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A TRACE FINITE ELEMENT METHOD FOR PDES
ON EVOLVING SURFACES∗

MAXIM A. OLSHANSKII† AND XIANMIN XU‡

Abstract. In this paper, we propose an approach for solving PDEs on evolving surfaces using
a combination of the trace finite element method and a fast marching method. The numerical
approach is based on the Eulerian description of the surface problem and employs a time-independent
background mesh that is not fitted to the surface. The surface and its evolution may be given
implicitly, for example, by the level set method. Extension of the PDE off the surface is not required.
The method introduced in this paper naturally allows a surface to undergo topological changes and
experience local geometric singularities. In the simplest setting, the numerical method is second-
order accurate in space and time. Higher-order variants are feasible but not studied in this paper.
We show results of several numerical experiments that demonstrate the convergence properties of
the method and its ability to handle the case of the surface with topological changes.
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1. Introduction. Partial differential equations on evolving surfaces arise in a
number of mathematical models in natural sciences and engineering. Well-known ex-
amples include the diffusion and transport of surfactants along interfaces in multiphase
fluids [30, 37, 50], diffusion-induced grain boundary motion [10, 36], and lipid inter-
actions in moving cell membranes [23, 38]. Thus, recently there has been a significant
interest in developing and analyzing numerical methods for PDEs on time-dependent
surfaces. While all of finite difference, finite volumes, and finite element methods have
been considered in the literature for numerical solution of PDEs on manifolds, in this
work we focus on finite element methods.

The choice of a numerical approach for solving a PDE on evolving surface Γ(t)
largely depends on which of Lagrangian or Euclidian frameworks is used to set up
the problem and describe the surface evolution. In [19, 21, 24], Elliott and coworkers
developed and analyzed a finite element method (FEM) for computing transport and
diffusion on a surface that is based on a Lagrangian tracking of the surface evolution.
Some recent developments of the finite element methods for surface PDEs based on the
Lagrangian description can be found, e.g., in [3, 5, 22, 35, 49]. If a surface undergoes
strong deformations or topological changes or it is defined implicitly, e.g., as the zero
level of a level set function, then numerical methods based on the Lagrangian approach
have certain disadvantages. Methods using an Eulerian approach were developed in
[1, 4, 51, 52], based on an extension of the surface PDE into a bulk domain that
contains the surface. Although in the original papers finite differences were used, the
approach is also suitable for finite element methods; see, e.g., [6]. A related technique
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is the closest point method in [45], where the closest point representation of the surface
and differential operators is used in an ambient space to allow a standard Cartesian
finite difference discretization method.

In the present paper, we develop yet another finite element method for solving
a PDE on a time-dependent surface Γ(t). The surface is embedded in a bulk com-
putational domain. We assume a sharp representation of the surface rather than a
diffusive interface approach typical for the phase-field models of interfacial problems.
The level set method [48] is suitable for the purposes of this paper and will be used
here to recover the evolution of the surface. We are interested in a surface FEM
known in the literature as the trace or cut FEM. The trace finite element method
uses the restrictions (traces) of a function from the background time-independent fi-
nite element space on the reconstructed discrete surface. This does not involve any
mesh fitting toward the surface or an extension of the PDE.

The trace FEM method was originally introduced for elliptic PDEs on stationary
surfaces in [41]. Further, the analysis and several extensions of the method were devel-
oped in the series of publications. This includes higher-order, stabilized, discontinuous
Galerkin and adaptive variants of the method as well as applications to the surface–
bulk coupled transport–diffusion problem, two-phase fluids with soluble surfactants,
and coupled bulk-membrane elasticity problems; see, e.g., [7, 8, 9, 11, 13, 16, 28, 29,
34, 39, 44, 46]. There have been several successful attempts to extend the method to
time-dependent surfaces. In [15], the trace FEM was combined with the narrowband
unfitted FEM from [14] to devise an unfitted finite element method for parabolic
equations on evolving surfaces. The resulting method preserves mass in the case of an
advection-diffusion conservation law. The method based on a characteristic-Galerkin
formulation combined with the trace FEM in space was proposed in [31]. Thanks to
the semi-Lagrangian treatment of the material derivative (numerical integration back
in time along characteristics), this variant of the method does not require stabilization
for the dominating advection. The first-order convergence of the characteristic–trace
FEM was demonstrated by a rigorous a priori error analysis and in numerical exper-
iments. Another direction was taken in [43], where a space–time weak formulation
of the surface problem was introduced. Based on this weak formulation, space–time
variants of the trace FEM for PDEs on evolving surfaces were proposed in that paper
and in [25]. The method from [43] employs discontinuous piecewise linear in time–
continuous piecewise linear in space finite elements. In [40], the first-order convergence
in space and time of the method in an energy norm and second-order convergence in
a weaker norm was proved. In [25], the author experimented with both continuous
and discontinuous in time piecewise linear finite elements.

In the space–time trace FEM, the trial and test finite element spaces consist of
traces of standard volumetric elements on a space–time manifold resulting from the
evolution of a surface. The implementation requires the numerical integration over
the tetrahedral reconstruction of the 3D manifold embedded in the R4 ambient space.
An efficient algorithm for such numerical reconstruction was suggested in [25] and im-
plemented in the DROPS finite element package [17]. In [32], a stabilized version of
the space–time trace FEM for coupled bulk-surface problems was implemented using
Gauss-Lobatto quadrature rules in time. In this implementation, one does not recon-
struct the 3D space–time manifold but instead needs the 2D surface approximations
in the quadrature nodes. The numerical experience with space–time trace FEM based
on quadrature rules in time is mixed. The authors of [32] reported a second-order con-
vergence of the method for a number of 2D tests (in this case a 1D PDE is posed on an
evolving curve), while in [25] one finds an example of a 2D smoothly deforming surface
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when the space–time method based on the trapezoidal quadrature rule fails to deliver
convergent results. The error analysis of such simplified versions is an open question.

Although the space–time framework is natural for the development of unfitted
FEMs for PDEs on evolving surfaces, the implementation of such methods is not
straightforward, especially if a higher-order method is desired. In this paper, we
propose a variant of the trace FEM for time-dependent surfaces that uses simple
finite difference approximations of time derivatives. It avoids any reconstruction of
the surface–time manifold; it also avoids finding surface approximations at quadrature
nodes. Instead, the method requires arbitrary (but smooth in a sense clarified later)
extension of the numerical solution off the surface to a narrow strip around the surface.
We stress that in the present method one does not extend either problem data or
differential operators to a surface neighborhood as in the methods based on PDEs
extension. At a given time node tn, the degrees of freedom in the narrow strip
(except those belonging to tetrahedra cut by the surface Γ(tn)) do not contribute to
algebraic systems but are only used to store the solution values from several previous
time steps. In numerical examples, we use the BDF2 scheme for time integration, and
so the narrow band degrees of freedom store the finite element solution for t = tn−1

and t = tn−2. To find a suitable extension, we apply a variant of the fast marching
method (FMM); see, e.g., [30, 47]. At each time step, the trace FEM for a PDE on
a steady surface Γ(tn) and the FMM are used in a modular way, which makes the
implementation straightforward in a standard or legacy finite element software. For P1
background finite elements and BDF2 time-stepping scheme, numerical experiments
show that the method is second-order accurate (assuming ∆t ' h) and has no stability
restrictions on the time step. We remark that the numerical methodology naturally
extends to the surface-bulk coupled problems with propagating interfaces. However,
in this paper we concentrate on the case when surface processes are decoupled from
processes in the bulk.

The remainder of the paper is organized as follows. In section 2, we present the
PDE model on an evolving surface and review some properties of the model. Section 3
introduces our variant of the trace FEM, which avoids space–time elements. Here we
discuss implementation details. Section 4 collects the results for a series of numerical
experiments. The experiments aim to access the accuracy of the method as well as
the ability to solve PDEs along a surface undergoing topological changes. For the
latter purpose, we consider the example of the diffusion of a surfactant on a surface
of two colliding droplets.

2. Mathematical formulation. Consider a surface Γ(t) passively advected by
a smooth velocity field w = w(x, t); i.e., the normal velocity of Γ(t) is given by w ·n,
with n the unit normal on Γ(t). We assume that for all t ∈ [0, T ], Γ(t) is a smooth
hypersurface that is closed (∂Γ = ∅), connected, oriented, and contained in a fixed
domain Ω ⊂ Rd, d = 2, 3. In the remainder, we consider d = 3, but all results have
analogs for the case d = 2.

As an example of the surface PDE, consider the transport–diffusion equation mod-
eling the conservation of a scalar quantity u with a diffusive flux on Γ(t) (cf. [33]):

u̇+ (divΓw)u− ν∆Γu = 0 on Γ(t), t ∈ (0, T ],(1)

with initial condition u(x, 0) = u0(x) for x ∈ Γ0 := Γ(0). Here u̇ denotes the ad-
vective material derivative, divΓ := tr

(
(I − nnT )∇

)
is the surface divergence, ∆Γ is

the Laplace–Beltrami operator, and ν > 0 is the constant diffusion coefficient. The
well-posedness of suitable weak formulations of (1) has been proved in [19, 43, 2].



A1304 MAXIM A. OLSHANSKII AND XIANMIN XU

The equation (1) can be written in several equivalent forms; see [20]. In particular,
for any smooth extension of u from the space–time manifold

G :=
⋃

t∈(0,T )

Γ(t)× {t}, G ⊂ R4,

to a neighborhood of G, one can expand the material derivative u̇ = ∂u
∂t + w · ∇u.

Note that the identity holds independently of a smooth extension of u off the surface.
Assume further that the surface is defined implicitly as the zero level of the smooth

level set function φ on Ω× (0, T ):

Γ(t) = {x ∈ R3 : φ(t,x) = 0},

such that |∇φ| ≥ c0 > 0 in O(G), a neighborhood of G. One can consider an extension
ue in O(G) such that ue = u on G and ∇ue · ∇φ = 0 in O(G). Note that ue is smooth
once φ and u are both smooth. Below we use the same notation u for the solution of
the surface PDE (1) and its extension. We have the equivalent formulation,

(2)


∂u

∂t
+ w · ∇u+ (divΓw)u− ν∆Γu = 0 on Γ(t),

∇u · ∇φ = 0 in O(Γ(t)),
t ∈ (0, T ].

If φ is the signed distance function, the second equation in (2) defines the normal ex-
tension of u; i.e., the solution u stays constant in normal directions to Γ(t). Otherwise,
∇u · ∇φ = 0 defines an extension, which is not necessarily the normal extension. In
fact, any extension is suitable for our purposes if u is smooth function in a neighbor-
hood of G. We shall make an exception is section 3.2, where error analysis is reviewed
and we need the normal extension to formulate certain estimates.

In the next section, we devise the trace FEM based on the formulation (2).

3. The finite element method. We first collect some preliminaries and recall
the trace FEM from [41] for the elliptic equations on stationary surfaces and some of
its properties. Further, in section 3.3 we apply this method on each time step of a
numerical algorithm for the transient problem (2).

3.1. Background mesh and induced surface triangulations. Consider a
tetrahedral subdivision Th of the bulk computational domain Ω. We assume that
the triangulation Th is regular (no hanging nodes). For each tetrahedron S ∈ Th,
let hS denote its diameter and define the global parameter of the triangulation by
h = maxS hS . We assume that Th is shape regular; i.e., there exists κ > 0 such that
for every S ∈ Th, the radius ρS of its inscribed sphere satisfies

ρS > hS/κ.(3)

For each time t ∈ [0, T ], denote by Γh(t) a polygonal approximation of Γ(t).
We assume that Γh(t) is a C0,1 surface without boundary and that Γh(t) can be
partitioned in planar triangular segments:

Γh(t) =
⋃

T∈Fh(t)

T,(4)

where Fh(t) is the set of all triangular segments T . We assume that for any T ∈ Fh(t),
there is only one tetrahedron ST ∈ Th such that T ⊂ ST (if T lies on a face shared
by two tetrahedra, any of these two tetrahedra can be chosen as ST ).

For the level set description of Γ(t), the polygonal surface Γh(t) is defined by the
finite element level set function as follows. Consider a continuous function φh(t,x)
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such that for any t ∈ [0, T ], the function φh is piecewise linear with respect to the
triangulation Th. Its zero level set defines Γh(t):

Γh(t) := {x ∈ Ω : φh(t,x) = 0}.(5)

We assume that Γh(t) is an approximation to Γ(t). This is a reasonable assumption
if either φh is an interpolant to the known φ or one finds φh as the solution to a
discrete level set equation. In the latter case, one may have no direct knowledge of
Γ(t). Other interface capturing techniques, such as the volume of fluid method, also
can be used subject to a postprocessing step to recover Γh.

The intersection of Γh(t) defined in (5) with any tetrahedron in Th is either a
triangle or a quadrilateral. If the intersection is a quadrilateral, we divide it into
two triangles. This construction of Γh(t) satisfies the assumptions made above. The
bulk triangulation Th consisting of tetrahedra and the induced surface triangulation
are illustrated in Figure 1. There are no restrictions on how Γh(t) cuts through
the background mesh, and so for any fixed time instance t, the resulting triangulation
Fh(t) is not necessarily regular. The elements from Fh(t) may have very small internal
angles, and the size of neighboring triangles can vary strongly (cf. Figure 1 (right)).
Thus, Γh(t) is not a regular triangulation of Γ(t). Two interesting properties of
the induced surface triangulations are known in the literature [16, 42]: (i) If the
background triangulation Th satisfies the minimal angle condition (3), then the surface
triangulation satisfies maximum angle condition, and (ii) any element from Fh(t)
shares at least one vertex with a full size shape regular triangle from Fh(t). The trace
finite element method does not exploit these properties directly, but they are still
useful if one is interested in understanding the performance of the method.

We note that the surface triangulations Fh(t) will be used only to perform numer-
ical integration in the finite element method below, while approximation properties
of the method, as we shall see, depend on the volumetric tetrahedral mesh.

3.2. The trace FEM: Steady surface. To review the idea of the trace FEM,
assume for a moment the stationary transport–diffusion problem on a steady closed
smooth surface Γ:

αu+ w · ∇u+ (divΓw)u− ν∆Γu = f on Γ.(6)

Here, we assume α > 0 and w · n = 0. Integration by parts over Γ gives the weak
formulation of (6): Find u ∈ H1(Γ) such that

(a) (b)

Fig. 1. Left: Cut of the background and induced surface meshes for Γh(0) from Experiment 4
in section 4. Right: The zoom-in of the surface mesh.



A1306 MAXIM A. OLSHANSKII AND XIANMIN XU∫
Γ

(αuv + ν∇Γu · ∇Γv + (w · ∇u)v + (divΓw)uv) ds =

∫
Γ

fv ds(7)

for all v ∈ H1(Γ). In the trace FEM, one substitutes Γ with Γh in (7) (Γh is con-
structed as in section 3.1) and instead of H1(Γ) considers the space of traces on Γh of
all functions from the background ambient finite element space. This can be formally
defined as follows.

Consider the volumetric finite element space of all piecewise linear continuous
functions with respect to the bulk triangulation Th:

Vh := {vh ∈ C(Ω) | v|S ∈ P1 ∀ S ∈ Th}.(8)

Vh induces the following space on Γh:

V Γ
h := {ψh ∈ C(Γh) | ∃ vh ∈ Vh such that ψh = vh on Γh}.

Given the surface finite element space V Γ
h , the finite element discretization of (6)

reads as follows: Find uh ∈ V Γ
h such that

∫
Γh

(αuhvh + ν∇Γh
uh · ∇Γh

vh + (w · ∇uh)vh + (divΓh
w)uhvh) dsh =

∫
Γh

fhvh dsh

(9)

for all vh ∈ V Γ
h . Here, fh is an approximation of the problem source term on Γh.

From here and up to the end of this section, fe denotes a normal extension of a
quantity f from Γ. For a smooth closed surface, fe is well defined in a neighborhood
O(Γ). Assume that Γh approximates Γ in the following sense: It holds Γh ⊂ O(Γ)
and

‖x− p(x)‖L∞(Γh) + h‖ne − nh‖L∞(Γh) ≤ c h2,(10)

where nh is an external normal vector on Γh and p(x) ∈ Γ is the closest surface point
for x. Given (10), the trace FEM is second-order accurate in the L2 surface norm and
first-order accurate in H1 surface norm [41, 44]: For solutions of (6) and (9), it holds

‖ue − uh‖L2(Γh) + h‖∇Γh
(ue − uh)‖L2(Γh) ≤ c h2,

with a constant c dependent only on the shape regularity of Th and independent
of how the surface Γh cuts through the background mesh. This robustness property
is extremely useful for extending the method to time-dependent surfaces. It allows
keeping the same background mesh while the surface evolves through the bulk domain,
avoiding unnecessary mesh fitting and mesh reconstruction.

Before we consider the time-dependent case, a few important properties of the
method should be mentioned. First, the authors of [15] noted that one can use the
full gradient instead of the tangential gradient in the diffusion term in (9). This leads
to the following FEM formulation: Find uh ∈ Vh such that

∫
Γh

(αuhvh + ν∇uh · ∇vh + (w · ∇uh)vh + (divΓh
w)uhvh) dsh =

∫
Γh

fhvh dsh

(11)

for all vh ∈ Vh. The rationality behind the modification is clear from the following
observation. For the normal extension ue of the solution u, we have ∇Γu = ∇ue, and
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so ue satisfies the integral equality (7) with surface gradients (in the diffusion term)
replaced by full gradients and for arbitrary smooth function v on Ω. Therefore, by
solving (11), we recover uh, which approximates the PDE solution u on the triangu-
lated surface Γh and its normal extension ue in the strip consisting of all tetrahedra
cut by the surface Γh.

The formulation (11) uses the bulk finite element space Vh instead of the surface
finite element space V Γ

h in (9). However, the practical implementation of both methods
uses the same frame of all bulk finite element nodal basis functions φi ∈ Vh such that
supp(φi) ∩ Γh 6= ∅. Hence, the active degrees of freedom in both methods are the
same. The stiffness matrices are, however, different. For the case of the Laplace-
Beltrami problem and a regular quasi-uniform tetrahedral grid, the studies in [15, 46]
show that the conditioning of the (diagonally scaled) stiffness matrix of the method
(11) improves over the conditioning of the matrix for (9), at the expense of a slight
deterioration of the accuracy. Further in this paper, we shall use the full gradient
version of the trace FEM.

From the formulations (11) or (9), we see that only those degrees of freedom
of the background finite element space Vh are active (enter the system of algebraic
equations) that are tailored to the tetrahedra cut by Γh. This provides us with
a method of optimal computational complexity, which is not always the case for the
methods based on an extension of surface PDE to the bulk domain. Due to the possible
small cuts of bulk tetrahedra (cf. Figure 1), the resulting stiffness matrices can be
poor conditioned. The simple diagonal rescaling of the matrices significantly improves
the conditioning and eliminates outliers in the spectrum; see [39, 46]. Therefore,
Krylov subspace iterative methods applied to the rescaled matrices are very efficient
in solving the algebraic systems. Since the resulting matrices are sparse and resemble
discretizations of 2D PDEs, using an optimized direct solver is also a suitable option.

3.3. The trace FEM: Evolving surface. For the evolving surface case, we
extend the approach in such a way that the trace FEM (11) is applied on each time
step for the recovered surface Γn

h ≈ Γ(tn). Here and further, {tn}, with 0 = t0 < · · · <
tn < · · · < tN = T , is the temporal mesh, and un approximates u(tn). As before, Vh
is a time-independent bulk finite element space with respect to the given background
triangulation Th.

Assume that a smooth extension ue(x, t) is available in O(G) and that

Γ(tn) ⊂ {x ∈ Ω : (x, tn−1) ∈ O(G)} .(12)

In this case, one may discretize (2) in time using, for example, the implicit Euler
method:

un − ue(tn−1)

∆t
+ wn · ∇un + (divΓwn)un − ν∆Γu

n = 0 on Γ(tn),(13)

∆t = tn − tn−1. Now we apply the trace FEM to solve (13) numerically. The trace
FEM is a natural choice here since Γ(tn) is not fitted by the mesh. We look for
unh ∈ Vh solving∫

Γn
h

(
1

∆t
unhvh + (wn · ∇unh)vh + (divΓh

wn)unhvh

)
dsh + ν

∫
Γn
h

∇unh · ∇vh dsh(14)

=

∫
Γn
h

1

∆t
ue,n−1
h vh dsh

for all vh ∈ Vh. Here, ue,n−1
h is a suitable extension of un−1

h from Γn−1
h to the surface

neighborhood, O(Γn−1
h ). Condition (12) yields to the condition
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Γn
h ⊂ O(Γn−1

h ).(15)

Note that (15) is not a Courant condition on ∆t but rather a condition on a width of a
strip surrounding the surface, where the extension of the finite element solution is per-
formed. Over one time step, a material point on the surface can travel a distance not
exceeding ‖w‖L∞∆t. Therefore, it is safe to extend the solution to all tetrahedra inter-
secting the strip of the width 2‖w‖L∞∆t surrounding the surface. Hence, we consider
all tetrahedra having at least one vertex closer than ‖w‖L∞∆t to the surface: Define

S̃(Γn
h) := {S ∈ Th : ∃ x ∈ N (S), s.t. dist(x,Γn

h) < L‖w‖L∞∆t} , L = 1,(16)

where N (S) is the set of all nodes for S ∈ Th. The criterion in (16) can be refined by
exploiting the local information about w or about n ·w.

After we determine the numerical extension procedure, ukh → ue,kh , the identity
(14) defines the fully discrete numerical method.

In general, to find a suitable extension, one can consider a numerical solver for
hyperbolic systems and apply it to the second equation in (2). For example, one can
use a finite element method to solve the problem

∂ue

∂t′
+∇ue · ∇φ(tk) = 0, such that ue = ukh on Γk

h,

with the auxiliary time t′, and let uk,eh := lim
t′→∞

ue(t′). Another technique to compute

extensions (also used for the reinitialization of the signed distance function in the level
set method) is the FMM [47]. We find the FMM technique convenient and fast for
building suitable extensions in narrow bands of tetrahedra containing Γh. We give
the details of the FMM in the next section.

We need one further notation. Denote by S(Γk
h) a strip of all tetrahedra cut

by Γk
h:

S(Γk
h) =

⋃
S∈T k

Γ

S, with T k
Γ := {S ∈ Th : S ∩ Γk

h 6= ∅}.

We want to exploit the fact that the trace finite element method provides us with
the normal extension in S(Γk

h) “for free” since the solution unh of (14) approximately

satisfies
∂uk

h

∂n = 0 in S(Γk
h) by the property of the full gradient FEM formulation.

For given ue,n−1
h and φh(tn), one time step of the algorithm now reads as follows:

1. Solve (14) for unh ∈ Vh;

2. Apply the FMM to find ue,nh in S̃(Γn
h)\S(Γn

h) such that ue,nh = unh on ∂S(Γn
h).

If the motion of the surface is coupled to the solution of the surface PDE (the
examples include two-phase flows with surfactant or some models of tumor growth [30,
12]), then a method to find an evolution of φh has to be added, while finding ue,nh can
be combined with a reinitialization of φh in the FMM.

A particular advantage of the present variant of the trace FEM for evolving do-
mains is that the accuracy order in time can be easily increased using standard finite
differences. In numerical experiments, we use the BDF2 scheme: The first term in
(13) is replaced by

3un − 4ue(tn−1) + ue(tn−2)

2∆t
,

and we set L = 2 in (16); the corresponding modifications in (14) are obvious. Further-
more, one may increase the accuracy order in space by using higher-order background
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finite elements and a higher-order surface reconstruction; see [28, 34] for practical
higher-order variants of trace FEM on stationary surfaces. In the framework of this
paper, the use of these higher-order methods is decoupled from the numerical inte-
gration in time.

3.4. Extension by FMM. The FMM is a well-known technique to compute an
approximate distance function to an interface embedded in a computational domain.
Here, we build on the variant of the FMM from section 7.4.1 of [30] to compute finite
element function extensions in a strip of tetrahedra. We need some further notations.
For a vertex x of the background triangulation Th, S(x) denotes the union of all
tetrahedra sharing x. We fix tn and let Γh = Γn

h, S(Γh) = S(Γn
h). Note that we do

not necessarily have a priori information of S̃(Γh) since the distance function may not
be available. Finding the narrow band for the extension is a part of the FMM below.
We need the set of vertices from tetrahedra cut by the mesh:

NΓ = {x ∈ R3 : x ∈ N (S) for some S ∈ S(Γh)}.

Assume that uh = unh ∈ Vh solves (14) and we are interested in computing ueh in

S̃(Γh). The FMM is based on a greedy grid traversal technique and consists of two
phases.

Initialization phase. In the tetrahedra cut by Γh, the full gradient trace FEM
provides us with the normal extension. Hence, we set

ueh(x) = uh(x) for x ∈ NΓ.

For the next step of FMM, we also need a distance function d(x) for all x ∈ NΓ. For
any ST ∈ S(Γh), we know that T = ST ∩Γh is a triangle or quadrilateral with vertices
{yj}, j = 1, . . . , J , where J = 3 or J = 4. Denote by PT the plane containing T and
by Phx the projection of x on PT . Then, for each x ∈ N (T ), we define

dT (x) :=

{
|x− Phx| if Phx ∈ T,
min

1≤j≤J
|x− yj | otherwise.(17)

After we loop over all S ∈ S(Γh), the value d(x) in each x ∈ NΓ is given by

d(x) = min
ST∈S(x)

dT (x).(18)

Extension phase. During this phase, we determine both d(x) and ueh(x) for x ∈
N \ NΓ. To this end, the set N of all vertices from Th is divided into three subsets.
A finished set Nf contains all vertices where d and ueh have already been defined. We
initialize Nf = NΓ. Initially the active set Na contains all the vertices, which has a
neighbor in Nf :

Na = {x ∈ N \ Nf : N (S(x)) ∩Nf 6= ∅},
Nu = N \ (Nf ∪Na).

The active set is updated during the FMM, and the method stops once Na is empty.
For all x ∈ Na, the FMM iteratively computes auxiliary distance function and

extension function values d̃(x) and ũeh(x), which become final values d(x) and ueh(x)
once x leaves Na and joins Nf . The procedure is as follows: For x ∈ Na, we consider
all S ∈ S(x) such that N (S) ∩ Nf 6= ∅. If N (S) ∩ Nf contains only one vertex y,
we set

d̃S(x) = d(y) + |x− y|, ũh,S(x) = ueh(y).
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If N (S) ∩ Nf contains two or three vertices {yj}, 1 ≤ j ≤ J , J = 2 or 3, then we
compute

d̃S(x) =

{
d(Phx) + |x− Phx|, if Phx ∈ S,
d(ymin) + |x− ymin|, otherwise,

ũh,S(x) =

{
ueh(Phx), if Phx ∈ S,
ueh(ymin), otherwise,

where ymin = argmin1≤j≤m(d(yj) + |x − yj |) and Phx is the orthogonal projection
of x on the line passing through {yj} (if J = 2) or the plane containing {yj} (if
J = 3). The value of d(Phx) is computed as the linear interpolation of the known
values d(yj). Now we set

d̃(x) = d̃Smin
(x),

ũh(x) = ũh,Smin
(x),

for Smin = argmin{d̃S(x) : S ∈ S(x) and N (S) ∩Nf 6= ∅}.

We determine such vertex xmin ∈ Na that d(xmin) = minx∈Na d̃(x) and set

d(xmin) = d̃(xmin), ueh(xmin) = ũh(xmin).

The vertex xmin is now moved from the active setNa to the finalized setNf . Based on

the value of d(xmin), one checks if any tetrahedron from S(xmin) may belong to S̃(Γh)

strip. If such S ∈ S̃(Γh) exists, then Na is updated by vertices from Nu connected
with xmin. Otherwise, no new vertices are added to Na. In our implementation, we
use the simple criterion: If it holds

d(xmin) > h+ L|w|∞∆t,

then we do not update Na with new vertices from Nu.

4. Numerical examples. This section collects the results of several numeri-
cal experiments for a number of problems posed on evolving surfaces. The results
demonstrate the accuracy of the trace FEM, its stability with respect to the variation
of discretization parameters, and the ability to handle the case when the transport–
diffusion PDE is solved on a surface undergoing topological changes.

All implementations are done in the finite element package DROPS [17]. The
background finite element space Vh consists of piecewise linear continuous finite
elements. The BDF2 scheme is applied to approximate the time derivative. At each
time step, we assemble the stiffness matrix and the right-hand side by numerical in-
tegration over the discrete surfaces Γn

h. A Gaussian quadrature of degree 5 is used
for the numerical integration on each K ∈ Fh. The same method is used to evaluate
the finite element error. All linear algebraic systems are solved using the GMRES
iterative method with the Gauss–Seidel preconditioner to a relative tolerance of 10−6.

The first series of experiments verifies the formal accuracy order of the method
for the examples with known analytical solutions.

Experiment 1. We consider the transport–diffusion equation (1) on the unit
sphere Γ(t) moving with the constant velocity w = (0.2, 0, 0). The initial data are
given by

Γ(0) := {x ∈ R3 : |x| = 1}, u|t=0 = 1 + x1 + x2 + x3.

One easily checks that the exact solution is given by u(x, t) = 1 + (x1 + x2 + x3 −
0.2t) exp(−2t). In this and the next two experiments, we set T = 1.
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(a) (b)

Fig. 2. The cut of the background mesh and a part of the surface mesh for tn = 1. Colors
illustrate the solution and its extension.

The computational domain is Ω = [−2, 2]3. We divide Ω into tetrahedra as
follows: First, we apply the uniform tessellation of Ω into cubes with side length
h. Further, the Kuhn subdivision of each cube into six tetrahedra is applied. This
results in the shape regular background triangulation Th. The finite element level
set function φh(x, t) is the nodal Lagrangian P1 interpolant for the signed distance
function of Γ(t) and

Γn
h = {x ∈ R3 : φh(x, tn) = 0}.

The temporal grid is uniform, tn = n∆t. We note that in all experiments, we apply the
FMM to find both distances to Γn

h and ue, so we never explore the explicit knowledge
of the distance function for Γ(t).

Figure 2 shows the cut of the background mesh and the surface mesh colored by
the computed solution at time t = 1. We are interested in the L2(H1) and L2(L2)
surface norms for the error. We compute them using the trapezoidal quadrature rule
in time:

errL2(H1) =
{∆t

2
‖∇Γh

(ue − πhu)‖2L2(Γ0
h) +

N−1∑
i=1

∆t‖∇Γh
(ue − uh)‖2L2(Γi

h)

+
∆t

2
‖∇Γh

(ue − uh)‖2L2(Γn
h)

}1/2

,

errL2(L2) =
{∆t

2
‖(ue − πhu)‖2L2(Γ0

h) +

N−1∑
i=1

∆t‖(ue − uh)‖2L2(Γi
h)

+
∆t

2
‖(ue − uh)‖2L2(ΓN

h )

}1/2

.

Tables 1 and 2 present the error norms for the Experiment 1 with various time steps
∆t and mesh sizes h. If one refines both ∆t and h, the first order of convergence in
the surface L2(H1)-norm and the second order in the surface L2(L2)-norm are clearly

seen. For the case of large ∆t and small h, the FMM extension strip S̃(Γh) \ S(Γh)
becomes wider in terms of characteristic mesh size h, and the accuracy of the method
diminishes. This numerical phenomenon can be noted in the top rows of Tables 1
and 2, where the error increases as the mesh size becomes smaller. We expect that the
situation improves if one applies more accurate extension methods in S̃(Γh) \ S(Γh).
One candidate would be the normal derivative volume stabilization method from [26]

extended to all tetrahedra in S̃(Γh).
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Table 1
The L2(H1)-norm of the error in Experiment 1.

h = 1/2 h = 1/4 h = 1/8 h = 1/16
∆t = 1/8 0.96365 0.835346 1.221340 2.586520
∆t = 1/16 0.963654 0.74794 0.423799 0.653380
∆t = 1/32 0.954179 0.759253 0.37954 0.225399
∆t = 1/64 0.953155 0.766650 0.381567 0.19143

Table 2
The L2(L2)-norm of the error in Experiment 1.

h = 1/2 h = 1/4 h = 1/8 h = 1/16
∆t = 1/8 0.39351 0.192592 0.319912 0.691862
∆t = 1/16 0.435067 0.16268 0.057801 0.107322
∆t = 1/32 0.445765 0.172543 0.04013 0.018707
∆t = 1/64 0.448433 0.175145 0.041875 0.01040

Table 3
Averaged CPU times per each time step of the method in Experiment 1.

Active d.o.f. Extra d.o.f. Tassemb Tsolve Text

h0 = 1/2, ∆t0 = 1/8 31 8 0.0038 0.0004 0.0012
h = h0/2, ∆t = ∆t0/2 104 24 0.0160 0.0021 0.0041
h = h0/4, ∆t = ∆t0/4 452 63 0.0708 0.0087 0.0195
h = h0/8, ∆t = ∆t0/8 1880 170 0.3814 0.0374 0.0906

Table 3 shows the breakdown of the computational costs of the method into the
averaged CPU times for assembling stiffness matrices, solving resulting linear algebraic
systems, and performing the extension to S̃(Γh) \ S(Γh) by FMM. Since the surface
evolves, all the statistics slightly vary in time, and so the table shows averaged numbers
per one time step. “Active d.o.f.” is the dimension of the linear algebraic system,
i.e., the number of bulk finite element nodal values tailored to tetrahedra from S(Γh).

“Extra d.o.f.” is the number of mesh nodes in S̃(Γh)\S(Γh); these are all nodes where
extension is computed by FMM. The averaged CPU times demonstrate optimal or
close to the optimal scaling with respect to the number of degrees of freedom. As
common for a finite element method, the most time consuming part is the assembling
of the stiffness matrices. The costs of FMM are modest compared to the assembling
time, and Tsolve indicates that using a preconditioned Krylov subspace method is the
efficient approach to solve linear algebraic systems (no extra stabilizing terms were
added to the FE formulation for improving its algebraic properties).

Experiment 2. The setup of this experiment is similar to the previous one. The
transport velocity is given by w = (−2πx2, 2πx1, 0). Initially, the sphere is set off the
center of the domain: The initial data are given by

Γ(0) := {x ∈ R3 : |x− x0| = 1}, u|t=0 = 1 + (x1 − 0.5) + x2 + x3,

with x0 = (0.5, 0, 0). Now w revolves the sphere around the center of domain without
changing its shape. One checks that the exact solution to (1) is given by

u(x, t) = (x1(cos(2πt)− sin(2πt)) + x2(cos(2πt) + sin(2πt)) + x3 + 0.5) exp(−2t).

Tables 4 and 5 show the error norms for Experiment 2 with various time steps
∆t and mesh sizes h. If one refines both ∆t and h, the first order of convergence in
the surface L2(H1)-norm and the second order in the surface L2(L2)-norm are again
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Table 4
The L2(H1)-norm of the error in Experiment 2.

h = 1/2 h = 1/4 h = 1/8 h = 1/16
∆t = 1/32 0.978459 1.931081 3.740840 4.048480
∆t = 1/64 0.90425 0.690963 0.813820 1.066030
∆t = 1/128 0.901234 0.64014 0.348516 0.300654
∆t = 1/256 0.901443 0.640055 0.32352 0.171101
∆t = 1/512 0.901631 0.641018 0.323199 0.16286

Table 5
The L2(L2)-norm of the error in Experiment 2.

h = 1/2 h = 1/4 h = 1/8 h = 1/16
∆t = 1/32 0.294122 0.548567 0.975485 0.958447
∆t = 1/64 0.27244 0.120061 0.152520 0.175920
∆t = 1/128 0.279106 0.10451 0.034962 0.037085
∆t = 1/256 0.279744 0.105975 0.02699 0.010692
∆t = 1/512 0.279811 0.106116 0.026444 0.00736

observed. Note that the transport velocity ‖w‖∞ ≈ 9.42 in this experiment scales
differently compared to Experiment 1. Therefore, we consider smaller ∆t to obtain
meaningful results.

Experiment 3. In this experiment, we consider a shrinking sphere and solve (1)
with a source term on the right-hand side. The bulk velocity field is given by w =
− 1

2e
−t/2n, where n is the unit outward normal on Γ(t). Γ(0) is the unit sphere. One

computes divΓw = −1. The prescribed analytical solution u(x, t) = (1 + x1x2x3)et

solves (1) with the right-hand side f(x, t) = (−1.5et + 12e2t)x1x2x3.
Tables 6 and 7 show the error norms for various time steps ∆t and mesh sizes h. If

one refines both ∆t and h, the first order of convergence in the surface L2(H1)-norm
and the second order in the surface L2(L2)-norm are observed for the example of the
shrinking sphere.

Experiment 4. In this example, we consider a surface transport–diffusion prob-
lem as in (1) on a more complex moving manifold. The initial manifold and concentra-
tion are given (as in [18]) by Γ(0) = {x ∈ R3 : (x1− x2

3)2 + x2
2 + x2

3 = 1 }, u0(x) =
1 + x1x2x3. The velocity field that transports the surface is

w(x, t) =
(
0.1x1 cos(t), 0.2x2 sin(t), 0.2x3 cos(t)

)T
.

Table 6
The L2(H1)-norm of the error in Experiment 3.

h = 1/4 h = 1/8 h = 1/16 h = 1/32
∆t = 1/16 0.48893 0.311146 0.170104 0.088521
∆t = 1/32 0.481896 0.30859 0.168635 0.087013
∆t = 1/64 0.478675 0.307416 0.16801 0.086513
∆t = 1/128 0.477226 0.306872 0.167747 0.08634

Table 7
The L2(L2)-norm of the error in Experiment 3.

h = 1/4 h = 1/8 h = 1/16 h = 1/32
∆t = 1/16 0.12237 0.0468812 0.0224705 0.0178009
∆t = 1/32 0.116763 0.040745 0.0130912 0.0060213
∆t = 1/64 0.115589 0.0396511 0.011517 0.0035199
∆t = 1/128 0.115336 0.0394023 0.0112094 0.003038
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(a) t = 0 (b) t = 0.1 (c) t = 1

(d) t = 2 (e) t = 4 (f) t = 6

Fig. 3. Snapshots of the surface, surface mesh, and the computed solution from Experiment 4.

(a) (b)

Fig. 4. Total mass evolution for the finite element solution in Experiment 4.

We compute the problem until T = 6. In this example, the total mass M(t) =∫
Γ(t)

u(·, t) ds is conserved and equal to M(0) = |Γ(0)| ≈ 13.6083. We check how well

the discrete quantity Mh(t) =
∫

Γh(t)
uh(·, t) ds is conserved. In Figure 4 (left), we plot

Mh(t) for different mesh sizes h and a fixed time step ∆t = 0.01. The error in the
total mass at t = T is equal to 1.8142, 0.4375, 0.1006, and 0.0239 (for mesh sizes as in
Figure 4 (left)). In Figure 4 (right), we plot Mh(t) for different time steps ∆t and a
fixed mesh size h = 1/16. The error in the total mass at t = T is equal 0.3996, 0.0785,
and 0.0038 (for time steps as in Figure 4 (right)). The error in the mass conservation
is consistent with the expected second-order accuracy in time and space.

If one is interested in the exact mass conservation on the discrete level, then one
may enforce Mh(tn) = Mh(0) as a side constrain in the finite element formulation
(14) with the help of the scalar Lagrange multiplier; see [32]. Here we used the error
reduction in total mass as an indicator of the method convergence order for the case
when the exact solution is not available.

Experiment 5. In this test problem from [27], one solves the transport–diffusion
equation (1) on an evolving surface Γ(t), which undergoes a change of topology and
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(a) t = 0 (b) t = 1/8 (c) t = 1/4

(d) t = 3/8 (e) t = 1/2 (f) t = 5/8

(g) t = 3/4 (h) t = 7/8 (i) t = 1

Fig. 5. Snapshots of discrete solution in Experiment 5 with h = 1/16, ∆t = 1/128.

experiences a local singularity. The computational domain is Ω = (−3, 3)× (−2, 2)2,
t ∈ [0, 1]. The evolving surface is the zero level of the level set function φ defined as

φ(x, t) = 1− 1

‖x− c+(t)‖3
− 1

‖x− c−(t)‖3
,

with c±(t) = ± 3
2 (t − 1, 0, 0)T , t ∈ [0, 1]. For t = 0 and x ∈ B(c+(0); 1), one has

‖x − c+(0)‖−3 = 1 and ‖x − c−(0)‖−3 � 1. For t = 0 and x ∈ B(c−(0); 1), one has
‖x − c+(0)‖−3 � 1 and ‖x − c−(0)‖−3 = 1. Hence, the initial configuration Γ(0) is
close to two balls of radius 1, centered at ±(1.5, 0, 0)T . For t = 1, the surface Γ(1) is
the ball around 0 with radius 21/3. For t > 0, the two spheres approach each other
until time t̃ = 1 − 2

321/3 ≈ 0.160, when they touch at the origin. For t ∈ (t̃, 1], the
surface Γ(t) is simply connected and deforms into the sphere Γ(1).

In the vicinity of Γ(t), the gradient ∇φ and the time derivative ∂tφ are well
defined and given by simple algebraic expressions. The normal velocity field, which
transports Γ(t), can be computed (cf. [27]) to be

w = − ∂tφ

|∇φ|2
∇φ.

The initial value of u is given by

u0(x) =

{
3− x1 for x1 ≥ 0;
0 otherwise.

In Figure 5, we show a few snapshots of the surface and the computed surface
solution on for the background tetrahedral mesh with h = 1/16 and ∆t = 1/128. The
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(a) t = 0.1484 (b) t = 0.1484 (zoomed in)

(c) t = 0.15625 (d) t = 0.15625 (zoomed in)

(e) t = 0.1641 (f) t = 0.1641 (zoomed in)

(g) t = 0.171875 (h) t = 0.171875 (zoomed in)

Fig. 6. The computed solution and surface meshes close to the time of collision Example 5.

surfaces Γn
h close to the time of collision are illustrated in Figure 6. The suggested

variant of the trace FEM handles the geometrical singularity without any difficulty.
It is clear that the computed extension ue in this experiment is not smooth in a
neighborhood of the singularity, and so formal analysis of the consistency of the
method is not directly applicable to this case. However, the closest point extension
is well defined, and numerical results suggest that this is sufficient for the method
to be stable. Similar to the previous example, we compute the total discrete mass
Mh(t) on Γn

h. This can be used as a measure of accuracy. The evolution of Mh(t) for
varying h and ∆t is shown in Figure 7. The convergence of the quantity is obvious.
Finally, we note that in this experiment, we observed the stable numerical behavior of
the method for any combinations of the mesh size and time step we tested, including
∆t = 1

8 , h = 1
16 , and ∆t = 1

128 , h = 1
4 .
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(a) (b)

Fig. 7. Total mass evolution for the finite element solution in Experiment 5.

5. Conclusions. We studied a new fully Eulerian unfitted finite element method
for solving PDEs posed on evolving surfaces. The method combines three computa-
tional techniques in a modular way: a finite difference approximation in time, a finite
element method on a stationary surface, and an extension of finite element functions
from a surface to a neighborhood of the surface. All three computational techniques
have been intensively studied in the literature, and so well-established methods can
be used. In this paper, we used the trace piecewise linear finite element method—the
higher-order variants of this method are also available in the literature [26]—for the
spatial discretization and a variant of the FMM to construct suitable extension. We
observed stable and second-order-accurate numerical results in a several experiments,
including one experiment with two colliding spheres. The rigorous error analysis of
the method is a subject of further research.
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