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Abstract

AGalerkin finite element method is considered to approximate the incompressible Navier–Stokes equations together

with iterative methods to solve a resulting system of algebraic equations. This system couples velocity and pressure

unknowns, thus requiring a special technique for handling. We consider the Navier–Stokes equations in velocity––

kinematic pressure variables as well as in velocity––Bernoulli pressure variables. The latter leads to the rotation form of

nonlinear terms. This form of the equations plays an important role in our studies. A consistent stabilization method is

considered from a new view point. Theory and numerical results in the paper address both the accuracy of the discrete

solutions and the effectiveness of solvers and a mutual interplay between these issues when particular stabilization

techniques are applied.

� 2002 Published by Elsevier Science B.V.
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1. Introduction

In this paper we consider the steady incompressible Navier–Stokes equations (1). Typically to solve a

computational fluid dynamic problem a researcher is free to build a method in many ways by choosing

different discretization techniques, solvers for resulting discrete system, and setting a lot of parameters to

some particular values. A lot of tools are available to treat the problem (1) numerically. For example one
can choose a method from a family of finite differences, finite elements or finite volumes. Further a

pseudotime stepping or another iterative solver for the nonlinear problem can be applied to find time-in-

dependent solutions. One can try to reformulate the original continuous problem and doing that to obtain

discrete systems with different properties. These and many other particular ingredients can be put together

in many ways and this may crucially influence the quality of a final solution obtained as well as the total
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CPU time of computations. Although the ‘‘best’’ method, if it exists, seems to be problem dependent, a
reasonable objective is a method, which is able to solve a possibly widest class of problems efficiently, i.e.

with acceptable guaranteed accuracy and CPU time. Recently a considerable effort has been made to

compare the performance of various tools for simulating flow problems (see, e.g., [14,27,28,36,42], and

monograph [44]) and to derive optimal schemes. Nevertheless a demand for predictable, robust, and effi-

cient solvers/methods still exists. A good candidate for such a method is a finite element method

for the ‘‘true’’ mixed formulation of the Navier–Stokes equations, since applied properly it has good

stability properties and gives the possibility of the rigorous error control (e.g., [41]). However, the method

is efficient only if the resulting discrete systems, having a quite complicated structure, can be solved effi-
ciently.

The present paper is concerned with both the accuracy of the FE method and the numerical performance

of linear algebra tools applied here to solve discrete systems. We are in no way exhaustive in these topics

and concentrate further on techniques and results which are new, mentioning briefly those which are

standard. The total machinery applied to treat the problem consists of the following basic tools:

(a) A low order FE method (P1isoP2/P0 in experiments). Two types of consistent stabilization are addi-

tionally considered. One is the SUPG method, another one amounts in adding particular term derived
from the continuity equation to the momentum one.

(b) The fixed point or implicit backward Euler (BE) method to find a steady solution to a nonlinear prob-

lem.

(c) A block-triangular preconditioning combined with the BiCGstab iterations to solve the linearized

Navier–Stokes problem (of Oseen type).

(d) Geometric multi-grid methods to solve or to approximate subproblems for velocity and pressure, which

appear in item (c).

Details can be found in the next sections.

Non of the items (a)–(d) is absolutely new. Although the particular way of combining them is something

we do not find in the literature, similar ‘‘configurations’’ can be found in [44]. However, we emphasize in the

paper several ingredients which are new or not well studied, but were found to improve the overall per-

formance of the method. Referring to the remainder of the paper for details, we outline them briefly:

(a) The rotation form of the Navier–Stokes equations (2) is a starting point for FE approximation in some

experiments. It also appears to be useful for theoretical analysis of a solver performance. Where appro-
priate we will compare the performance of the rotation form with more commonly used convection

form (1).

(b) A particular stabilization method is studied numerically and understood from the theoretical point of

view: An additional term, crdivu, resulting from the continuity equation is added to the momentum
one. Early this term has appeared in residual-based stabilization methods (e.g., [17,33]), but its role

remained not very clear. We will see that the adding of this term intends to reduce the loss of accuracy,

which the discrete solution suffers for small viscosity values due to the presence of the first-order pres-

sure term (see Section 2.1). In the theory this effect does not depend on convection, however in exper-
iments with a benchmark nonlinear problem (driven cavity), this stabilization was found to be

especially important, if calculations are based on the form of equations with Bernoulli (total) pressure

(2). We see the reason in the fact that for this problem the Bernoulli pressure appears to be more ‘‘sub-

stantial’’ variable compared to the kinematic pressure.

(c) Preconditioned iterations to solve the linearized Navier–Stokes problem. A specially designed precon-

ditioner is used in the iterations. Moreover we will see that the stabilization mentioned in item (b) is

important for a superior behavior of this linear solver.
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Apart from the theory, numerical experiments for several problems are documented in detail. One
problem has analytical solution, another one is the driven-cavity problem for moderate and high Reynolds

numbers, the third one is ‘‘1:2’’ backward facing step problem with Re ¼ 150 and Re ¼ 800. Most im-
portant results and conclusions are summarized in the final section.

2. The problem and FE method

Let X be a bounded polygonal domain in RN , N ¼ 2, 3. We consider the steady incompressible Navier–
Stokes equations in the convection form: Find a vector function uðxÞ (velocity) and a scalar function pðxÞ
(kinematic pressure) from

� mDuþ ðu � rÞuþrp ¼ f in X;

divu ¼ 0 in X
ð1Þ

with given force field f and viscosity m > 0. Some boundary conditions should be additionally supplied (e.g.,
for velocity or stress tensor, but not solely for pressure cf. [22]). Throughout this section we assume homo-

geneous Dirichlet boundary conditions: u ¼ 0 on oX.
We also consider the rotation form of the Navier–Stokes problem:

� mDuþ ðcurluÞ � uþrP ¼ f in X;

divu ¼ 0 in X:
ð2Þ

The equivalence of these two formulations follows from the relation

ðu � rÞu ¼ ðcurluÞ � uþ 1
2
rðu2Þ ð3Þ

with u2 :¼ u21 þ � � � þ u2N . Thus the pressure distributions differ in these formulations. The Bernoulli pressure
P in (2) and the kinematic pressure p in (1) are tied by

P ¼ p þ 1
2
u2: ð4Þ

The velocity field recovered in (1) and (2) is the same.

Given conforming FE spaces Uh 	 H10ðXÞ and Qh 	 L02ðXÞ, the Galerkin FE discretization of (1) or (2) is
straightforward: Find fuh; phg 2 Uh � Qh from

mðruh;rvhÞ þ Nðuh; uh; vhÞ � ðph; divvhÞ þ ðqh; divuhÞ ¼ ðf; vhÞ 8vh 2 Uh; qh 2 Qh; ð5Þ
where Nða; u; vÞ is either ðða � rÞu; vÞ or ððcurlaÞ � u; vÞ, depending on a form of equations used. Contrary
to continuous case different forms of the equations in the FE scheme (5) may give different velocities uh:

relation (3) does not hold on the FE level unless u2h 2 Qh, the latter is not the case for any standard Uh=Qh

FE pair. For the rotation form the conservation principle is readily fulfilled on a finite element level thanks

to the property of the vector product operation: Nðuh; uh; uhÞ ¼ 0, which implies

mkruhk2 ¼ ðf; uhÞ: ð6Þ

Here and further k � k denotes the L2 norm and krvk ¼ ð
PN

i;j¼1 koui=oxjk
2Þ1=2. For the convection form

conservation can be ensured by setting Nða; u; vÞ ¼ 1=2fðða � rÞu; vÞ � ðða � rÞv; uÞg, leading however to
extra computations.

There are several critical issues associated with the Galerkin FE method. One is the compatibility of Uh

and Qh, i.e. the validation of the LBB (infsup) stability condition (see, e.g., [24]). LBB condition guarantees

that the FE velocity space is rich enough, comparing to FE pressure space, ensuring well-posedness and full

approximation order for the FE linear problem. In numerical experiments in the paper we used P1isoP2/P0
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FE pair (piecewise-constant pressure and piecewise-linear continuous velocity on 2-times finer triangula-
tion), which is LBB stable [24]: There exists mesh-independent constant lðXÞ, such that

inf
qh2Qh

sup
vh2Uh

ðqh; divvhÞ
krvhkkqhk

¼ lh P lðXÞ > 0: ð7Þ

It is well known that the Galerkin FE method gives optimal convergence results for elliptic problems. Thus

for low order finite elements, which we used, theorem 4.2 from Chapter IV in [20] ensures Oðh2Þ asymptotic
convergence of ku� uhk and OðhÞ of kp � phk provided that some assumptions on regularity of u, p and X
are valid. However, if a continuous problem losses its ellipticity, as happens with (1) or (2) as m ! 0, the
accuracy of the FE solution may deteriorate and the asymptotic convergence may be feasible for very fine

meshes only. Therefore reasonable discrete solutions become available with a mesh, which resolve a stiff

physical behavior of a continuous solution. Such a mesh may be prohibitively fine for practical compu-
tations, for this reason upwind, Petrov–Galerkin, or least-squares methods are popular, since they enhance

stability (ellipticity) of the discrete system, preserving (hopefully) approximation properties. In some nu-

merical experiments we will use the SUPG method. Additionally in the next section we go into some details

of what we call ‘‘rdiv’’-stabilization. Although this alteration of the basic Galerkin method (5) is not new
and can be found in [13,17,33,46], we concentrate on this issue for the following reasons: Neither physical

nor numerical contents of it seems has been clearly understood; The cited references give different recipes

for choosing ‘‘optimal’’ parameter, leaving unclear whether this additional term plays a key role or is in-

troduced for technical reasons only; We will see in theory and numerical experiments a positive effect both

on solution accuracy and the solver performance; For the equations in the rotation form this stabilization

was found to be necessary already for driven cavity problem with Re ¼ 400.

2.1. »div––stabilization

Consider as a model the Stokes problem:

� mDuþrp ¼ f in X;

divu ¼ 0 in X:
ð8Þ

The FE scheme for this problem reads: Find fuh; phg 2 Uh � Qh solving

mðruh;rvhÞ þ cðdivuh; divvhÞ þ ðph; divvhÞ � ðqh; divuhÞ ¼ ðf; vhÞ 8fvh; qhg 2 Uh � Qh: ð9Þ
The parameter cP 0 is a stabilization parameter, which role is underpined by the error estimate in the
theorem below and numerical experiments in Section 4. Since the term cðdivuh; divvhÞ in (9) can be viewed
as adding the consistent term crdivu to the momentum equation in (8), we call (9) the rdiv -stabilized
scheme. Although this term is consistent for continuous equations, the finite element solution depends on a

value of c. As we will see, too large values of c ‘‘overstabilize’’ the problem and make corresponding linear
algebraic system poor conditioned. The question of an optimal c will be addressed further.

Theorem 1. Assume that Uh and Qh are such that lh from (7) is positive. Denote b ¼ maxfm; cg. The following
error estimate holds

mkrðu� uhÞk2 þ ckdiv ðu� uhÞk2 þ
l2h
b
kp � phk2

6C inf
/2Uh

mkrðu
��

� /Þk2 þ c

�
þ b

l2h

�
kdiv ðu� /Þk2

�
þ 1

b
inf
w2Qh

kp � wk2
�

ð10Þ

with some constant C > 0 independent of u, p, and all parameters of the problem.
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Proof.We prove (10) in three steps. Not mentioning explicitly, we use the inequality kdivvk6 krvk for any
v 2 H10. Denote also

aðu; p; v; qÞ :¼ mðru;rvÞ þ cðdivu; divvÞ þ ðp; divvÞ � ðq; divuÞ;

jjjv; qjjj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkrvk2 þ ckdivvk2 þ ðl2h=2bÞkqk

2

q
8fv; qg 2 H10 � L02:

Step 1 (stability estimate). First we show that for arbitrary feh; rhg from fUh � Qhg there exists a pair
fvh; qhg such that

aðeh; rh; vh; qhÞP
1

4
jjjeh; rhjjj jjjvh; qhjjj: ð11Þ

Condition (7) enables us to consider zh 2 Uh such that krzhk ¼ krhk and ðrh; divzhÞP lhkrhkkrzhk: Then
an appropriate choice of fvh; qhg in (11) can be vh ¼ eh þ ðlh=2bÞzh, qh ¼ rh. Indeed, via Young�s inequality
we get

aðeh; rh; eh; rhÞP mkrehk2 þ ckdivehk2;

aðeh; rh; zh; 0ÞP
lh

2
krhk2 �

m2

lh
krehk2 �

c2

lh
kdivehk2:

We multiply the second inequality by lh=2b and add it to the first one. This leads to

a eh; rh; eh

�
þ lh

2b
zh; qh

�
P

m
2
krehk2 þ

c
2
kdivehk2 þ

l2h
4b

krhk2P
1

2
jjjeh; rhjjj2:

Now to prove inequality (11) we need to show

jjjvh; qhjjj6 2jjjeh; rhjjj:
The latter is easy to see, thanks to the definition of qh ¼ rh and vh ¼ eh þ ðlh=2bÞzh, and

lh

2b
zh; 0

����
����

����
����

����
����
2

¼ l2h
4b2

ðmkrzhk2 þ ckdivzhk2Þ6
l2h
2b

krhk26 jjjeh; rhjjj2:

Step 2 (continuity estimate). From the Cauchy inequality we get for any fe; rg and fv; qg from
H10ðXÞ � L02

aðe; r; v; qÞ6 mkrekkrvk þ ckdivekkdivvk þ krkkdivvk

þ kqkkdivek6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkrek2 þ c þ b

l2h

� �
kdivek2 þ 1

b
krk2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmkrvk2 þ ckdivvk2Þ þ l2h

b
kqk2

s

¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkrek2 þ c þ b

l2h

� �
kdivek2 þ 1

b
krk2

s
jjjv; qjjj ¼

ffiffiffi
2

p
‘ðe; rÞjjjv; qjjj: ð12Þ

Here we denote

‘ðe; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkrek2 þ c þ b

l2h

� �
kdivek2 þ 1

b
krk2

s
:

Step 3. Let eh ¼ uh � /, rh ¼ ph � w and e ¼ u� /, r ¼ p � w for some arbitrary / 2 Uh and w 2 Qh: The
Galerkin orthogonality implies

aðeh; rh; vh; qhÞ ¼ aðe; r; vh; qhÞ 8fvh; qhg 2 Uh � Qh: ð13Þ
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Stability estimate (11), (13), and (12) with v ¼ vh, q ¼ qh enables us to estimate jjjeh; rhjjj6 4
ffiffiffi
2

p
‘ðe; rÞ. Since

lh 6 1, we also have jjje; rjjj6 ‘ðe; rÞ. Therefore, thanks to triangle inequality we get the result

jjju� uh; p � phjjj6 jjjeh; rhjjj þ jjje; rjjj6 ð4
ffiffiffi
2

p
þ 1Þ‘ðe; rÞ: ð14Þ

Since / and w in the definition of e and r are arbitrary functions from Uh and Qh, we can take infimum in

the r.h.s. in (14) over these spaces. Therefore we arrive at (10) with C ¼ ð4
ffiffiffi
2

p
þ 1Þ2 after squaring. �

The theorem can be applied to draw convergence estimates for a particular LBB-stable finite element

pair as in the example below.

Example 1. Assume the solution to the Stokes problem (8) is smooth enough and the mesh is quasi-regular,

then for P1isoP2/P0 finite elements we have

mkrðu� uhÞk2 þ
l2h
b
kp � phk26Ch2 b 1

��
þ 1

l2h

�
kuk2H2 þ

1

b
kpk2H1

�
: ð15Þ

To see the predicted effect of introducing c-term suppose that the problem (8) has a non-trivial continuous
pressure solution (p 62 Qh) and suppose for a moment that u and p are independent of m, then for c ¼ 0 the
estimate (15) ensures only

krðu� uhÞk6
cðhÞ
m

; ð16Þ

while for c ¼ Oð1Þ

krðu� uhÞk6
cðhÞffiffiffi

m
p ; ð17Þ

where a constant cðhÞ depends on approximation properties of FE spaces and p, but not on m. Moreover for
c ¼ Oð1Þ the following natural norm of the error

j½u� uh; p � ph�j :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkrðu� uhÞk2 þ kp � phk2

q
ð18Þ

is controlled independently of m, although this norm becomes weak for velocity if m ! 0. Of course, in �real�
problems both u and p are m-dependent, and therefore their norms involved in standard approximation
estimates, say kukH2 and kpkH1 , can be m-dependent too. For the Navier–Stokes problem this dependence is
hard to predict. A standard regularity theory for the equations suggests kukHk � kpkHk�1 . At the same time

theory from this section, in particular (16) and (17), is well supported by numerical experiments not only for

the Stokes problem, but also for the linearized Navier–Stokes problem. Experiments with nonlinear

problem also clearly show that rdiv-stabilization improves accuracy for carefully chosen parameter c.
Example 1 illustrates that this stabilization intends to suppress instabilities induced by the pressure,

whenever kpkH1 is noticeable.
The estimate (10) hints also the best choice of the stabilization parameter. Consider first the case when an

approximation of velocity is one degree larger than of pressure (e.g., P1isoP2–P0, non-conforming P1–P0,
P2–P1 FE pairs), then a balance of the last two terms in (10) gives the choice c � lh for m6 lh and c ¼ 0
otherwise. In the case of equal order approximation (e.g., P1isoP2–P1 FE pair) the best choice is c � lhh for
m6 lhh, however provided that the pressure is sufficiently smooth: kpkH2 is reasonably bounded. Numerical
experiments with P1isoP2–P0 FE pair in the paper confirm the above choice. For some simple domains

quite accurate estimates of lh are known (see [11]). Moreover numerical experiments in [11] show that lh

does not depend on the anisotropy of triangulation for P1isoP2–P0 elements, see [1] for the coverage of

some other finite elements pairs.
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2.2. SUPG stabilization

Another potential source of instabilities in (1) is dominating convection terms. This enforces one to

stabilize a discrete system if a mesh is not sufficiently fine. We briefly outline the SUPG method we im-

plemented. Much more details on this family of stabilization methods can be found in [9,13,17,33], and

references therein.

The Navier–Stokes equations in convection form (1) is a starting point, further a weighted residual for

FE solution is added to the Galerkin scheme (5) multiplied by a solution-depended test function:

mðruh;rvhÞ þ Nðuh; uh; vhÞ � ðph; divvhÞ þ ðqh; divuhÞ
þ
X
s2Th

rðs; uhÞð�mDuh þ uh � ruh þrph � f; uh � rvhÞs ¼ ðf; vhÞ 8vh 2 Uh; qh 2 Qh; ð19Þ

The ‘‘new’’ term in (19) is evaluated element-wise for each element s of a triangulation Th. A parameter
rðs; uhÞ is element and solution-dependent. Several recommendations can be found in literature for the
choice of rðs; uhÞ. The general idea is to add almost no additional stabilization terms in regions of small
mesh Reynolds numbers, hence to recover �optimal�Galerkin method by setting rðsÞ � 1 (or even rðsÞ ¼ 0)
in these regions, but to add these terms in regions of large mesh Reynolds numbers. However, the particular

choice of rðs; uhÞ is still a matter of discussion. We use the one from [33] and [44], see also [34]:

rðs; uhÞ ¼ r
hs

kukX

2Res

1þ Res
; Res :¼

kukL2ðsÞhs

m
: ð20Þ

This choice is provided by the minimization of an a priori error estimate for the discrete solution of (19) and

was successfully tested in many numerical experiments in [44].

In our experiments we take either r ¼ 0:2 or r ¼ 0, the latter means that no SUPG terms are added. For
isotropic meshes hs represents a diameter of element s. In the case of anisotropic meshes hs can be chosen as

an ‘‘effective’’ mesh size: An element diameter in a flow direction [18]. Another analysis for anisotropic grids

is found in [2].

Since we use piecewise-linear approximation for velocity and piecewise-constant for pressure, viscous and

pressure terms disappear from FE residual in (19) and the method amounts in adding
P

s2Th rðs; uhÞðuh �
ruh; uh � rvhÞs to momentum equations. If f 6¼ 0, then the extra f-dependent term is also added.
In our numerical experiments SUPG method will be used for calculating high-Re flows and only with

convection form of equations.

3. Solvers

To illustrate ideas that are fairly standard we will occasionally use ‘‘continuous’’ notations in this sec-

tion. When details are important we will operate with matrices and vectors of nodal values. To solve

nonlinear problem the fix-point defect correction method is applied: Given iterate fum; pmg and relaxation
parameter x > 0 find fumþ1; pmþ1g from

umþ1

pmþ1

� �
¼ um

pm

� �
� xLNSðumÞ�1 �mDum � crdivum þ Nðum; umÞ þ rpm � f

�divum
� �

; ð21Þ

where Nðum; umÞ ¼ curlum � um or ¼ um � rum: For r > 0 the SUPG terms are also included to compute the
defect in (21). LNSðumÞ�1 is a solution operator to the linearized Navier–Stokes equations. This iterations
are quite robust for the problem in the convection form [44], especially if stabilizing terms are added.

However we found that for the rotation form iterations (21) are not so robust for small m. Thus in the case
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of the rotation form we use implicit BE method. Then on every ‘‘time’’ step of BE one arrives at nonlinear

problem similar to (1) or (2) with additional reactive term ð1=dtÞu in the momentum equations. To solve
this new nonlinear problem we perform few iterations (21), taking velocity from the previous time as an

initial guess.

The linearized problem to be solved on each iteration (21) reads: Given um and resmu find fv; qg from

1

dt
v� mDv� crdivvþ Nðum; vÞ þ rq ¼ resmu in X;

� divv ¼ �divum in X;

homogenuous b:c: on oX;

ð22Þ

where Nðum; vÞ ¼ curlum � v for the rotation form and Nðum; vÞ ¼ ðum � rÞv for the convection one. If the
SUPG method is used for nonlinear problems, then the SUPG term is linearized in the natural way:P

s rðs; umÞðum � rvh; u
m � rwhÞs and included in the FE formulation of (22). This additional term is sym-

metric and non-negative.

Note that the linearization of equations in rotation form results in the 0-order term ðcurlumÞ � v in (22),
comparing to the 1st-order of ðum � rÞv in convection form. In both cases the linearized equations preserve
ellipticity and conservation property (6).

3.1. Linear solver

Problem (22) is linear, however non-symmetric and of saddle-point type. Therefore a special technique is

required to treat it. To solve (22) we use coupled iterations, i.e. pressure and velocity are iterated together.

Several methods of this type can be found in the literature. Often direct multi-grid methods are used (e.g.
[25,45,51,52]). Discussion of advantages and disadvantages of such methods and further references can be

found in [50]. Trying to avoid particular problems associated with building a multigrid for saddle-point

problem, more recently preconditioned methods based on outer–inner iteration, which have a long history

[4] for symmetric saddle-point problems, were adopted for non-symmetric ones (e.g., [8,16,37,43]). It is not

our intention here to compare these different approaches, see results of this type for symmetric case in [14].

Below we consider preconditioned method based on outer–inner iterations with particular attention to the

case of m ! 0.
Let A and B be matrices stemming from a FE method applied to (22): For any basic nodal functions

wi;wj 2 Uh and /k 2 Qh the entries of matrices A and B are defined by

Ai;j ¼ mðrwj;rwiÞ þ cðdivwj; divwiÞ þ
1

dt
wj

�
þ Nðum;wjÞ;wi

�
þ
X
s2Th

rðs; umÞðum � rwj; u
m � rwiÞs;

Bk;i ¼ �ðdivwi;/kÞ:

With these notations one has to solve the system of linear algebraic equations:

A BT

B 0

� �
x
y

� �
¼ f

g

� �
: ð23Þ

The spectrum of the matrix from (23) contains eigenvalues with both positive and negative real parts and its

condition number strongly depends on the mesh-size and m ([16,37,48]), leading to a poor conditioning as
h ! 0 and/or m ! 0. Thus to solve (23) iteratively a preconditioning is highly desirable. Let ÂA be a pre-
conditioner for A and ŜS a preconditioner for S, the Schur complement of the system:

S :¼ BA�1BT:
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Using a pattern from [30], the block triangular preconditioner for (23) is defined as

P�1 ¼ ÂA�1 ÂA�1BTŜS�1

0 �ŜS�1

 !
: ð24Þ

If ÂA ¼ A and ŜS ¼ S, then a preconditioned Krylov subspace method for (23) will converge in at most two
iterations. Generally, we are looking for ÂA and ŜS to be close to A and S, but such that ÂA�1x and ŜS�1y can be
‘‘easily’’ computed for given vectors x and y. Convergence analysis of the GMRES method with this
preconditioning is given in [30]. We use the BiCGstab method [47] to iterate the following preconditioned

system up to a desirable tolerance:

A BT

B 0

� �
ÂA�1 ÂA�1BTŜS�1

0 �ŜS�1

 !
x̂x
ŷy

� �
¼ f

g

� �
: ð25Þ

Two essential ingredients: ÂA and ŜS are remaining to be defined. First let us consider the rotation form. In
doing this we use some ideas from [37,38]. ÂA is a preconditioner for the pure velocity problem. The con-
tinuous counterpart of this problem reads

av� mDv� crdivvþ w� v ¼ r:h:s in X;

homogenuous b:c: on oX
ð26Þ

with w ¼ curlum, a ¼ 1=dt. Compared to the convection–diffusion vector problem that appears, if one
linearize the Navier–Stokes equations in convection form, Eq. (26) has 2nd-order and 0-order terms only.

This allows standard multi-grid components to work well and to solve a FE approximation of Eq. (26).

Multi-grid components include a block Jacobi or block Gauss–Seidel iteration as smoother. The robustness
of the multi-grid as a solver was proved in [38] for the case c ¼ 0. At the same time, if c ¼ Oð1Þ and
m; a ! 0, the problem (26) has anisotropic diffusion terms and may have a large kernel in the limit case
m ¼ 0 and a ¼ 0, therefore the performance of standard multi-grid tools deteriorates. Fortunately, as we
will see from numerical experiments, for the realistic values of m, a loss in convergence is not dramatic and
we have a hope that specially designed smoothing and prolongation operators can further improve the

situation. We summarize all these, saying that for ÂA�1 we take few V-cycles of the multi-grid method

applied to solve FE system approximating (26).

Demand for a preconditioner to the Schur complement S is the price we pay for the desire to solve ‘‘true’’
coupled systems like (1) or (2), rather then to decouple somehow pressure from the original system [39].

Matrix S is a dense matrix: Most entries are non-zero and cannot be computed in a straightforward
(economical) manner. Therefore, non-standard considerations have to be made to build ŜS. Below we
present a particular choice of ŜS and some analysis aimed to predict the robustness of this choice follows. Let
Mp be a mass matrix for the pressure FE space and M̂Mp its diagonal lumping, then

ŜS�1 ¼ ðm þ cÞM̂M�1
p þ S0ðwÞ�1; ð27Þ

where S0ðwÞ :¼ BM̂MuðwÞ�1BT is a Schur complement of

M̂MuðwÞ BT

B 0

� �
; where in two-dimensional case M̂MuðwÞ ¼ aM̂Mu �M̂Mw

u

M̂Mw
u aM̂Mu

 !
; ð28Þ

M̂Mu is a lumped velocity mass matrix and M̂Mw
u is a lumped mass-type matrix, corresponding to the

w-weighted scalar product
R

X wðxÞuðxÞvðxÞdx. For further clarity we note that (28) can be viewed as the
matrix of a discrete counterpart of the following reduced (m ¼ 0, c ¼ 0) problem Eq. (22):
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avþ w� vþrq ¼ r:h:s: in X;

� divv ¼ r:h:s: in X;

homogenous b:c: for v � n on oX; n� normal vector to oX:

ð29Þ

In the three-dimensional case M̂MuðwÞ is a 3� 3 block matrix. The Schur complement S0ðwÞ of the reduced
problem is now a sparse matrix that mimics a mixed discretization for the pressure-Poisson problem.

Therefore, a multi-grid method is a good candidate to evaluate S0ðwÞ�1: In fact, few multi-grid V-cycles will
suffice for our needs.

Important to note that problem (29) (resp. (28)) can be ill-posed for a ¼ 0: Two decisions can be made
for small a. The first, which we commonly take, is to add S0ðwÞ�1 to (27) only if aP �aa. We take �aa ¼ 1 in the
experiments. However, if a ¼ 0 and c ¼ 0 the analysis in the next section predicts that artificial �aa � kwk is a
useful choice for the case of a small viscosity. We will call ŜS with �aa––a modified Schur complement pre-
conditioner.

For the Navier–Stokes equations in convection form the linearization leads to system (23). Now A stands
for a matrix corresponding to a discretization of the vector convection–diffusion problem (with the reactive

term and anisotropic diffusion):

av� mDv� crdivvþ ða � rÞv ¼ r:h:s in X;

homogenuous b:c: on oX;
ð30Þ

with a ¼ um. If c ¼ 0, then the system (30) splits into two scalar convection–diffusion problems. For a FE
approximation of the latter multi-grid methods are known to be a good choice as solvers. We use a geo-

metric multi-grid method to build a preconditioner ÂA. Smoother, grid transfer operators, and coarse-
grid matrices are the main ingredients to be defined. We found that for stabilized equations the appropriate

choice was standard (induced by the embeddings U2h 	 Uh and P2h 	 Ph) 1st-order projection and restric-
tion, alternating Gauss-Seidel method with lexicographical ordering of unknowns as a smoother, and a FE
approximation of (30) on a coarse grid as the coarse-grid problem. For the coarse-grid problem we

found important to define SUPG stabilization parameters correspond to the coarse grid; for a similar

experience with a multi-grid method for convection–diffusion equations see [40]. For globally refined grids

multi-grid methods, e.g. V- and W-cycles for two-dimensional problems lead to optimal complexity,

however for locally refined grids special smoothing strategies should be used to retain optimal complexity

(see, [5]).

A proper preconditioner for the Schur complement S in the convection form is a challenging problem.
Recently in [15,31,43] two types of preconditioners, which take the convection into account, were proposed.
They were derived with assumptions on convection a to be a constant vector and boundary conditions to be

periodic. Both preconditioners require the construction of operators of the convection–diffusion type on the

discrete pressure space. For piecewise constant pressure this imposes certain difficulties. One possible way

to overcome them [49] is to consider a dual triangulation for the pressure by connecting the centroids of the

triangles in which pressure is defined. Then one can define piecewise linear and continuous pressure on the

dual triangulation. Avoiding additional implementation efforts, we alternatively set ŜS�1 ¼ ðm þ cÞM̂M�1
p .

Numerical experiments from [31,43] show the advantage of their more sophisticated preconditioner for the

case of c ¼ 0, this modification can be especially useful for higher order pressure approximations.

3.2. Fourier analysis

This subsection gives an analysis that explains the advantage of the choice (27) of ŜS. We consider the
two-dimensional periodic case and constant wðxÞ ¼ w 6¼ 0:
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Let us evaluate the operator S on a given harmonic qðxÞ ¼ expðiðc; xÞÞ, where c; x 2 R2. First we have

rqðxÞ ¼ fic1 expðiðc; xÞÞ; ic2 expðiðc; xÞÞg:

Looking for u of the form u1 ¼ ik1 expðiðc; xÞÞ, u2 ¼ ik2 expðiðc; xÞÞ, we find from

� mDu1 � c
o

ox1

ou1
ox1

�
þ ou2

ox2

�
þ au1 � wu2 ¼

oqðxÞ
ox1

;

� mDu2 � c
o

ox2

ou1
ox1

�
þ ou2

ox2

�
þ au2 þ wu1 ¼

oqðxÞ
ox2

the coefficients

k1 ¼
ða þ mjcj2 þ cc22Þc1 þ ðcc1c2 þ wÞc2

ða þ mjcj2cc21Þða þ mjcj2cc22Þ � c2c21c
2
2 þ w2

;

k2 ¼
ða þ mjcj2 þ cc21Þc2 � ðcc1c2 þ wÞc1

ða þ mjcj2cc21Þða þ mjcj2cc22Þ � c2c21c
2
2 þ w2

:

Therefore,

S expðiðc; xÞÞ ¼ �divu ¼ ða þ mjcj2Þjcj2

ða þ mjcj2Þða þ ðm þ cÞjcj2Þ þ w2
expðiðc; xÞÞ:

Let us consider the case of a ¼ 0. For a > 0 the condition number of the preconditioned system only improves

and m-independent estimates can be obtained (see relevant analysis for the case c ¼ 0 in [37]). For a ¼ 0 we
omit S0ðwÞ�1 in ŜS�1 and for the preconditioned problem we have

ŜS�1S expðiðc; xÞÞ ¼ mðm þ cÞjcj4

mðm þ cÞjcj4 þ w2
expðiðc; xÞÞ: ð31Þ

This results for fine enough mesh (jcj4 can be large) in

c ¼ Oð1Þ: condðŜS�1SÞ � 1þOðm�1Þ; m ! 0; ð32Þ

c ¼ 0: condðŜS�1SÞ � 1þOðm�2Þ; m ! 0: ð33Þ

The asymptotic in (33) is consistent with known results for Oseen problem [16,37]. Comparing (32) and

(33), we see that the stabilized problem admits much better, although still simple, preconditioning. This

result of improving the condition number for the Schur complement of the stabilized system agrees with the

improvement of discrete solution accuracy, see Theorem 1. Thus, while rdiv-stabilization is consistent for
the Navier–Stokes system it amounts in additional diffusion for the Schur complement of the system.

To derive further conclusions from (31) denote by kn the nth eigenvalue of ŜS
�1S in the increasing se-

quence 0 < k1 < k2 < � � � < kn < � � � The eigenvalue kn can be of multiplicity >1 and it corresponds to some
jcj2P n. Now, considering separately two cases mðm þ cÞjcj46w2 and mðm þ cÞjcj4 > w2, it is easy to check
that

1

2
min 1; n2

mðm þ cÞ
w2

� �
6 kn 6 1; n ¼ 1; 2; . . . ð34Þ

Therefore, besides the difference in order of smallest eigenvalues for c ¼ 0 and c ¼ Oð1Þ, the operator ŜS�1S
has at most Oðm�1=2Þ small eigenvalues for c ¼ Oð1Þ, while for c ¼ 0 the bound is Oðm�1Þ.
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Numerical experiments also show that for the non-stabilized problem (c ¼ 0) it makes sense to include
S0ðwÞ�1 in the preconditioner ŜS (see (27)) even for a ¼ 0, taking some auxiliary �aa > 0 in the definition of
S0ðwÞ (see (28)). The Fourier analysis confirms this fact: It is straightforward to check (a ¼ 0; c ¼ 0):

ŜS�1S expðiðc; xÞÞ ¼ m2jcj4

m2jcj4 þ w2

 
þ ð�aa2 þ w2Þmjcj2

�aaðm2jcj4 þ w2Þ

!
expðiðc; xÞÞ:

Setting �aa ¼ jwj, we get

ŜS�1S expðiðc; xÞÞ ¼ m2jcj4 þ wmjcj2

m2jcj4 þ w2
expðiðc; xÞÞ:

Hence

condðŜS�1SÞ6 4 m2 þ w2

m2 þ wm
¼ O w

m

� �
as

w
m
! 1

which is better then (33) for w ¼ Oð1Þ.
Since for ‘‘real’’ problems w is not a constant, but a function of a quite complicated behavior, numerical

experiments are important to verify our conclusions.

4. Numerical experiments

Performing numerical experiments we were particularly interested in: (1) The effect of rdiv-terms on
discrete solution accuracy and convergence of iterations; (2) The performance of linear multi-grid methods

for the auxiliary velocity and pressure problem; (3) The performance of the preconditioned Krylov sub-

space method to solve (25) for the linearized Navier–Stokes problem; (4) The convergence of nonlinear

iterations to the steady solution.

Three model problems were considered.

Problem I (with analytical solution). We take ‘‘exact’’ solution u ¼ ðu1; u2Þ and p as

u1ðx; yÞ ¼
r2
2p

er2y

ðer2 � 1Þ sin
2pðer2y � 1Þ
er2 � 1

� �
1

�
� cos 2pðe

r1x � 1Þ
er1 � 1

� ��
;

u2ðx; yÞ ¼ � r1
2p

er1x

ðer1 � 1Þ sin
2pðer1x � 1Þ
er1 � 1

� �
1

�
� cos 2pðe

r2y � 1Þ
er2 � 1

� ��
;

pðx; yÞ ¼ r1r2
er1xer2y

ðer1 � 1Þðer2 � 1Þ sin
2pðer1x � 1Þ
er1 � 1

� �
sin

2pðer2y � 1Þ
er2 � 1

� � ð35Þ

with r1 ¼ 3, r2 ¼ 0:1 and X ¼ ð0; 1Þ � ð0; 1Þ. Bernoulli pressure is computed from (4). This type of con-
vection simulates a rotating vortex. The vortex center has coordinates (x0; y0), x0 u 0:785, y0 u 0:512. This
analytical test was taken from the paper of Berrone [6], where the corresponding values of approximation

errors are given for a SUPG-type scheme and P1/P1 FE pair applied to the linearized Navier–Stokes

problem in convection form and both uniform and adapted grids. In our experiments the LBB stable
P1isoP2/P0 finite elements are used on a uniform triangulation.

Problem II (driven cavity). In X ¼ ð0; 1Þ � ð0; 1Þ find fu; pg solving (2) with f ¼ 0 and u1ðx; 1Þ ¼ 1,
u2ðx; 1Þ ¼ 0 and u ¼ 0 on the remainder of the boundary. This is a standard test for incompressible flow
solvers and a lot of data is available for comparison.
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Problem III (backward facing step). Another standard test for steady Navier–Stokes equations is a flow
over a backward facing step, cf. Fig. 1. We employed ‘‘h:H ¼ 1:2’’ configuration (H is a height of the
channel and h is a height of the step) with parabolic velocity profile on the inlet Cin. The average inflow is
defined as

U ¼ 1

jH � hj

Z
Cin

u1ð�2; yÞdy:

The Reynolds number is Re ¼ UH=m. On the outflow part of the boundary Cout we implement natural
‘‘do-nothing’’ boundary conditions, see e.g. [10], to minimize an upstream influence of the artificial outflow

boundary. Both numerical and experimental results are available from literature. The steady two-dimension

flow is known to be stable for the Reynolds numbers up to 800 [23].

In Table 1 we summarize the results of calculations for Problem I with different values of parameter c.
We denote eh ¼ u� uh and qh ¼ p � ph, the norm j½eh; qh�j was defined in (18). The positive effect of the
rdiv-stabilization both w.r.t. accuracy and the total number of iterations is seen for the linearized Navier–
Stokes problems. Here and further Niter is the total number of coupled preconditioned BiCGstab iterations
for (25) performed solving a linear or nonlinear problem. A fixed number (eight) of multigrid V-cycles were

performed to evaluate ÂA�1 on each iteration of the BiCGstab. The linearized problem was solved in both

forms: While the approximation results were almost the same and thus reflected only for rotation form,

convergence of the solvers differ. In brackets [ ] we put numbers for convection form. Two factors have an

impact on the convergence of iterations. The first one is the quality of preconditioner ÂA. As explained in
Section 3 it becomes worse as m=c ! 0: Another is a poor preconditioning of Schur complement as c ! 0

Fig. 1. Backward facing step configuration.

Table 1

The effect of rdiv-stabilization for the linearized Navier–Stokes problem. Problem I (h ¼ 1=16)
Viscosity Value of c

0 0.05 0.2 0.5 1.0

1e)1 ku� uhk 1.9e)2 1.3e)2 8.6e)3 9.0e)3 1.3e)2
kp � phk 4.3e)2 4.4e)2 4.9e)2 6.7e)2 1.3e)1
j½eh; qh�j 4.1e)1 2.9e)1 1.8e)1 1.5e)1 1.8e)1
Niter 11 [11] 9 [10] 6 [8] 6 [5] 4 [4]

wcd 0.06 [0.07] 0.07 [0.08] 0.11 [0.19] 0.16 [0.32] 0.21 [0.39]

1e)3 ku� uhk 1.8e)0 1.1e)1 8.0e)2 1.2e)1 1.4e)1
kp � phk 3.3e)1 5.0e)2 4.6e)2 5.3e)2 6.0e)2
j½eh; qh�j 3.1e)0 1.5e)1 9.0e)2 1.1e)1 1.2e)1
Niter 29a [div] 11 [12] 10 [16] 19 [33] 30 [92]

wcd 0.08 0.37 [0.64] 0.50 [0.77] 0.59 [0.85] 0.61 [0.89]

a Converges with modified pressure preconditioner only, wcd––convergence factor in the MG-preconditioner for velocity problem.

M.A. Olshanskii / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5515–5536 5527



and m � 1. For the rotation form setting ŜS�1 ¼ mM̂M�1 þ ŜS�1
0 ð�aaÞ with auxiliary �aa ¼ 1 cures the situation of

c ¼ 0 and m � 1.
The best choice of c is apparently cu 0:2. We will use this value in our further experiments. The esti-

mates (16) and (17) are in excellent agreement with the results from Table 1. We see that j½��j-norm is
controlled independently of m only for c > 0. As predicted by (10), velocity, but not pressure, is sensitive to
this stabilization. Although we present results only for h ¼ 1=16, the situation is qualitatively the same,
including the same value of optimal c, for other values of mesh size.
Setting c ¼ 0:2 we test the solver for the linearized Problem I (rotation form). First we try the BiCGstab

iterations for (25) with the inner velocity problem being solved almost exactly (up to 10�4 relative accuracy).
The results (see Table 2) show the very robust behavior of the outer iterations to solve linearized Navier–

Stokes problem (22) with respect to the mesh-size and viscosity (see discussion in Section 3). Nouter shows the
number of outer coupled iterations needed for 10�6 reduction of the residual. At the same time the con-

vergence of inner solver deteriorates as m ! 0, in fact as m=c ! 0, resulting in a larger number of inner
iterations for evaluation of ÂA�1. The value of Ninner shows the average number of inner multigrid V-cycles
with two pre- and post-smoothings needed each time to solve velocity problem. The number of inner it-

erations grows approximately as Oðm�1=2Þ, reflecting the growth of the condition number for A. The de-
pendence on h is caused by a poor smoothing property of smoothing iterations in the multigrid for small
m=c.
The results from Table 2 are of theoretical interest, since solving the original nonlinear problem we

neither solve the linearized one with high accuracy, nor we solve the inner velocity problem exactly, but

perform only a fixed number of multigrid iterations (e.g., 2). Of course, the latter has a consequence that

outer iterations become less robust, but a total computational work needed to achieve the same accuracy

becomes much less.

Next we test a solver for the nonlinear problem. It was found that fixed point iterations known to be

quite robust for two-dimensional the Navier–Stokes equations in convection form fail to be robust for
rotation form, when viscosity is small. Therefore, for low m we have to use implicit time stepping method
with time step dt to obtain steady solutions. The time step depends on m. In Table 3 we illustrate this effect
solving problem I. We check the accuracy and the performance of the solvers. On each ‘‘time step’’ we

perform four nonlinear iterations (21) and the stopping criteria in coupled BiCGstab iterations for linea-

rized problem was the 0.1 reduction in the residual. To force the inner iterations to converge, we take dt
small enough.

Further we present results for the driven cavity problem, see Tables 4, 5 and Fig. 3. We are interested in

the results for this problem (at least) for the following reasons: Compared to problem I the solution is now
Re-dependent and has boundary layers. The solution to the problem (velocity, pressure, and vorticity(!)) is
singular in upper corners. In particular maxx jcurluhðxÞj ! 1 as h ! 0. We note that no mesh adaptation
was made.

Table 2

Convergence data of the BiCGstab for (25) with an exact velocity solver

h ¼ 1=32
Viscosity 2e�2 5e�3 1e�3 1e�4
Nouter 5 5 6 6

Ninner 13 27 65 230

m ¼ 1e�3
Mesh size 1/16 1/32 1/64 1/128

Nouter 5 6 6 6

Ninner 55 65 85 93
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Table 3

Error in pressure and velocity, convergence data for nonlinear problem I in rotation form

Parameters Mesh size

1/16 1/32 1/64 1/128

m ¼ 2e�2 ku� uhk 1.8e�2 5.3e�3 1.4e�3 3.5e�4
dt ¼ 1 kp � phk 4.3e�2 1.5e�2 6.3e�3 3.0e�3

Nstp 7 7 7 7

Niter 45 50 50 52

m ¼ 5e�3 ku� uhk 4.4e�2 1.4e�2 4.1e�3 1.2e�3
dt ¼ 0:25 kp � phk 4.5e�2 1.5e�2 6.0e�3 2.8e�3

Nstp 73 78 81 83

Niter 290 383 467 490

Nstp––number of time steps in BE method, Niter––total number of iterations in linear solver.

Table 4

Convergence data, driven cavity problem

Reynolds number,

method parameter c
Mesh size

1/16 1/32 1/64 1/128

Rotation form

dt 1 0.25 0.166 0.1

Re ¼ 400 Nstp 18 87 148 246

BE Niter 178 504 633 791

c ¼ 0:2 wC 0.19 0.11 0.12 0.07

dt 1 0.25 0.1 0.0625

Re ¼ 1000 Nstp 30 67 151 279

BE Niter 183 381 582 1290

c ¼ 0:2 wC 0.26 0.18 0.15 0.10

Convection form

Re ¼ 1000 Nstp 12 13 13 13

Fix-point Niter 301 581 903 1339

c ¼ 0 wC 0.88 0.92 0.93 0.95

Re ¼ 1000 Nstp 11 15 15 14

Fix-point Niter 78 151 202 225

c ¼ 0:2 wC 0.65 0.75 0.8 0.83

Nstp––number of time steps in BE method, Niter––total number of iterations in linear solver, wC––convergence factor in coupled linear

solver.

Table 5

Position of the center of the primary vortex and corresponding value of the streamfunction /ðx; yÞ, Re ¼ 400, convection formulation
Properties Value of c

h ¼ 1=32 h ¼ 1=128 Ref. [21]

0 0.2 1.0 0.2

/ðx; yÞ �0.0896 �0.0974 �0.0857 �0.1102 �0.1139
x 0.578 0.562 0.594 0.559 0.555

y 0.625 0.609 0.625 0.607 0.606
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In Figs. 2 and 4 we compare the velocity profiles of the FE solutions with the reference data from ([21])

for Re ¼ 400 and Re ¼ 1000. For example, notation ‘‘1/16(r)’’ in the keys means that the corresponding
solution was obtained on uniform grid with mesh-width 1/16 in pressure element and the rotation form of

equations was used, and ‘‘c ¼ 0:2 (c)’’ means that convection form was used with parameter c equals 0.2.
We start with the case Re ¼ 400 and study the effect of the rdiv terms. If rdiv-stabilization is used the
results are the same for the schemes with different form of convection and are better then for non-stabilized

or for schemes with values of parameter c too far from optimal. From Fig. 2 one might conclude that rdiv-
stabilization is a more crucial issue for the problem in rotation form. However this effect can be problem-

dependent: Indeed, the kinematic pressure in the convection formulation has less impact to the error

estimate (10 via the last trouble-making for c ¼ 0) term, compared to its counterpart in rotation formu-
lation, Bernoulli pressure. Fig. 3, where isolines for both pressures are plotted, should give an impression

Fig. 2. (a) ux-component of velocity along the vertical center line of the cavity, Re ¼ 400, h ¼ 1=32; (b) uy-component of velocity along
the horizontal center line of the cavity, Re ¼ 400, h ¼ 1=32; c––convection form, r––rotation form.

Fig. 3. Equidistantly distributed on interval [�0:2; 0:3] isolines for kinematic pressure (left) and Bernoulli pressure (right) for the
driven cavity with Re ¼ 1000, h ¼ 1=128.
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that H 1 norm of the Bernoulli pressure is large than the same norm of the kinematic pressure for this
particular problem. We can not claim that this is the case for an arbitrary flow, e.g. for analytical example I

the norms of both pressures are comparable and the effect of c > 0 is similar in both formulations.
Fig. 4 demonstrates stable convergence of the discrete solutions for the rdiv-stabilized rotation form

with c ¼ 0:2.
The effect of choosing different values of c is also illustrated in Table 5, where the position of a center and

the minimal value of a streamfunction are given for the primary vortex of the calculated solutions with

Re ¼ 400. Results for the fine grid and from the Ref. [21] are given for comparison. The choice c ¼ 0, as
well as c ¼ 1 (‘‘overstabilized’’ problem), leads to less accurate values compared to c ¼ 0:2.
Figs. 5 and 6 show streamfunction isolines. For the easier comparison with results in [21] or [7] a selected

(not equally distributed) streamfunction isolines are shown. The selection is the same as in [21]. For
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Fig. 4. Convergence of FE solution for the rotation formulation; (a) ux-component of velocity along the vertical center line of the

cavity, Re ¼ 1000; (b) uy-component of velocity along the horizontal center line of the cavity, Re ¼ 1000.

Fig. 5. Selected streamfunction isolines for the driven cavity with Re ¼ 1000, h ¼ 1=32. Convection form with the SUPG stabilization.
rdiv-stabilized solution on the left figure and non-stabilized on the right.
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Re ¼ 1000, comparing SUPG stabilized scheme with the usual Galerkin scheme for the convection
formulation, we found that although the SUPG-stabilized solution is a bit more diffusive (less accurate)

than non-stabilized one, the convergence of nonlinear iterations for the stabilized problem is considerably
better (see also [44]). Moreover, to handle linearized equations in convection form the SUPG stabilization

was also essential to ensure convergence of BiCGstab iterations for ReP 1000:
A proper value of c remains to be important. Fig. 5 shows that a solution of the rdiv-stabilized scheme

is more accurate for h ¼ 1=64: On the right figure we see non-physical behaviour of the solution in the
upper-left corner of the cavity, also the main vortex is approximated less accurately. For smaller h the
difference becomes less visible, since both stabilized and non-stabilized schemes converge as h ! 0.
Moreover the choice of c > 0 reduces the total number of linear iterations (and hence the CPU time)
dramatically (see Table 4), although a convergence in the internal multigrid method for the convection–
diffusion problem becomes worse. The latter does not alter the total CPU time, since we perform a fixed

number of multigrid cycles applying ÂA�1 in (25).

Finally we compute a flow for Re ¼ 5000. For high Reynolds numbers a flow becomes less steady and
the linearized system poor conditioned. These result in a larger number of nonlinear iterations on the one

hand and a worse convergence of inner linear iterations on the other hand. The former effect is more

perceptible for the rotation form, the latter for the convection one. Partially these difficulties were overcome

by using pseudo time stepping scheme: Time derivative ou=ot was replaced by �Dou=ot (see, e.g., [26,32] for
related technique) and dt 2 ½100; 1000�. Streamlines of solution are shown in Fig. 6, where the value of the
label a for the left upper vortex equals 5� 10�4. The solution of the problem in convection form is a bit less
accurate than the one of the problem in rotation form. The reason for the latter is that an additional

diffusion via the SUPG terms was necessarily introduced in the first case. The corresponding total number

of linear iterations needed for convergence (nonlinear residual6 10�7) are 904 and 2670, respectively.

We make computations for the backward step problem using convection form of equations. For rotation

form the ‘‘do nothing’’ outflow boundary conditions have poor performance for channel type flows. The

reason is that the corresponding strong formulation of the boundary conditions is not satisfied by the

Poisseuille flow, see also discussion in [29]. Streamfunction and kinematic pressure isolines for Re ¼ 800 are
plotted in Fig. 7. Table 6 compares calculated quantities with other experimental and numerical results

found in literature. We note that in an experiment a flow is three-dimensional, so the difference with a

Fig. 6. Selected streamfunction isolines for the driven cavity with Re ¼ 5000, h ¼ 1=256. Solution for convection form with the SUPG
and rdiv-stabilization on the left figure and for rotation form with the rdiv-stabilization on the right.
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calculated two-dimensional solution should be expected. This difference becomes larger as Reynolds
number grows. Notation ‘‘FE’’ stands for the finite element method from this paper with h ¼ 1=32
(FE(1=64) denotes two times finer grid).
For Re ¼ 150 numerical experiments with or without SUPG and rdiv-stabilization show the same

values for low vortex center position and reattachment point. These values remain the same for solution

calculated on a finer grid. However the total number of linear iterations in the fix-point method differs

significantly, depending on particular stabilization used. When c ¼ 0 and r ¼ 0 iterations for the Oseen
(linearized Navier–Stokes) problem fail to converge. For Re ¼ 800 the SUPG stabilization is necessary to
force the inner convection–diffusion solver to converge. The rdiv-stabilized method produced more ac-
curate values of low vortex center position and seperation/reattachment points. Moreover, this stabilization

is vital for convergence of the inner linear iterations for the Oseen problem. For c ¼ 0 we have to use
pseudo time stepping scheme as described for the cavity problem with Re ¼ 5000.

Fig. 7. Backward facing step problem for Re ¼ 800, h ¼ 1=64: selected streamlines and equally distributed on [�1; 0] isobars for
convection form with the SUPG and rdiv-stabilization.

Table 6

Numerical and experimental results the backward facing step problem

Configuration Method (xc; yc) r1 r2 r3 Niter

Re ¼ 150
c ¼ 0:1, r ¼ 0:2 FE (0.72, 0.29) 2.00 – – 126

c ¼ 0:1, r ¼ 0:0 FE (0.72, 0.29) 2.00 – – 311

c ¼ 0:0, r ¼ 0:2 FE (0.72, 0.29) 2.00 – – 4044

Ref. [35] Experimental (0.91, 0.29) 2.25

Re ¼ 800
c ¼ 0:1, r ¼ 0:2 FE (3.31, 0.29) 5.88 4.85 10.13 1235

c ¼ 0:0, r ¼ 0:2 FE (3.25, 0.29) 5.58 4.47 10.17 4180�

c ¼ 0:1, r ¼ 0:2 FE (1=64) (3.32, 0.30) 5.94 4.85 10.21 1392

Ref. [19] FD (3.35, 0.30) 6.10 4.85 10.48

Ref. [12] Spectral 5.97 4.89 10.46

Ref. [3] Experimental 7.10

(xc; yc)––position of the bottom vortex center, r1––reattachment length for the bottom vortex, r2––left separation point for the upper
vortex, r3––right reattachment point for the upper vortex, Niter––total number of inner linear iterations in the fix-point method, �––
total number of inner linear iterations in the pseudo time stepping scheme.
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5. Conclusions

We outline the most important conclusions:

• The rotation form of the incompressible Navier–Stokes equations is a reasonable starting point for FE
method and has the following advantages: Less computational work is required to calculate nonlinear

terms; Effective solvers for the linearized problem are available, moreover SUPG-like stabilization was

not found to be necessary for ensuring linear solvers convergence in the case of moderate or even high
Re numbers; and disadvantage: Nonlinear iterations compared to the case of convection form are less ro-

bust. A reason and a possible cure of this disadvantage is the topic of current research.

Although for moderate Reynolds numbers the convection form has shown better CPU time than the

rotation one in most tests with the nonlinear problem, we expect the situation can change for unsteady

problems, when one is interested in evolutionary solutions. Moreover, due to the relatively simple structure

of solvers for rotation form (block Jacobi smoothers and V-cycles) we see strong potential for parallel

computations in this case.

• The rdiv stabilization enhances the accuracy of a solution and significantly improves the convergence of
preconditioned iterations for the linearized Navier–Stokes problem. However the corresponding stabili-

zation parameter should not be too large. If implicit scheme is used, more efficient multigrid methods for

the anisotropic case m=c � 1 are still desirable. For convection form the SUPG like stabilization im-
proves the solvers performance, however it produces acceptable solutions (not too diffusive) for carefully

and adaptively chosen stabilization parameters only.

• At the present moment, nonlinear iterations for the steady Navier–Stokes equations, e.g. of fix-point or
quasi-Newton type, enhanced by the coupled preconditioned solvers for a linearized problem do not pro-

vide a robust engine for treating some, even relatively simple, flow problems. We see the bottleneck in
missing a robust preconditioner for the Schur complement of the linearized problem in convection

formulation or robust nonlinear iterations for the rotation formulation. At the same time the coupled

methods remain the only feasible tool for treating steady problems, while so called projection or pres-

sure-correction methods [39], based on decoupling velocity and pressure, were designed for treating un-

steady problem and require too many time steps to converge to a steady state.
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