In the Monte-Carlo method the number of function evaluations per a grid element intersected by
∂Ωh is too far from being optimal. A sub-triangulation method below allows to decrease the number of
function evaluations per cell and still constitutes a very robust approach.

In the sub-triangulation algorithm we construct a local triangulation of Q. This is done by finding
O(h3−m) points on the curvilinear boundary ∂Ωh. In our implementation, these points are found as
intersections of a uniform ray corn tailored to a basis point on ∂QK , see Fig. 1 for the example of how
such local triangulations were constructed for cut triangles K1 and K2 (left plot) and a cut triangle K
(right plot) of a bulk triangulation (FE functions are integrated over the green area). Further, the integral
over a cut element is computed as the sum of integrals over the resulting set of smaller triangles.

The approach can be viewed as building a local piecewise linear approximation of φh with some
h′ = O(hm′

), with m′ = min{q, r}, i.e., h′ = O(h2) for P2 elements and h′ = O(h3) for P3 elements.

The number of function evaluations per a triangle intersected by ∂Ωh is O(h3−m), which is better than
with the Monte-Carlo method, but still sub-optimal. The first integration method delivering optimal
complexity we consider is the moment-fitting method from [18].

In the moment-fitting method, one first defines a set of points {xi}, i = 1, . . . ,M , for a given cell K
intersected by ∂Ωh. The choice of the points can be done for a reference triangle and is independent on
how ∂Ωh intersects K: {xi} can be regularly spaced, come from a conventional quadrature scheme, or
even randomly distributed. The boundary of the integration domain Q consists of straight edges Ek and
the curvilinear part I, cf. Fig. 1. Let nk, nI = (∇φh)/|∇φh| to be the unit outward normal vectors for
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Fig. 1. Local subdivisions of cut triangles.

each Ek and I, respectively. The moment–fitting method calculates quadrature weights for the chosen
points {xi} by finding the least-square solution to the system

M∑
i=1

ωigj(xi) =
∫

Q

gj d x (16)

for a given set of basis functions {gj}, j = 1, . . . ,K. For example, for P2 FEM we use the basis

G = {gj} = {1, x, y, x2, xy, y2}. (17)

The number M of points {xi} is recommended in [18] to exceed the number of basis functions, i.e.,
K < M holds.

The integrals on the right-hand side of (16) are evaluated approximately by resorting to divergence-
free basis functions. For divergence-free basis functions, one applies the divergence theorem to reduce
dimensions of the integrals and relate integration over implicit surface to simple line integrals. In 2D,
the div-free basis complementing (17) is given by

F = {fj} =

⎧⎨
⎩

1 0 0 x y y2 2xy x2 0

0 1 x −y 0 0 −y2 −2xy x2

⎫⎬
⎭ .

Since ∂Q is a closed piecewise smooth curve, for fj ∈ F it holds

0 =
∫

Q

div fj(x)d x =
∫

∂Q

fj · n∂Qds =
∫

I

fj ·
∇φh

|∇φh|
ds +

∑
k

∫

Ek

fj · nkds.

Hence, we obtain ∫

I

fj ·
∇φh

|∇φh|
ds = −

∑
k

∫

Ek

fj · nkds.

Integrals over any interval Ek on the right side can be computed with a higher order Gauss quadrature
rule. This allows to build a quadrature for the numerical integration over implicitly given curvilinear edge
I based on the interior nodes {xi}. To this end, one calculates the weights {vi} for the set of nodes {xi}
by solving the following system:

M∑
i=1

fj(xi) ·
∇φh(xi)
|∇φh(xi)|

vi =
∫

I

fj ·
∇φh

|∇φh|
ds, j = 1, . . . ,K.

For area integration, take the second set of functions related to G as div hj = 2gj :

H = {hj} =

⎧⎨
⎩

x x2/2 xy x3/3 x2y/2 xy2

y xy y2/2 x2y xy2/2 y3/3

⎫⎬
⎭ .
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The divergence theorem gives

2
∫

Q

gjdx =
∫

∂Q

hj · n∂Qds =
∫

I

hj ·
∇φh

|∇φh|
ds +

∑
k

∫

Ek

hj · nkds.

Now the right-hand side values in (16) are (approximately) computed using the above identity and the
previously computed surface quadrature rule for the numerical integration over I:

2
∫

Q

gjdx ≈
M∑
i=1

hj(xi) ·
∇φh(xi)
|∇φh(xi)|

vi +
∑

k

∫

Ek

hj · nkds.

This algorithm can be extended to higher order quadratures by expanding the function sets G, F , and H;
or to integration over a higher dimensional curvilinear simplex by adding a further moment–fitting step.

The complexity of the moment–fitting integration is optimal, e.g., O(1) of function evaluations
per triangle. However, the weights computed by the fitting procedure are not necessarily all non-
negative. There is no formal prove of the resulting quadrature accuracy as in (14) or the consistency
order. In experiments we observe that the finite element methods with stiffness matrices assembled
using moment–fitting can be less stable compared to applying other numerical integration techniques
discussed here. Below we consider another integration method of optimal complexity.

Consider the curvilinear remainder Q̃ and denote by p1, p2 the intersection points of ∂Ωh with QK . If
there are more than 2 such points, then the calculations below should be repeated for each of the simply-
connected component of Q̃. Choose points {qi} on (p1,p2) as a nodes of a Gaussian quadrature with
weights {ωi}. Consider the normal vector n for the line passing through p1 and p2. For each point qi,
one finds the point q̂i on the boundary such that q̂i = qi + αn, α ∈ R, and φh(q̂i) − c0 = 0, where c0 is
the φh-level value for ∂Ωh, i.e., c0 = 0 for the FEM (8) and c0 = ±dh for the FEM (9). Secant method
finds q̂i up to machine precision within a few steps. Further we employ the same 1D quadrature rule to
place points {rij} on each segment (qi, q̂i). The integral over Q̃ is computed through∫

Q̃

sgn(φh)f(x)dx ≈ I
h,Q̃

(f) = |p1 − p2|
∑

i

|qi − q̂i|sgn(φh(qi))ωi

∑
j

f(rij)ωj . (18)

The weights for integrating over Q may be combined in ωij = |p1 −p2||qi − q̂i|sgn(φh(qi))ωiωj to write
the final quadrature formula

∑
i

∑
j f(rij)ωij . We remark that for problem (9), the factor sgn(φh(qi))

in (18) is replaced by sgn(φh(qi) + dh) or sgn(dh − φh(qi)) depending on the level set of ∂Ωh.

Similar to the moment–fitting method, the complexity of the numerical integration is optimal, i.e.,
O(1) of function evaluations per triangle. All weights ωij are positive, and the accuracy analysis
of numerical integration of a smooth function over Ω, which invokes the constructed quadrature for
handling boundary terms, is straightforward and outlined below.

We estimate the error of integration of a sufficiently smooth f over Ω. The integration uses a
conventional quadrature scheme for interior cells of Th and the quadrature (18) for the curvilinear
remainders of cut cells. This composed numerical integral is denoted by Ih,K(f). Assume the 2D
quadrature over regular triangles has O(hm) accuracy. By the triangle inequality, we have

∣∣∣∣∣∣
∫

Ω

f dx − Ih,Ω(f)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫

Ω

f dx −
∫

Ωh

f dx

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

Ωh

f dx − Ih,Ω(f)

∣∣∣∣∣∣∣
.

We apply the co-area formula to estimate the first term∣∣∣∣∣∣∣
∫

Ω

f dx −
∫

Ωh

f dx

∣∣∣∣∣∣∣
≤

∫

(Ω�Ωh)

|f |dx ≤ ||f ||L∞

∫

(Ω�Ωh)

1dx
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≤ ||f ||L∞

+||φh−φ||L∞∫

−||φh−φ||L∞

∫

{φ=t}

|∇φ|dxdt ≤ Chq||f ||L∞ .

For the second term we estimate∣∣∣∣∣∣∣
∫

Ωh

f dx − Ih,Ω(f)

∣∣∣∣∣∣∣
≤

∑
K∈Th

∣∣∣∣∣∣∣
∫

K∩Ωh

f dx − Ih,K(f)

∣∣∣∣∣∣∣
,

where Ih,K(f) is a quadrature we use to integrate f over K ∩ Ωh. Decomposing the mesh into interior
cells T int

h and cut cells TΓ
h (those intersected by ∂Ωh) and applying triangle inequalities, we obtain:∣∣∣∣∣∣∣

∫

Ωh

fdx− Ih,Ω(f)

∣∣∣∣∣∣∣
≤

∑
K∈T int

h

∣∣∣∣∣∣
∫

K

fdx− Ih,K(f)

∣∣∣∣∣∣ +
∑

K∈TΓ
h

∣∣∣∣∣∣∣
∫

K∩Ωh

fdx− Ih,K(φh, f)

∣∣∣∣∣∣∣
.

The interior cells are integrated with the error Chm by a conventional method:

∑
K∈T int

h

∣∣∣∣∣∣
∫

K

fdx − Ih,K(f)

∣∣∣∣∣∣ ≤ Chm.

For Q = K ∩ Ωh = QK ∪ Q̃K , Q̃K = QQK and polygonal QK defined earlier, we have

∑
K∈TΓ

h

∣∣∣∣∣∣∣
∫

K∩Ωh

fdx− Ih,K(φh, f)

∣∣∣∣∣∣∣
≤ Chm +

∑
K∈TΓ

h

∣∣∣∣∣∣∣
∫

Q̃K

sgn(φh)fdx − I
Q̃K

(f)

∣∣∣∣∣∣∣
.

The estimate below assumes that a Gaussian 1D quadrature with P nodes is used in the construction
of (18). For each interval (p1,p2) we introduce the local orthogonal coordinate system (s, t) = x(s) +
tn, where s : (0, |p2 − p1|) → (p1,p2) parameterizes the interval. The graph of the zero level of φh is
the implicit function γ(s) given by φh(x(s) + γ(s)n) = 0. We note the identity

d2P

ds2P

γ(s)∫

0

f(s, t) dt =
2P−1∑
k=0

C2P
k

∂kf

∂sk

d2P−kγ

ds2P−k
+

γ(s)∫

0

∂2P f

∂s2P
(s, t) dt.

We assume f and γ(s) to be smooth enough that

∣∣∣∣ d2P

ds2P

γ(s)∫

0

f(s, t) dt

∣∣∣∣ ≤ Cf , (19)

with a constant Cf uniform over all K ∈ T Γ
h and independent of h. Applying standard estimates for the

Gaussian quadratures, we get:

∣∣∣∣
∫

Q̃K

sgn(φh)fdx−
∑

i

∑
j

ωijf(rij)
∣∣∣∣ =

∣∣∣∣
p2∫

p1

γ(s)∫

0

f(s, t)dtds −
∑

i

∑
j

ωijf(rij)
∣∣∣∣

≤
∣∣∣∣
∑

i

γ(qi)∫

0

f dt −
∑

j

ωijf(rij)
∣∣∣∣ + C |p1 − p2|h(2P )

≤
∑

i

C |γ(qi)|||f ||W 2P,∞h(2P ) + C h(2P+1) ≤ C h(2P+1).
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For a 2D boundary, the number of unfitted regions Q grows at an order of O(h−1). Then the entire error
for all unfitted regions will be O(h2P ).

To satisfy (14), it is sufficient to set 2P + 1 = m ≤ q + 2. Therefore, for sufficiently smooth f the
assumption (19) is valid if γ(s) ∈ W q+1,∞ with the W q+1,∞-norm uniformly bounded over all cut
triangles and independent of h. The latter follows from our assumptions on φh and φ. Indeed, let Jh(φ)
be a suitable polynomial interpolant for φ on a cut triangle K. By triangle inequality we have

||φh||W q+1,∞(K) ≤ ||φh − Jh(φ)||W q+1,∞(K) + ||φ − Jh(φ)||W q+1,∞(K) + ||φ||W q+1,∞(K). (20)

Applying the finite element inverse inequality, condition (5), estimate (6) and approximation properties
of polynomials we get for the first term on the right-hand side of (20):

||φh − Jh(φ)||W q+1,∞(K) ≤ C h−q||φh − Jh(φ)||W 1,∞(K)

≤ C h−q(||φh − φ||W 1,∞(K) + ||φ − Jh(φ)||W 1,∞(K)) ≤ C,

with a constant C independent of K and h. Estimating the second and the third terms on the right-hand
side of (20) in an obvious way, we obtain

||φh||W q+1,∞(K) ≤ C, (21)

with a constant C independent of K and h. The desired estimate on the W q+1,∞-norm of γ follows
from (21), the properties of implicit function and assumptions on φ.

4. NUMERICAL EXAMPLES

In this section we demonstrate the results of a few experiments using different numerical integration
approaches described in the previous section.

4.1. Integral of a Smooth Function

We first experiment with computing an integral of a smooth function over an implicitly defined domain
in R

2. For the domain we choose the annular region defined by the level set function

φ(x) = | |x| − 1| − 0.1, Ω = {x ∈ R
2 : φ(x) < 0}.

For f given in polar coordinates by

f(r, θ) = 105 sin(21θ) sin(5πr)

the exact value
∫
Ω f dx is known and can be used to test the accuracy of different approaches.

Due to the symmetry, the computational domain is taken to be the square Ωbulk = (0, 1)2. Further,
uniform triangulation with meshes of sizes h = 0.1 × 2−i, i = 0, . . . , 8, are built to triangulate Ωbulk. To
avoid extra geometric error and assess the accuracy of numerical integration, in these experiments we
set φh = φ. All four methods are set up to deliver the local error estimate (14) with m = 4 or m = 5.
This should lead to O(h3) and O(h4) global accuracy, respectively.

Tables 1–4 demonstrate that all methods demonstrate convergent results with local parametrization
and sub-triangulation being somewhat more accurate in terms of absolute error values. At the
same time, only moment–fitting and local parametrization approaches are optimal in terms of the
computational complexity. Here we measure complexity in terms of the number of function evaluations.
The total number of function evaluations to compute integrals over cut elements and interior elements
is shown. Monte-Carlo method appears to be the most computationally expensive. Both Monte-Carlo
and sub-triangulation methods become prohibitively expensive for fine meshes so that we make only 4
refining steps with those methods for m = 4 and only 2 refining steps for m = 5. The actual CPU timings
(not shown) depend on particular implementation. For a Matlab code we used, the moment–fitting was
the fastest among the four tested for a given h.
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Fig. 3. Numerical integration by quasi-parametrization.

4.2. Unfitted FEM

In the next series of experiments we solve the Poisson equation with Neumann’s boundary condition
in the unit disc domain defined implicitly as Ω = {x ∈ R

2 : φ(x) < 0} with φ = |x| − 1. We are
interested in solving (2) with α = 1 and the right-hand side given in polar coordinates by

f = (a2 + r−2 + 1) sin(aθ) sin θ − a/r cos(ar) sin θ + (c2 + 1) cos(cr) + c/r sin(cr).

The corresponding solution is u(r, θ) = sin(ar) sin θ + cos(cr). In experiments we set a = 7π/2 and
c = 3π.

The bulk domain Ωbulk = (−1.5, 1.5)2 is triangulated using uniform meshes of sizes h = 0.5 × 2−i,
i = 0, . . . , 8. We experiment with P2 and P3 finite elements. The discrete level set function is the
finite element interpolant to the distance function φ, φh = Jh(φ). Hence, the estimate (6) holds with
q = 2 and q = 3, respectively. To be consistent with the geometric error and polynomial order, all four
integration methods for cut cells were set up to deliver the local error estimate (14) with m = 4 and
m = 5, respectively. According to (10), we should expect O(h2) and O(h3) convergence in the energy
norm and O(h3) and O(h4) convergence in the L2(Ω) norm.

Figure 4 shows the error plots for the unfitted finite element method (8) for different mesh sizes. The
results are shown with the moment–fitting and local parametrization algorithms used for the integration
over cut triangles. The FE errors for Monte-Carlo and sub-triangulation were very similar to those
obtained with the local parametrization quadratures and hence they are not shown. These results are
in perfect agreement with the error estimate (10). Interesting that using the moment–fitting method
for computing the stiffness matrix and the right-hand side leads to larger errors for the computed FE
solution.

Further, Fig. 4 shows the CPU times needed for the setup phase of the finite element method using
different numerical integration tools. For P2 element, the moment–fitting, the local parametrization and
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Fig. 4. Finite element method error for P2 (left) and P3 (right) elements. The error plots are shown for moment–fitting
(MF) and local parametrization (LP) used to treat cut elements.
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used to treat cut elements.
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Fig. 6. L2(Γ) and H1(Γ) errors for the narrow-band with P2 (left) and P3 (right) bulk elements. The error plots are
shown for moment–fitting (MF) and local parametrization (LP) used to treat cut elements.

the sub-triangulation method show similar scaling with respect to h since the complexity is dominated
by the matrix assemble over internal triangles, while for P3 elements local parametrization is superior
in terms of final CPU times. As expected from the above analysis, the Monte-Carlo algorithm is non-
optimal in either case.
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Table 1. The global error and the error reduction rates for the numerical integration using moment–fitting (MF),
Monte-Carlo (MC), sub-triangulation (ST), and local parametrization (LP) algorithms to handle cut elements.
The table shows results with m = 4

h MF Rate MC Rate ST Rate LP Rate

0.1000 7.41e+01 5.50e–01 1.02e–01 1.66e+00

0.0500 6.22e+00 3.57 4.78e–02 3.52 8.53e–03 3.58 7.06e–03 7.88

0.0250 9.14e–02 6.09 1.56e–03 4.94 4.80e–04 4.15 4.46e–03 0.66

0.0125 7.96e–03 3.52 7.93e–04 0.98 1.35e–05 5.15 5.91e–05 6.24

0.0062 1.28e–03 2.64 1.22e–04 2.70 1.17e–06 3.53 1.18e–05 2.32

0.0031 9.05e–06 7.14 2.62e–07 5.49

0.0016 1.11e–05 –0.29 3.99e–08 2.72

0.0008 4.17e–08 8.06 1.91e–09 4.38

0.0004 1.68e–07 –2.01 1.44e–10 3.73

Table 2. The number of function evaluations for the numerical integration using moment–fitting (MF), Monte-
Carlo (MC), sub-triangulation (ST), and local parametrization (LP) algorithms to handle cut elements. The table
shows results with m = 4

h MF MC ST LP

0.1000 1352 25 802 4136 423

0.0500 3718 93 491 16 966 1608

0.0250 11 726 346 005 68 942 12 750

0.0125 40 144 1 342 357 277 456 42 192

0.0062 146 926 40 645 578 1 113 070 151 022

0.0031 561 912 – 570 104

0.0016 2 194 452 – 2 210 836

0.0008 8 671 104 – 8 703 872

0.0004 34 471 164 – 34 536 700

4.3. Narrow-Band Unfitted FEM

In the final series of experiments we apply the narrow-band unfitted finite element method (9) to solve
the Laplace–Beltrami equation (3) with α = 1 on the implicitly defined surface Γ = {x ∈ R

2 : φ(x) =
0} with φ = |x| − 1. The solution and the right-hand side are given in polar coordinates by

u = cos(8θ), f = 65 cos(8θ).

The bulk domain, triangulations and the discrete level set function are the same as used in the
previous series of experiments in Subsection 4.2. For the extended finite element formulation (9) we
define the following narrow band domain:

Ωh = {x ∈ R
2 : |φh(x)| < 2h}.

The extension of the right-hand side is done along normal directions to Γ. For the discrete Hessian in
Ωh, we take the exact one computed by Hh := ∇2φ in Ωh. Finite element space Vh is the same as in
Subsection 4.2 and is build on P2 or P3 piecewise polynomial continuous functions in Ωbulk. Similar
to the previous test case, four integration methods for cut cells were set up to deliver the local error
estimate (14) with m = 4 and m = 5, respectively. According to (12), we should expect O(h2) and
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Table 3. The global error and the error reduction rates for numerical integration using moment–fitting (MF),
Monte-Carlo (MC), sub-triangulation (ST), and local parametrization (LP) algorithms to handle cut elements.
The table shows results with m = 5

h MF Rate MC Rate ST Rate LP Rate

0.1000 2.80e+01 6.49e–02 5.51e–02 4.16e–02

0.0500 2.79e–01 6.65 8.64e–04 6.23 7.60e–03 2.86 1.13e–04 8.52

0.0250 4.44e–03 5.97 2.25e–05 8.40 7.18e–06 3.98

0.0125 3.61e–04 3.62 9.75e–09 9.52

0.0062 2.11e–05 4.10 1.53e–09 2.67

0.0031 9.59e–07 4.46 7.73e–12 7.63

Table 4. The number of function evaluations for numerical integration using moment–fitting (MF), Monte-Carlo
(MC), sub-triangulation (ST), and local parametrization (LP) algorithms to handle cut elements. The table shows
results with m = 5

h MF MC ST LP

0.1000 1352 2 341 229 38 696 1928

0.0500 3718 117 184 420 308 806 4870

0.0250 11 726 2 465 102 14 030

0.0125 40 144 44 752

0.0062 146 926 156 142

0.0031 561 912 580 344

O(h3) convergence in the energy norm. Although there is no error estimate proved in the L2 norm, the
optimal convergence order would be O(h3) and O(h4).

Figure 6 shows the error plots for the narrow-band unfitted finite element method (8) for different
mesh sizes. All errors were computed over Γ as stands in the estimate (12), rather than in the bulk.
The results are shown only for the moment–fitting and local parametrization algorithms used for the
integration over cut triangles. As before, the results with other methods were very similar to those
obtained with the local parametrization quadratures. The results with local parametrization are in perfect
agreement with the error estimate (12) and predict the gain of one order in the L2(Γ) norm. Using the
moment–fitting leads to unstable results in the case of quadratic finite elements and to sub-optimal
convergence in the case of cubic elements. Note that in these two cases moment–fitting with quadratic
and cubic basis G, respectively, were used.

5. CONCLUSIONS

Building higher order quadrature rules for the numerical integration over implicitly defined curvilinear
domains remains a challenging problem, important in many applications of unfitted finite element
methods. Well known approaches are not robust with respect to how a surface cuts the mesh or have
non-optimal computational complexity. In this paper we studied two methods of optimal complexity,
namely, the moment–fitting and the local parametrization. Although moment–fitting delivers optimal
accuracy for the integration of a smooth function over a bulk curvilinear domain, its application to
numerical PDEs were found to produce sub-optimal results. Local parametrization provides accurate
and stable integration method. However, its extension to 3D problems is not straightforward and
requires further studies. Developing more stable versions of the moment–fitting method, extending
parametrization technique to higher dimensions, or devising ever different numerical approaches to (1)
all can be directions of further research.
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