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Conservationv
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Abstract — We study an efficient finite element method for the NS-ω model, that uses
van Cittert approximate deconvolution to improve accuracy and Scott-Vogelius ele-
ments to provide pointwise mass conservative solutions and remove the dependence of
the (often large) Bernoulli pressure error on the velocity error. We provide a complete
numerical analysis of the method, including well-posedness, unconditional stability,
and optimal convergence. Additionally, an improved choice of filtering radius (versus
the usual choice of the average mesh width) for the scheme is found, by identifying a
connection with a scheme for the velocity-vorticity-helicity NSE formulation. Several
numerical experiments are given that demonstrate the performance of the scheme, and
the improvement offered by the new choice of the filtering radius.
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1. Introduction

Recent work on finite element methods (FEM) for the ‘α models’ of fluid flow has proven their
effectiveness at finding accurate solutions to flow problems on coarser spatial and temporal
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discretizations than are necessary for successful direct numerical simulations of the Navier-
Stokes equations (NSE) [4, 8, 9, 17, 24, 25, 29, 31, 36]. Of these models, NS-ω stands apart
because in addition to its excellent theoretical properties such as well-posedness and energy
and model helicity conservation [22, 26], it can be computed efficiently with unconditionally
stable algorithms [25]. Hence we restrict attention herein to this model. We study an
efficient finite element method for NS-ω together with van Cittert approximate deconvolution
to increase accuracy, a natural element choice for the model that provides pointwise mass
conservation and removes the effect of the pressure error on the velocity error, and a different
approach to choosing the filtering radius parameter that leads to improved results.

With all of the α models, higher formal accuracy to true fluid flow can be achieved if van
Cittert approximate deconvolution is used to model the removed fine scales, by deconvolving
the filtered terms. Our study of NS-ω includes this type of deconvolution as part of the
regularization, giving the continuous model

ut + (∇×DNFu)× u +∇q − ν∆u = f , (1.1)

∇ · u = 0, (1.2)

where u is the velocity field, q the pressure, f a forcing term, and ν the kinematic viscosity.
The function F denotes the Helmholtz filter: F := (−α2∆ + I)−1 where α > 0 is the
filtering radius, and DN is the N th order van Cittert approximate deconvolution operator:
DN :=

∑N
n=0(I − F )n.

The finite element discretization we use for the model (1.1)-(1.2) includes a novel com-
bination of several ideas. The first idea is the linearization of the regularized terms via the
method of Baker [1]. This allows for the decoupling of the momentum-mass system from
the filtering and deconvolution, thus allowing for the higher orders of deconvolution to be
used with minimal effect on computational time, while maintaining unconditional energy
stability.

The second idea is the use of the Scott-Vogelius velocity-pressure element pair [38, 39],
which is a fundamental component of the scheme. This element choice provides solutions
with pointwise conservation of mass and has recently been shown to be LBB stable and ad-
mits optimal approximation properties under only mild restrictions [40], provides excellent
computational results, and decouples the pressure error from the velocity error, and is easily
implemented [6, 7, 27, 28]. Since the goal of NS-ω is to find accurate solutions on coarse
meshes, such an element choice will help provide solutions that are more physically plausi-
ble; even if particular flow features are captured or an L2 error comparison against known
solution values is small, a solution with poor mass conservation is of little value in most ap-
plications. The problem of poor mass conservation for typical finite elements is well known,
and choices of (P2, P0) elements or discontinuous Galerkin methods are common due to their
‘local mass conservation’ property, even though such choices have their own sub-optimal
features. Another important feature of using Scott-Vogelius element is that it decouples the
pressure error from the velocity error, which is important for NS-ω . Since NS-ω is a rota-
tional form model, its pressure approximates Bernoulli pressure, and is thus more complex
than usual pressure and susceptible to large error, especially near walls [23, 31, 32, 33]. This
element choice keeps the pressure error from adversely affecting the velocity error.

Lastly, we offer a different approach to choosing the filtering radius α, based on a con-
nection between the model’s discretization and a splitting method for the recently proposed
velocity-vorticity-helicity (VVH) formulation of the NSE [34]. Error analysis herein and for
other α-models has shown that the choice of α 6 O(h), where h is the average mesh-width, is
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sufficient for optimal asymptotic accuracy [24, 25, 31]. However, on a fixed mesh, the choice
α = ch is often used to improve results, where c is a tuning parameter. To aid in this search
for a better α, we identify a connection between the NS-ω scheme proposed herein and the
VVH splitting method, which suggests a choice of α =

√
ν∆t. Our numerical experiments

show that this alternative parameter choice can provide improvement over α = h on some
test problems.

This paper is arranged as follows. Section 2 presents notation and preliminaries, and
the numerical discretization of NS-ω studied herein. In Section 3, we present a detailed,
rigorous analysis of the scheme. We analyze stability and convergence, and the choice of
α through the connection to VVH. Compared to the earlier analysis of discretized Navier-
Stokes-α models found in [20, 24, 25, 31], in the present paper we are able to remove the
time step restriction and to weaken the dependence of constants in error estimate on the
Reynolds number (cf. Remark 3.2). Numerical experiments are given in Section 4. Here
we demonstrate the improvement in physical fidelity offered by the SV element, provide
numerical evidence of the decoupling of the velocity error from the pressure error for SV
element solutions (and not for Taylor-Hood (TH) element solutions), and other numerical
experiments which show that the proposed method is able to obtain accurate answers on
benchmark problems.

2. Preliminaries

This section summarizes the notation, definitions, and preliminary lemmas needed. We start
by introducing the following notation. The L2(Ω) norm and inner product will be denoted
by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by
‖ · ‖Lp and ‖ · ‖Wk

p
, respectively. For the semi-norm in W k

p (Ω) we use | · |Wk
p
. Hk is used to

represent the Sobolev space W k
2 (Ω), and ‖ · ‖k denotes the norm in Hk. For functions v(x, t)

defined on the entire time interval (0, T ), we define (1 6 m <∞)

‖v‖∞,k := ess sup
0<t<T

‖v(t, ·)‖k , and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖mk dt
)1/m

.

In the discrete case, we use the analogous norms

‖|v|‖∞,k := max
06n6M

‖vn‖k , ‖|v1/2|‖∞,k := max
06n6M

‖vn+1/2‖k ,

‖|v|‖m,k :=

(
M∑
n=0

‖vn‖mk 4t

)1/m

, ‖|v1/2|‖m,k :=

(
M∑
n=0

‖vn+1/2‖mk 4t

)1/m

.

We will consider the case of internal flow, with Ω being a regular, bounded, polyhedral
domain in Rd (d = 2 or 3) and

X = (H1
0 (Ω))d := {v ∈ (H1(Ω))d : v|∂Ω = 0},

Q = L2
0(Ω).

We denote the dual space of X by X∗, with the norm ‖ · ‖∗. The space of divergence free
functions is denoted

V := {v ∈ X, (∇ · v, q) = 0 ∀q ∈ Q} .
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We now formally define the conforming finite element spaces, specifically those corre-
sponding to Scott-Vogelius elements, that are subspaces of X and Q. In space dimension
d, we define XSV

h to be the space of continuous element-wise vector functions of polynomial
order k > d on a mesh Th,

XSV
h := {vh ∈ [C0(Ω)]d : vh|T ∈ [Pk(T )]d, for all T ∈ Th, vh = 0 on ∂Ω}.

We require that the mesh be built from a barycenter refinement of a regular triangularization
(tetrahedralization) of the domain Ω if k > d, but if k = d− 1 (k = 2 in 3D or k = 1 in 2D),
then a Powell-Sabin mesh must be used, [40, 41].

Note that the velocity space for Scott-Vogelius is the same as for the well-known Taylor-
Hood element pair, while the pressure space only differs from Taylor-Hood’s in that its
pressures are discontinuous, defined by

QSV
h := {qh ∈ L2(Ω) : qh|T ∈ Pk−1 for all T ∈ Th}.

Since it is discontinuous, the dimension of the pressure space for Scott-Vogelius elements is
significantly larger than for Taylor-Hood elements. This creates a greater total number of
degrees of freedom needed for linear solvers using SV elements, however it is not immediately
clear whether this will lead to a significant increase in computational time if specific precon-
ditioners, such as Augmented Lagrangian type are used [2]. Although the velocity spaces of
the TH and SV elements are the same, the spaces of discretely divergence free subspaces are
different, and thus we denote

VSV
h := {vh ∈ XSV

h : (∇ · vh, qh) = 0 ∀qh ∈ QSV
h },

which is also the pointwise divergence free subspace of XSV
h . The SV element is very in-

teresting from the mass conservation point of view since its discrete velocity space and its
discrete pressure space fulfill an important property, namely

∇ ·XSV
h ⊂ QSV

h . (2.1)

Thus, using SV elements, weak mass conservation via (∇ · vh, qh) = 0, ∀qh ∈ QSV
h implies

strong (pointwise) mass conservation since ||∇ · vh|| = 0 by choosing qh = ∇ · vh. Such
a result, or choice of test function, is not possible with most element choices, including
Taylor-Hood.

It was proved by S. Zhang in [40, 41] that the SV elements are LBB stable under these
restrictions and admit optimal approximation properties. It is well known that the TH pair is
LBB stable for this case and that they satisfy the optimal approximation properties as well,
[5, 15]. For the convergence studies, we make use of the following approximation properties:

inf
v∈XSV

h

‖u− v‖ 6 Chk+1|u|k+1, u ∈ (Hk+1(Ω))d,

inf
v∈XSV

h

‖u− v‖1 6 Chk|u|k+1, u ∈ (Hk+1(Ω))d,

inf
r∈QSV

h

‖p− r‖ 6 Chs+1|p|s+1, p ∈ Hs+1(Ω)

Assumption 2.1. Throughout this report, we will assume that k > d and that the mesh
is created from a barycenter refinement of a regular mesh. Hence, Scott-Vogelius elements
are LBB stable and admit optimal approximation properties when used in this report.
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We define a trilinear form and list estimates necessary for the analysis studies.

Definition 2.1. Define b : X×X×X→ R , by

b(u,v,w) := ((∇× u)× v,w).

Lemma 2.1. For u,v,w ∈ X, or L∞(Ω) and ∇ × u ∈ L∞(Ω), when indicated, the
trilinear term b(u,v,w) satisfies

|b(u,v,w)| 6 ‖∇ × u‖‖v‖∞‖w‖, (2.2)

|b(u,v,w)| 6 ‖∇ × u‖∞‖v‖‖w‖ , (2.3)

|b(u,v,w)| 6 C0(Ω)‖∇ × u‖‖∇v‖‖∇w‖ , (2.4)

|b(u,v,w)| 6 C0(Ω)‖v‖1/2‖∇v‖1/2‖∇ × u‖‖∇w‖ , (2.5)

and if u, v, w ∈ V and w ∈ (H2(Ω))d, then

|b(u,v,w)| 6 C‖w‖2‖∇v‖‖u‖ (2.6)

Proof. The first two estimates follow immediately from the definition of b. The proof of
the next two bounds are easily adapted from the usual bounds of the nonlinearity in non-
rotational form. The last bound takes more work. Begin with a simple vector identity and
that the curl is self-adjoint with u, v, w ∈ X

|((∇× u)× v,w)| = |(w × v,∇× u)| = |(∇× (w × v),u)| (2.7)

Continuing with another vector identity for the curl of the cross of two vectors,

∇× (w × v) = v · ∇w −w · ∇v + (∇ · v)w − (∇ ·w)v, (2.8)

which reduces since v, w ∈ V to

∇× (w × v) = v · ∇w −w · ∇v. (2.9)

Combining this with (2.7), we have by Holder and Poincare’s inequalities,

|((∇× u)× v,w)| 6 |(v · ∇w,u)|+ |(w · ∇v,u)|
6 C‖w‖2‖∇v‖‖u‖. (2.10)

The error analysis uses a discrete Gronwall inequality, recalled from [16], for example.
The specific version given below is given as a remark to Lemma 5.1 in [16].

Lemma 2.2 (Discrete Gronwall Lemma). Let ∆t, H, and an, bn, cn, dn (for integers n >
0) be finite nonnegative numbers such that

al + ∆t
l∑

n=0

bn 6 ∆t
l−1∑
n=0

dnan + ∆t
l∑

n=0

cn +H for l > 1. (2.11)

Then for ∆t > 0

al + ∆t
l∑

n=0

bn 6 exp

(
∆t

l−1∑
n=0

dn

)(
∆t

l∑
n=0

cn +H

)
for l > 1. (2.12)
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2.1. Filtering and Deconvolution

Since we study discretizations of a fluid model, we must deal with discrete differential filters.
Continuous differential filters were introduced into turbulence modeling by Germano [14]
and used for various models and regularizations [3, 10, 17]. They can arise, for example, as
approximations to Gaussian filters of high qualitative and quantitative accuracy [13].

Definition 2.2 (Continuous α-filter). For v ∈ (L2(Ω))d and α > 0 fixed, denote the
filtering operation on v by v, where v is the unique solution in X

−α2∆v + v = v. (2.13)

We denote by F := (−α2∆ + I)−1, so Fv = v. We define next the discrete differential
filter following, Manica and Kaya-Merdan [30], but also enforcing incompressibility.

Definition 2.3 (Discrete differential filter). Given v ∈ (L2(Ω))d, for a given filtering
radius α > 0, vh = Fhv is the unique solution in XSV

h of: Find (vh, λh) ∈ (XSV
h , QSV

h )
satisfying

α2(∇vh,∇χh) + (vh,χh)− (λh,∇ · χh) + (∇ · vh, rh) = (v,χh) ∀(χh, rh) ∈ (XSV
h , QSV

h ).
(2.14)

We now define the van Cittert approximate deconvolution operators.

Definition 2.4. The continuous and discrete van Cittert deconvolution operatorsDN and Dh
N

are

DNv :=
N∑

n=0

(I − F )nv , Dh
Nv :=

N∑
n=0

(Πh − Fh)nv . (2.15)

where Πh denotes the L2 projection Πh : (L2(Ω))d → Xh.

For order of deconvolution N = 0, 1, 2, 3 and v ∈ Xh we have

Dh
0v = v,

Dh
1v = 2v − vh,

Dh
2v = 3v − 3vh + vh

h
,

Dh
3v = 4v − 6vh + 4vh

h
− vh

h
h

.

DN was shown to be an O(α2N+2) approximate inverse to the filter operator F in Lemma
2.1 of [11]. The proof is an algebraic identity and holds in the discrete case as well, giving
the following.

Lemma 2.3. DN and Dh
N are bounded, self-adjoint positive operators. For v ∈ (L2(Ω))d,

v = DNv + (−1)(N+1)α2N+2∆N+1F (N+1)v

and

v = Dh
Nvh + (−1)(N+1)α2N+2∆N+1

h F
(N+1)
h v

Lemma 2.4. For v ∈ X, we have the following bounds:

‖vh‖ 6 ‖v‖ , ‖∇vh‖ 6 ‖∇v‖ and ‖∇ × vh‖ 6 ‖∇v‖. (2.16)
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Proof. This proof can be found in [25].

Lemma 2.5. For v ∈ X, we have the following bounds:

‖∇ ×Dh
Nvh‖ 6 C(N)‖∇v‖. (2.17)

Proof. The proof follows from an inductive argument based on the definition of the
deconvolution operator Dh

N and Lemma 2.4.

Lemma 2.6. For smooth v the discrete approximate deconvolution operator satisfies

‖v −Dh
Nvh‖ 6 Cα2N+2‖4N+1FN+1v‖ + C(αhk + hk)(

N+1∑
n=1

| F nv |k+1 ) . (2.18)

The proof is based on using similar arguments as in [24].
The dependence of the |F n(v)|k+1 terms in (2.18) upon the filter radius α, for a general

smooth function φ, is not fully understood for the case of deconvolution order N > 2 (i.e.,
for n > 2)[12, 21]. In the case of v periodic the |F n(v)|k+1 are independent of α. Also,
for v satisfying homogeneous Dirichlet boundary conditions, with the additional property
that ∆jv = 0 on ∂Ω for 0 6 j 6

[
k+1

2

]
− 1, the |F n(v)|k+1 are independent of α. Our

analysis of the method is for general N , and thus for N > 2, we make this assumption of
independence. However, our computations are for N = 1, and our experience has shown
that there is typically little or no gain for larger N with polynomials approximating velocities
with degree three or less. For elements with higher order polynomials, we would expect a
difference.

2.2. A numerical scheme for NS-ω

We now are ready to present the NS-ω algorithm we study herein. The scheme uses a
trapezoidal temporal discretization, and uses a Baker-type [1] extrapolation to linearize and
maintain unconditional stability. We denote u(tn+1/2) = u((tn + tn+1)/2) for the continuous
variable and un+1/2 = (un + un+1)/2 for both continuous and discrete variables.

Algorithm 2.1.
Given kinematic viscosity ν > 0, end-time T > 0, the time step is chosen ∆t < T =

M∆t, f ∈ L∞(0, T ; (H−1(Ω))d, the initial condition u0 ∈ V, the filtering radius α > 0,
deconvolution order N > 0, first find u0

h ∈ XSV
h satisfying

(u0
h,vh)− (λh,∇ · vh) = (u0,vh), ∀vh ∈ XSV

h (2.19)

(∇ · u0
h, rh) = 0 ∀rh ∈ QSV

h , (2.20)

then set u−1
h := u0

h, and find (un+1
h , q

n+ 1
2

h ) ∈ (XSV
h , QSV

h ) for n = 0, 1, ...,M − 1 satisfying

1

∆t
(un+1

h − un
h,vh) + ((∇×Dh

NFh(
3

2
un
h −

1

2
un−1
h )× u

n+ 1
2

h ),vh)

− (q
n+ 1

2
h ,∇ · vh) + ν(∇u

n+ 1
2

h ,∇vh) = (fn+ 1
2 ,vh) ∀vh ∈ XSV

h , (2.21)

(∇ · un+1
h , rh) = 0 ∀rh ∈ QSV

h . (2.22)
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3. Analysis of the scheme

In this section, we show that solutions of the NS-ω algorithm are unconditionally energy-
stable, i.e., discrete solutions obey the energy estimate and are optimally convergent. Since
NS-ω approximates NSE solutions, we study the convergence analysis of the finite element
solutions of NS-ω to the true solutions of the NSE.

We shall assume that the solution to the NSE that is approximated by the model is a
strong solution and, in particular, satisfies w ∈ L2(0, T ;X)∩L∞(0, T ; (L2(Ω))d)∩L4(0, T ;X),
p ∈ L2(0, T ;Q), wt ∈ L2(0, T ;X∗) and

(wt,v) + b(w,w,v) − (p,∇ · v) + ν(∇w,∇v) = (f ,v) ∀v ∈ X, (3.1)

(q,∇ ·w) = 0 ∀q ∈ Q. (3.2)

3.1. Stability and well-posedness

Lemma 3.1. Consider the NS-ω algorithm 2.1. A solution ul
h, l = 1, . . .M , exists at

each time-step and it is unique. The algorithm is also unconditionally energy-stable: the
solutions satisfy the á priori bound

‖uM
h ‖2 + ν∆t

M−1∑
n=0

‖∇u
n+1/2
h ‖2 6 ‖u0

h‖2 +
∆t

ν

M−1∑
n=0

‖fn+1/2‖2
∗. (3.3)

Proof. The á priori bound can be obtained by setting vh = u
n+1/2
h in (2.21). The nonlinear

term in the scheme vanishes with this choice. Thus, for every n

1

2∆t
(‖un+1

h ‖2 − ‖un
h‖2) + ν‖∇u

n+1/2
h ‖2 6

1

2ν
‖fn+1/2‖2

∗ +
ν

2
‖∇u

n+1/2
h ‖2,

i.e.,
1

∆t
(‖un+1

h ‖2 − ‖un
h‖2) + ν‖∇u

n+1/2
h ‖2 6

1

ν
‖fn+1/2‖2

∗.

Summing from n = 0 . . .M − 1 gives the bound (3.3).

Restricting to any particular time level n, the scheme is linear, and thus since it is also
finite dimensional, uniqueness of solutions gives existence as well. Following the proof for
the á priori bound, uniqueness is immediate at any time level. Thus solutions exist uniquely
for the entire scheme.

Remark 3.1. Since the kinetic energy KE(un
h) := 1

2
‖un

h‖2 and energy dissipation ε(un
h) :=

ν‖∇un
h‖2 of NS-ω , take the usual form, it holds

KE(uh
M) + ν∆t

M−1∑
n=0

ε(uh
n+1/2) = KE(uh

0) + ∆t
M−1∑
n=0

(fn+1/2,u
n+1/2
h ). (3.4)

Thus, if ν = 0 and f = 0, KE(uh
M) = KE(uh

0). Hence Algorithm 2.1 is energy conserving.
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3.2. Convergence Analysis

Our main convergence result for the discrete NS-ω model described in Algorithm 2.1 is given
next.

Theorem 3.1 (Convergence for discrete NS-ω ). Consider the discrete NS-ω model.
Let (w(t), p(t)) be a smooth, strong solution of the NSE such that the norms on the right
hand side of (3.5)-(3.6) are finite. Suppose (u0

h, p
0
h) are the VSV

h and QSV
h interpolants of

(w(0), p(0)), respectively. Suppose (uh, qh) satisfies the scheme (2.21)-(2.22). Then there is
a constant C = C(w, p) such that

‖|w − uh|‖∞,0 6 F (4t, h, α) + Chk+1‖|w|‖∞,k+1 , (3.5)(
ν4t

M−1∑
n=0

‖∇(wn+1/2 − (un+1
h + un

h)/2)‖2

)1/2

6 F (4t, h, α) + Cν1/2(4t)2‖∇wtt‖2,0

+Cν1/2hk‖|w|‖2,k+1 , (3.6)

where

F (4t, h, α) := C∗{(ν + ν−1)1/2hk‖|w|‖2,k+1

+ν−1/2hk
(
‖|w|‖2

4,k+1 + ‖|∇w1/2|‖2
4,0

)
+C(N)(∆t)2

(
‖wttt‖2,0 + ‖ftt‖2,0 + (ν + ν−1)1/2‖∇wtt‖2,0

)
+ ν−1/2(4t2 + α2N+2 + αhk + hk)|‖∇w1/2|‖2,0}. (3.7)

Remark 3.2. There are three important points to note from the theorem. First, the
velocity error does not depend at all on the pressure error. Second, optimal accuracy can
be achieved if α 6 O(h), and 2N + 2 > k, which provides a guide for parameter selection.
Finally, there is no time step restriction for the result; typically there is a strong restriction
on the timestep resulting from using the Gronwall inequality, but our analysis allowed for a
less restrictive discrete Gronwall inequality and no restriction on the time step.

Proof of Theorem 3.1. This proof closely follows the convergence estimate in [25], except for
a few subtle differences that lead to improved estimates herein. Hence we give a shortened
proof of the theorem, which highlights these differences.

Let

bω(u
n+1/2
h ,v

n+1/2
h ,χ

n+1/2
h ) := ((∇×Dh

NFh(
3

2
un
h −

1

2
un−1
h ))× v

n+1/2
h ,χ

n+1/2
h ),

and, then by adding and subtracting terms, we can write

bω(u
n+1/2
h ,v

n+1/2
h ,χ

n+1/2
h ) = b(u

n+1/2
h ,v

n+1/2
h ,χ

n+1/2
h ) − FE(u

n+1/2
h ,v

n+1/2
h ,χ

n+1/2
h ),

where the linear extrapolated deconvolved filtering error FE is given by

FE(u
n+1/2
h ,v

n+1/2
h ,χ

n+1/2
h ) := ((∇× u

n+1/2
h −∇×Dh

NFh(
3

2
un
h −

1

2
un−1
h ))× v

n+1/2
h ,χ

n+1/2
h ).

At time tn+1/2, the solution of the NSE (w, p) satisfies(
wn+1 −wn

∆t
,vh

)
+ bω(wn+1/2,wn+1/2,vh) + ν(∇wn+1/2,∇vh)

= (fn+1/2,vh) + Intp(wn,vh), ∀vh ∈ VSV
h (3.8)
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where the pressure term disappears since VSV
h is now pointwise div-free, as stated in Sec-

tion 2. The term Intp(wn,vh) collects the interpolation error, the above linear extrapolated
deconvolved filtering error, and the consistency error. It is given by

Intp(wn,vh) =

(
wn+1 −wn

∆t
−wt(tn+1/2),vh

)
+ ν(∇wn+1/2 − ∇w(tn+1/2),∇vh)

+ bω(wn+1/2,wn+1/2,vh)− bω(w(tn+1/2),w(tn+1/2),vh)

− FE(w(tn+1/2),w(tn+1/2),vh)

+ f(tn+1/2)− fn+1/2,vh).

(3.9)

Subtracting (3.8) from (2.21) and letting en = wn − un
h we have

1

∆t
(en+1 − en,vh) + bω(wn+1/2,wn+1/2,vh)− bω(u

n+1/2
h ,u

n+1/2
h ,vh)

+ ν(∇en+1/2,∇vh) = Intp(wn,vh) , ∀vh ∈ VSV
h .

(3.10)

where the pressure term of NS-ω disappears since VSV
h is now pointwise div-free. De-

compose the error as en = (wn −Un)− (un
h −Un) := ηn − φn

h where φn
h ∈ VSV

h , and U is

the L2 projection of w in VSV
h . Setting vh = φ

n+1/2
h in (3.10) we obtain

1

2
(‖φn+1

h ‖2 − ‖φn
h‖2) + ν4t‖∇φn+1/2

h ‖2 = (ηn+1 − ηn,φ
n+1/2
h ) +4tν(∇ηn+1/2,∇φn+1/2

h )

+4t bω(ηn+1/2,wn+1/2,φ
n+1/2
h )−4t bω(φ

n+1/2
h ,wn+1/2,φ

n+1/2
h )

+4t bω(u
n+1/2
h ,ηn+1/2,φ

n+1/2
h ) +4t Intp(wn,φ

n+1/2
h )

= T1 + T2 + T3 + T4 + T5 + T6 . (3.11)

We point out again that, this error equation we will proceed to analyze, is independent of
pressure error, which occurs due to the use of Scott-Vogelius elements and would not happen
if, for example, Taylor-Hood elements were chosen.

Estimates for the right hand side terms of (3.11) follow similar to those in the convergence
proof in [25], except for the last three terms. For the last term, the main difference is the
use of deconvolution, and so one can follow estimates in [31, 24] to bound this term. Thus
we proceed to estimate T4 and T5 terms of (3.11). For T4 term, using (2.6), we get

4t bω(φ
n+1/2
h ,wn+1/2,φ

n+1/2
h ) = 4t (∇×Dh

NFh(
3

2
φn

h −
1

2
φn−1

h )×wn+1/2,φ
n+1/2
h )

6 C4t
∥∥wn+1/2

∥∥
2

∥∥∥∇φn+1/2
h

∥∥∥∥∥∥∥Dh
NFh(

3

2
φn

h −
1

2
φn−1

h )

∥∥∥∥
6 C(N)4t

∥∥wn+1/2
∥∥

2

∥∥∥∇φn+1/2
h

∥∥∥ (‖φn
h‖+

∥∥φn−1
h

∥∥)
6

ν4t
12
‖∇φn+1/2

h ‖2 + C(N)4t ν−1 (‖φn
h‖2 + ‖φn−1

h ‖2)‖wn+1/2‖2
2 .

For T5 term, we begin by splitting the first entry of this term by adding and subtracting
wn+1/2, followed by rewriting the resulting error term as pieces inside and outside of the
finite element space.

4tbω(u
n+1/2
h ,ηn+1/2,φ

n+1/2
h ) = 4tbω(ηn+1/2,ηn+1/2,φ

n+1/2
h )

+4tbω(φ
n+1/2
h ,ηn+1/2,φ

n+1/2
h ) +4tbω(wn+1/2,ηn+1/2,φ

n+1/2
h ). (3.12)
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For the first and last terms of the above equation (3.12), usual estimates give

4tbω(ηn+1/2,ηn+1/2,φ
n+1/2
h )

6
ν4t
24
‖∇φn+1/2

h ‖2 + C(N)4tν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇ηn+1/2‖2 ,

4tbω(wn+1/2,ηn+1/2,φ
n+1/2
h ) 6

ν4t
24
‖∇φn+1/2

h ‖2 + C(N)4tν−1‖∇ηn+1/2‖2 .

The second term of (3.12) is a bit more delicate, and is majorized as

4tbω(φ
n+1/2
h ,ηn+1/2,φ

n+1/2
h ) = 4t(∇×Dh

NFh(
3

2
φn

h −
1

2
φn−1

h )× ηn+1/2,φ
n+1/2
h )

6 4t|(φn+1/2
h × ηn+1/2,∇×Dh

NFh(
3

2
φn

h −
1

2
φn−1

h ))|

6 4t|(φn+1/2
h · ∇ηn+1/2, Dh

NFh(
3

2
φn

h −
1

2
φn−1

h ))|

+4t|(ηn+1/2
h · ∇φn+1/2, Dh

NFh(
3

2
φn

h −
1

2
φn−1

h ))|

6 C(N)4t
∥∥∥∇ηn+1/2

h

∥∥∥∥∥∥∇φn+1/2
∥∥∥∥∥∥∥3

2
φn

h −
1

2
φn−1

h

∥∥∥∥1/2 ∥∥∥∥∇(
3

2
φn

h −
1

2
φn−1

h )

∥∥∥∥1/2

6 C(N)h−1/24t
∥∥∥∇ηn+1/2

h

∥∥∥∥∥∥∇φn+1/2
∥∥∥∥∥∥∥3

2
φn

h −
1

2
φn−1

h

∥∥∥∥
6
ν4t
12
‖∇φn+1/2

h ‖2 + C(N)4t ν−1h−1 (‖φn
h‖2 + ‖φn−1

h ‖2)‖∇ηn+1/2‖2.

Combining estimates and summing from n = 1 to M (assuming that ‖φ0
h‖ = 0) reduces

(3.11) to

‖φM
h ‖2 + ν4t

M−1∑
n=1

‖∇φn+1/2
h ‖2

6 C4t{
M−1∑
n=1

Cν−1 (‖wn+1/2‖2
2 + h−1‖∇ηn+1/2‖2)(‖φn

h‖2 + ‖φn−1
h ‖2)

+
M−1∑
n=1

(
(ν + ν−1)‖∇ηn+1/2‖2 + ν−1 (‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇wn+1/2‖2

+ν−1(‖∇ηn‖2 + ‖∇ηn−1‖2)‖∇ηn+1/2‖2
)

+
M−1∑
n=1

|Intp(wn,φ
h
n+1/2)| }

6 C4t{
M−1∑
n=1

Cν−1 (‖wn+1/2‖2
2 + h−2‖∇ηn+1/2‖2)‖φn

h‖2

+(ν + ν−1)
M−1∑
n=1

‖∇ηn+1/2‖2 + ν−1

M−1∑
n=0

‖∇ηn‖2‖∇wn+1/2‖2

+ν−1

M∑
n=0

‖∇ηn‖4 +
M−1∑
n=1

|Intp(wn,φ
h
n+1/2)| }. (3.13)
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From here, standard techniques will finish the proof, except for one subtle difference: the
alternate Gronwall lemma (e.g., of [16]) can be used since no ‖φM‖2 appears on the right
hand side. This implies no timestep restriction is needed, and the constants that arise will
depend on ν−1 instead of ν−3 [20].

3.3. An alternative choice of α

It is common in ‘α-models’ for the choice of filtering radius parameter to be chosen on
the order of the meshwidth, α = O(h). From the preceding error analysis, it can be seen
that such a choice of α is the largest it can be without creating suboptimal asymptotic
accuracy. Although this provides some guidance on the choice of α, finding an optimal α
on a particular fixed mesh still may require some tuning. We describe now a connection
between NS-ω and the velocity-vorticity-helicity (VVH) formulation of the NSE [34], that
suggests an alternative choice of α that may aid in this process.

NS-ω can be considered as a rotational form of the NSE formulation where the vorticity
term is handled by other equations, which for NS-ω is the regularization equations. Such a
formulation is quite similar to a velocity-vorticity method, where the vorticity comes directly
from solving the vorticity equation. In particular, consider the numerical method devised in
[34] for the VVH NSE formulation

Algorithm 3.1.

Step 1. Given un, un−1, wn and u∗ = 3
2
un − 1

2
un−1, find wn+1 and heln+1/2 from

wn+1 −wn

4t
− ν4wn+1/2 + 2D(wn+1/2)u∗ −∇heln+1/2 = ∇× fn+1/2 (3.14)

∇ ·wn+1 = 0 (3.15)

wn+1 = ∇× (2un − un−1) on ∂Ω (3.16)

Step 2. Given un, wn and wn+1, find un+1 and P n+1/2

un+1 − un

4t
− ν4un+1/2 + wn+1/2 × un+1/2 −∇P n+1/2 = fn+1/2 (3.17)

∇ · un+1 = 0 (3.18)

un+1 = φ on ∂Ω (3.19)

where φ is the Dirichlet boundary condition function and D(·) denotes the deformation

tensor, i.e., D(v) = (∇v)+(∇v)T

2
, u,w denote velocity and vorticity, P is the Bernoulli pressure

and hel is helical density.

If f is irrotational and we remove the nonlinear term from the vorticity equation, this
system is analogous to the NS-ω scheme herein if we identify helical density with the Lagrange
multiplier λ corresponding to the incompressibility of the filtered velocity, and ν∆t with α2,
i.e., α =

√
ν∆t. Choosing an optimal filtering radius α is certainly problem dependent,

and by no means are we suggesting this choice is always optimal. However, our numerical
experiments show it can be a good starting point for choosing α when using NS-ω .



On an efficient finite element method for Navier-Stokes-ω with strong mass conservation 15

4. Numerical experiments

In this section, we present several numerical experiments that demonstrate the effectiveness
of the numerical method studied herein. The first two experiments are for benchmark tests of
channel flow over a step and around a cylinder, respectively, and both show excellent results
when α is chosen as we suggest herein. The third and fourth tests are done with Scott-
Vogelius elements and Taylor-Hood elements, and compare solutions for a problem with
known analytical solution and the cylinder problem. All tests are done using our Matlab
code, and linear solver uses the ‘slash’ command. Of course, such a solver is non-optimal for
saddle point problems, and for larger 3D problems, a more sophisticated linear solver will
be needed to solve the saddle point system. This will be addressed in future work.

4.1. Experiment 1: Channel flow over a forward-backward facing step

Our first numerical experiment is for the benchmark 2D problem of channel flow over a
forward-backward facing step. The domain Ω is a 40x10 rectangle with a 1x1 step 5 units
into the channel at the bottom. The top and bottom of the channel as well as the step are
prescribed with no-slip boundary conditions, and the sides are given the parabolic profile
(y(10− y)/25, 0)T . We use the initial condition of u0 = (y(10− y)/25, 0)T inside Ω, and run
the test to T = 40. For a chosen viscosity ν = 1/600, it is known that the correct behavior is
for an eddy to form behind the step, grow, detach from the step to move down the channel,
and a new eddy forms. For a more detailed description of the problem, see [15, 19]. The eddy
formation and separation present in this test problem is part of a complex flow structure,
and its capture is critical for an effective fluid flow model. Moreover, a useful fluid model
will correctly predict this behavior on a coarser mesh than can a direct numerical simulation
of the NSE.

For the following test, we computed Algorithm 2.1 with (P2, P
disc
1 ) Scott-Vogelius ele-

ments on a barycenter-refinement of a Delauney triangulated mesh, yielding 14,467 total
degrees of freedom, with deconvolution order N = 1, and varying α. This mesh provided a
smallest element width of 0.15 units behind the step, and largest of 1.9 units, at the top of
the channel around x = 30. For comparison, we also directly compute the (non-regularized)
NSE (α = N = 0). We compute first with timestep ∆t = 0.05, and the solutions at T = 40
are shown in Fig. 4.1. Several interesting observations can be made; first, we note that the
optimal choice of α appears to be near α =

√
ν∆t, as this is the only solution to predict a

smooth flow field and eddies forming and detaching behind the step. For the NSE (α = 0),
a smooth flow field is predicted, however the eddies behind the step appear to be stretching
instead of detaching. Larger values of α, including the common choice of the average element
width α = h = 0.627, give increasingly worse solutions. This is somewhat counterintuitive,
as α is a filtering radius that is supposed to regularize and thus smooth oscillations. A closer
examination reveals that the oscillations are arising from an inability of the more regularized
models to resolve the flow at the top left corner of the step, where the flow near the bottom
of the channel is forced up to intersect with the free stream.

To test the scaling of optimal α with ∆t, we compute with the same data, but with
timesteps ∆t = 0.01 and 0.025, with parameter α =

√
ν∆t. The results at T = 40 are shown

in Figure 4.2, and show good results in both cases. However, for the smaller timestep, we
see the eddies stretching instead of detaching. This is not surprising, as one should expect
some h-dependence on the choice of α.
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Figure 4.1. Shown above are the T = 40 SV solutions as velocity streamlines over speed contours for the

step problem from Experiment 1. Shown are the NSE (top) which is somewhat underresolved on this mesh

as the eddies are not fully detaching, NS-ω with α =
√
ν∆t (second from top) which agrees with the known

true solution, NS-ω with α = 0.3 (third from top) which has oscillations present in the speed contours,

and NS-ω with α = h = 0.6 (bottom) which is a poor approximation. All of the solutions are pointwise

divergence-free
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NS-ω, ∆t = 0.025, α =
√
ν∆t
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Figure 4.2. Shown above are the T = 40 SV solutions as velocity streamlines over speed contours for the

step problem from Experiment 1, with parameter chosen as α =
√
ν∆t, for varying timesteps

4.2. Experiment 2: Channel flow around a cylinder

The benchmark problem of 2d channel flow around a cylinder has been studied in numerous
works, e.g., [18, 20, 23, 37], and is well documented in [37]. The domain is the rectangle
[0, 2.2]× [0, 0.41] representing the channel with flow in the positive x direction, with a circle
radius 0.05 centered at (0.2, 0.2) representing the cylinder. No slip boundary conditions are
prescribed on the top and bottom of the channel as well as on the cylinder, and the time
dependent inflow and outflow velocity profiles are given by

u(0, y, t) = u(2.2, y, t) =

[
6

0.412
sin(πt/8)y(0.41− y) , 0

]T
, 0 6 y 6 0.41.

The forcing function is set to zero, f = 0, and the viscosity at ν = 0.001, providing a time
dependent Reynolds number, 0 6 Re(t) 6 100. The initial condition is u = 0, and we
compute to final time T = 8 with timestep ∆t = 0.005. An accurate approximation of this
flow’s velocity field will show a vortex street forming behind the cylinder by t = 4, and a
fully formed vortex street by t = 7.

We test the algorithm with α = h = 0.01084 and α =
√
ν∆t, on a barycenter refined mesh

that provides 26,656 degrees of freedom for (P2, P
disc
1 ) Scott-Vogelius elements (minimum and

maximum element widths were 0.0042 and 0.017 respectively), and again find that α =
√
ν∆t

provides a better solution than α = h. These results are shown for t = 7 in Fig. 4.3. The
α =

√
ν∆t solution agrees with documented DNS results [7, 23], but the α = h solution at

t = 7 is observed to be incorrect, as it does not fully resolve the wake, and its speed contours
show it gives a much different (and thus incorrect) solution behind the cylinder.
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SV elements, α = h = 0.01
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Figure 4.3. The above pictures show the velocity fields and speed contours at t = 7 using Scott-Vogelius

elements with α = h (top) and α =
√
ν∆t (bottom). The α = h solution is under-resolved, as it loses

resolution of the vortex street, and its speed contours are inaccurate. The α =
√
ν∆t solution captures the

entire wake, and its speed contours agree well with the known solution

4.2.1. Comparison to Taylor-Hood element solution Using the same problem data
as Experiment 2 above, we also compute using (P2, P1) Taylor-Hood elements, with α =√
ν∆t (which gave about the same answer as for α = h). Since this element pair is widely

used and is closely related to Scott-Vogelius elements (they differ only in the pressure space
being continuous or not), a comparison is of interest. Since Taylor-Hood uses a continuous
pressure space, with the same mesh the total number of degrees of freedom is 17,306. All
of problem data is kept the same, and results are shown in Figs. 4.4 and 4.5. In Fig. 4.4,
we observe that the Taylor-Hood solution is much worse than the Scott-Vogelius solution
shown in Fig. 4.3; the Taylor-Hood solution fails to resolve the important behavior behind
the cylinder. Figure 4.5 shows mass conservation versus time for the Taylor-Hood and Scott-
Vogelius solutions. As expected, the Scott-Vogelius solution is divergence-free up to machine
precision. The mass conservation offered by the Taylor-Hood solution is poor. Even though,
asymptotically, the divergence error is optimal, on coarse meshes (where one would hope
to use regularization models) the actual error can be bad. However, on average the linear
solver took 0.700 seconds for the SV element while the linear solver for the TH element only
required 0.490 seconds.

It is not surprising that the Taylor-Hood solution is much worse than the Scott-Vogelius
solution. It was shown in [23] that for the rotational form NSE, the Bernoulli pressure error
can be large enough to dramatically reduce velocity error for this problem. Since NS-ω is
also rotational form, this same effect can be expected (and is seen in comparing Fig. 4.3 to
Fig. 4.4). However, for the Scott-Vogelius solution, as shown herein, the velocity error is
independent of the pressure error. Thus even though the pressure error may be large, it has
no adverse effect on the velocity error, leaving the good solution seen in Fig. 4.3.
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TH elements, α =
√
ν∆t
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Figure 4.4. The above picture shows the t = 7 solution using Taylor-Hood elements, as velocity vector field

and speed contours. This solution is incorrect, as it fails to capture any wake behind the cylinder
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Figure 4.5. Shown above are the plots of the L2 norms of the divergence of the velocity solutions versus

time, for the SV and TH solutions, both with α =
√
ν∆t = 0.0022

As expected, the Scott-Vogelius solution is incompressible to near machine precision. The
Taylor-Hood solution, however, gives poor mass conservation.

4.3. Experiment 3: Effect of pressure error on velocity error

In this experiment, we investigate more closely the effect of the pressure error on the velocity
error, which caused a dramatic difference between Scott-Vogelius and Taylor-Hood solutions
in the above experiment of flow around a cylinder. The error analysis in Section 3.2 showed
that in Algorithm 2.1 which uses Scott-Vogelius elements, the velocity error is not affected
by the pressure error. If Taylor-Hood elements are used, however, then the energy error
of the velocity can be shown to depend on C(ν−1)∆t

∑M−1
n=0 infrh∈QTH

h
‖q − rh‖, e.g. [25],

although the scaling by C(ν−1) of this term can be reduced by using grad-div stabilization
[23, 31, 35].

To better demonstrate this effect, we compute Algorithm 2.1 with both Scott-Vogelius
and Taylor-Hood elements, for a series of simple test problems with increasing pressure
complexity and the same velocity solution. On the domain, Ω = (0, 1)2 and 0 6 t 6 0.1 = T ,
we choose

u = (1 + 0.01t)

(
cos(y)
sin(x)

)
, p = x+ y + sin(n(x+ y)),
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which will solve the NSE with an appropriate function f .
Solutions are approximated to this solution on a quasi-uniform barycenter-refined mesh

that provides 12,604 degrees of freedom with (P2, P
disc
1 ) Scott-Vogelius elements (7,258 for

velocity and 5,364 for pressure) and 8,182 degrees of freedom with (P2, P1) Taylor-Hood
(7,258 for velocity and 924 for pressure), kinematic viscosity is set to be ν = 0.01, timestep
∆t = 0.025, α =

√
ν∆t = 0.0158, N = 1, mesh width (h) = 0.0625, and the parameter

for pressure complexity n = 0, 1, 2, 3. The results are shown in Table 4.1, and as expected
the error in the Scott-Vogelius velocity solution is unaffected by the increase in pressure
complexity. However, the Taylor-Hood velocity solution significanty lost accuracy. Also
included in the table is the size of the velocity divergence, measured in L2(0, T ;L2(Ω)). As
expected, for the SV solution, near machine epsilon is found for each n, but for TH, the
quantity is non-negligible and gets worse with increasing pressure complexity.

n
∥∥uNSE − uSV

h

∥∥
2,1

∥∥∇ · uSV
h

∥∥
2,0

∥∥uNSE − uTH
h

∥∥
2,1

∥∥∇ · uTH
h

∥∥
2,0

0 7.332E-5 1.106E-14 3.075E-3 2.775E-3
1 7.332E-5 1.167E-14 5.315E-3 4.763E-3
2 7.332E-5 1.102E-14 1.716E-2 1.533E-2
3 7.330E-5 8.724E-15 3.584E-2 3.235E-2

Table 4.1. Errors in velocity and divergence for Experiment 1 for Scott-Vogelius and Taylor-Hood elements

used with Algorithm 2.1
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[33] M. Olshanskii, G. Lube, T. Heister, and J. Löwe, Grad-div stabilization and subgrid pressure models for
the incompressible Navier-Stokes equations, Comp. Meth. Appl. Mech. Eng., 198 (2009), pp. 3975–3988.

[34] M. Olshanskii and L. Rebholz, Velocity-vorticity-helicity formulation and a solver for the Navier-Stokes
equations, Journal of Computational Physics, 229 (2010), pp. 4291–4303.

[35] M. Olshanskii and A. Reusken, Grad-Div stabilization for the Stokes equations, Math. Comp., 73 (2004),
pp. 1699–1718.

[36] L. Rebholz and M. Sussman, On the high accuracy NS-α-deconvolution model of turbulence, Mathemat-
ical Models and Methods in Applied Sciences, 20 (2010), pp. 611–633.
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