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Abstract

The paper studies a performance of a preconditioned iterative method applied to solve the linearized Navier–Stokes
system. We try BiCGstab algorithm and discretized the problem by a stabilized finite element method. Essential for
building a good preconditioner is the rotation form of the original PDE system. Numerical results demonstrate the
robustness of the method.
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1. Introduction

A performance of numerical tools for solving large
sparse linear algebraic systems of equations strongly de-
pends on properties of a corresponding matrix or operator.
If approximate solution of a partial differential equation is
a goal, then these properties are determined by the differ-
ential equation and a method of discretization. In the paper
we consider the incompressible Navier–Stokes equations
as the underlying PDE problem. Further we consequen-
tially re-formulate the equations and apply a discretization
method, ensuring that physically meaningful discrete solu-
tions are reproduced. Special care is taken to obtain linear
algebraic systems, such that reliable solvers can be con-
structed by a proper preconditioning in conjunction with
Krylov-subspace method, like BiCGstab.

Our starting point is the Navier–Stokes equations, which
describe a motion of viscous incompressible fluid in some
bounded domain � ∈ R

n , n = 2,3:
∂u
∂t

−ν�u+ (u ·∇)u+∇ p = f in �,

divu = 0 in �,
(1)

some boundary and initial conditions are supplied. With the
objective to build a robust solver based on efficient linear
algebra tools, we re-formulate the problem using the formal
vector relation

(u ·∇)u = (curlu)×u+ 1
2 ∇(u2),
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and obtain the new pressure function P = p + 1
2 ∇(u2)

(Bernoulli pressure) and nonlinear terms in the other form
(curlu)×u instead of (u ·∇)u. If we solve a steady problem
with a fixed-point method or an unsteady one with some
time-stepping procedure, we have to solve a linearized
problem on every iterative or time step. At this point the
principal difference between two formulations of the con-
tinuous problem appears from the algorithmic, including
numerical linear algebra, point of view: Contrary to orig-
inal formulation, the new nonlinear terms (curlu) × u give
zero order terms in linearized equation, if handled prop-
erly. By proper handling we mean that linearized equation
gives rise to non-singular linear algebraic system (LAS)
and important properties of the original system such as
conservation of the energy are preserved — in terms of
linear algebra the latter means that the matrix, resulting
after linearization and discretization of (curlu)×u, is skew-
symmetric. The corresponding linearized system is

αu−ν�u+w×u+∇ p = f in �,

−div u = g in �,

where α ≥ 0 and w = curluo, uo is some known approxi-
mation to u.

2. Linear solver

Assume the Dirichlet boundary conditions for u and
let A and B be matrices stemming from a finite element
method applied to Eq. (1). For locally supported trial
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functions ψi ,ψj ∈ Uh and φk ∈ Qh :

Ai, j = ν(∇ψj ,∇ψi )+γ (divψj ,divψi )+ (αψj

+w×ψj ,ψi )

Bk,i = −(divψi ,φk).

(2)

The role of the consistent term γ (divψj ,divψi ) will be seen
later. With these notations one needs to solve the system of
linear algebraic equations:
A BT

B 0





x

y


 =


 f

g


 . (3)

This linear system is of saddle point type. A spectrum of
the (non-symmetric) matrix from (3) contains eigenvalues
with both positive and negative real parts and condition
number of the matrix strongly depends on a mesh-size
and ν. It is poor conditioned for h → 0 and/or ν →
0. Thus to solve Eq. (3) iteratively a preconditioning is
highly desirable. Let Â be a preconditioner for A and Ŝ a
preconditioner for S, the Schur complement of the system:
S := B A−1 BT .

Using patterns from Klawonn and Starke [2] and Sil-
vester et al. [6], we consider the block triangular precondi-
tioner:

P−1 =

 Â−1 Â−1 BT Ŝ−1

0 −Ŝ−1


 (4)

If Â = A and Ŝ = S, then a preconditioned Krylov subspace
method for (3) will converge in at most two iterations.
Generally, we are looking for Â and Ŝ to be close to
A and S, but such that Â−1x and Ŝ−1 y can be “easily”
computed for given vectors x and y. Another approach for
building a preconditioner P−1 can be the method of sparse
approximate inverses (SPAI, see, e.g., Grote and Huckle
[1]). For the linearized equations in convection form this
method may be not so efficient in the case of small ν,
since the strong upstream dependencies in solution may
yield too many nonzero entries in the approximate inverse.
The situation changes for rotation form. Now the linearized
term has zero order, imposing only “local” dependence.
Thus the SPAI method can be efficient. We plan to consider
it elsewhere.

Further we are specific about particular choice of Â and
Ŝ. The choice of the BiCGstab method may be more attrac-
tive for fluid dynamic applications compared to methods
with residual minimization property, like GMRES, since
the storage requirements and complexity of the BiCGstab
are generally less and independent of an iteration number.

Two essential ingredients: Â and Ŝ are remaining to be
defined. Â is a preconditioner for the “u”-part of problem.
The continuous counterpart of it reads:

αv−ν�v−γ∇div v+w×v = r.h.s in �. (5)

Compared to the convection-diffusion vector problem
that appears, if one linearizes equations in the original form
(1), Eq. (5) has 2nd-order and 0-order terms only. This
allows standard multigrid components to work well and
to solve LAS with the matrix A. Multi-grid components
include block Jacobi or block Gauss–Seidel iterations as
smoothers. The robustness of the multigrid as a solver
was proved in Olshanskii and Reusken [5] for the case
γ = 0. At the same time, if γ = O(1) and ν,α → 0, the
problem (5) has anisotropic diffusion terms and may have
a large kernel in the limit case; therefore the performance
of standard multigrid tools deteriorates. There is a trade
between keeping the relation γ /ν reasonably bounded and
advantages of taking γ > 0 for the stability of FE method
and the Schur complement preconditioner. We summarize
all these, saying that for Â−1 we take few V-cycles of the
multigrid method.

Matrix S is a dense matrix: Most entries are nonzero
and can not be computed in a straightforward (economical)
manner. Therefore, nonstandard considerations have to be
made to build Ŝ. Constructing Ŝ we benefit from the
rotation form of equations and the presence of the γ -term
in (2). Let Mp be a mass matrix for the space Qh and M̂p

its diagonal lumping, then

Ŝ−1 = (ν+γ )M̂−1
p + S0(w)−1, (6)

where S0(w) := B M̂u(w)−1 BT is a Schur compliment of
the matrix
M̂u(w) BT

B 0


 , (7)

where in 2D case M̂u(w) =

αM̂u −M̂w

u

M̂w
u αM̂u


 ,

here M̂u is a lumped mass matrix for Uh and M̂w
u is a

lumped mass-type matrix, corresponding to the w-weighted
scalar product

∫
�
w(x)u(x)v(x)dx. For further clarity we

note that (7) can be viewed as the matrix of a discrete
counterpart of the following reduced problem (1):

αv+w×v+∇q = r.h.s. in �,

−divv = r.h.s. in �.
(8)

In the 3D case M̂u (w) is a 3 × 3 block matrix. The Schur
complement S0(w) of the reduced problem (in 2D or 3D)
is now a sparse matrix that mimics a mixed discretization
for the pressure-Poisson problem. Therefore a multigrid
method is a good candidate to evaluate S0(w)−1. If α > 0,
then Ŝ is a robust preconditioner to S w.r.t. a viscosity
parameter ν (see Olshanskii [3]). The problem (8) (resp.
(7)) can be ill-posed for α = 0. Two improvements can
be made for small α (see analysis in Olshanskii [4]): one
can drop S0(w)−1, than it is important to keep γ = O(1)
to ensure cond (Ŝ−1 S) is reasonably small. Either one can
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consider auxiliary ᾱ = O(‖w‖) in S0(w)−1 (the only case
in our numerical experiments when the latter modification
was vital for good convergence is marked by an asterisk in
Table 3).

3. Numerical results

We consider problem (1) with analytical solution u =
(u1,u2) and p as

u1(x , y) = r2

2π

er2 y

(er2 −1)
sin

(
2π(er2 y −1)

er2 −1

)

×
(

1−cos

(
2π(er1 x −1)

er1 −1

))
,

u2(x , y) = r1

2π

er1 x

(er1 −1)
sin

(
2π(er1 x −1)

er1 −1

)

×
(

1−cos

(
2π(er2 y −1)

er2 −1

))
,

p(x , y) = r1r2
er1 x er2 y

(er1 −1)(er2 −1)
sin

(
2π(er1 x −1)

er1 −1

)

× sin

(
2π(er2 y −1)

er2 −1

)
,

with r1 = 3, r2 = 0.1 and � = (0,1) × (0,1). This type of
flow simulates a rotating vortex. The vortex center has
coordinates (x0, y0), x0 ∼ 0.785, y0 ∼ 0.512. The Bernoulli
pressure can be computed and we reformulate the problem
in the rotation form. Calculations were made using LBB-
stable P2isoP1-P0 finite element spaces (piecewise-constant
pressure and piecewise-linear continuous velocity on 2-
times finer triangulation) on regular uniform triangulation
with mesh size h. Results for the linearized problem are
given in Tables 1–4. Quantities in the tables should be
interpreted as follows. Nouter is a number of preconditioned
BiCGstab iterations needed to solve Eq. (3) up to desired
tolerance (10−6); Ninner stands for a number of multigrid
iterations needed to compute “exact” inverse of A on each
step of BiCGstab method, when we take Â = A (see results

Table 1
Convergence data with an exact solver for A and α = 0, γ = 0.2

Viscosity

h = 1/32 2e−2 5e−3 1e−3 1e−4

Nouter 5 5 6 6
Ninner 13 27 65 230

Mesh size

ν = 1e−3 1/16 1/32 1/64 1/128

Nouter 5 6 6 6
Ninner 55 65 85 93

Table 2
Convergence data with an inexact solver for A and α = 1, γ = 0

Viscosity

h = 1/32 2e−2 5e−3 1e−3 1e−4

Nouter 13 12 14 10
ψA 0.05 0.05 0.05 0.02
ψS 0.39 0.31 0.30 0.21

Mesh size

ν = 1e−3 1/16 1/32 1/64 1/128 1/256

Nouter 10 14 16 18 18
ψA 0.05 0.05 0.04 0.04 0.05
ψS 0.23 0.30 0.41 0.51 0.70

Table 3
The effect of γ on an error and iterations

Viscosity Value of γ

0 0.05 0.2 0.5 1.0

1e−1 ‖u −uh‖ 1.9e−2 1.3e−2 8.6e−3 9.0e−3 1.3e−2
‖p − ph‖ 4.3e−2 4.4e−2 4.9e−2 6.7e−2 1.3e−1
Nouter 11 9 6 6 4
ψA 0.06 0.07 0.11 0.16 0.21

1e−3 ‖u −uh‖ 1.8e−0 1.1e−1 8.0e−2 1.2e−1 1.4e−1
‖p − ph‖ 3.3e−1 5.0e−2 4.6e−2 5.3e−2 6.0e−2
Nouter 29 11 10 19 30
ψA 0.08 0.37 0.50 0.59 0.61

in Table 1); ψA is a convergence factor of a multigrid
method to solve a system with matrix A, we use 4 iterations
of the multigrid for the preconditioner Â in all calculations
except those reflected in Table 1; ψS is a convergence factor
of a multigrid method to solve a system with matrix S0(w).
Table 3 shows also the L2-norm of the error. In Table 4
we present results for the nonlinear problem in rotation
form. Here Nstp is a number of nonlinear iterations, Niter is
total number of BiCGstab iterations executed to solve (with
rather low relative accuracy) auxiliary linear problems on
every nonlinear step, ψouter is an averaged convergence
factor in these linear iterations.

Several conclusions follow from numerical results. The
rotation form of the Navier–Stokes equations gives rise to
linearized equations which can be solved in a robust way by
the BiCGstab method. The corresponding linear algebraic
system admits efficient preconditioner (see robustness re-
sults in Tables 1 and 2). To achieve robustness for the case
α = 0, the additional stabilizing term (γ > 0) is, however,
needed. This additional term also improves the accuracy
of solution (see Table 3) for small ν. At the same time,
if γ = O(1) and ν → 0, then standard multigrid solvers
for the discretized velocity problem (5) are not so efficient
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Table 4
Convergence data for nonlinear problem

Viscosity Quantity Mesh size

1/16 1/32 1/64 1/128

ν = 2e−2 Nstp 7 7 7 7
Niter 45 50 50 52
ψouter 0.13 0.15 0.16 0.16

ν = 5e−3 Nstp 73 78 81 83
Niter 290 383 467 490
ψouter 0.09 0.13 0.15 0.15

(Ninner increases as ν → 0 in Table 1). We still need more
efficient tools for this case to build good preconditioner
Â. One noted disadvantage of solving the Navier–Stokes
equations in rotation form is that nonlinear iterations of
fixed point type appears to be not so robust w.r.t. ν (see
Table 4), while the inner linear solvers perform excellently.
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