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A NARROW-BAND UNFITTED FINITE ELEMENT METHOD

FOR ELLIPTIC PDES POSED ON SURFACES

MAXIM A. OLSHANSKII AND DANIL SAFIN

Abstract. The paper studies a method for solving elliptic partial differential

equations posed on hypersurfaces in RN , N = 2, 3. The method allows a
surface to be given implicitly as a zero level of a level set function. A surface

equation is extended to a narrow-band neighborhood of the surface. The

resulting extended equation is a non-degenerate PDE and it is solved on a bulk
mesh that is unaligned to the surface. An unfitted finite element method is used

to discretize extended equations. Error estimates are proved for finite element

solutions in the bulk domain and restricted to the surface. The analysis admits
finite elements of a higher order and gives sufficient conditions for archiving

the optimal convergence order in the energy norm. Several numerical examples

illustrate the properties of the method.

1. Introduction

Partial differential equations posed on surfaces arise in mathematical models for
many natural phenomena: diffusion along grain boundaries [24], lipid interactions in
biomembranes [16], and transport of surfactants on multiphase flow interfaces [20],
as well as in many engineering and bioscience applications: vector field visualization
[11], textures synthesis [29], brain warping [28], fluids in lungs [21] among others.
Thus, recently there has been a significant increase of interest in developing and
analyzing numerical methods for PDEs on surfaces.

One natural approach to solving PDEs on surfaces numerically is based on surface
triangulation. In this class of methods, one typically assumes that a parametrization
of a surface is given and the surface is approximated by a family of consistent regular
triangulations. It is common to assume that all nodes of the triangulations lie on
the surface. The analysis of a finite element method based on surface triangulations
was first done in [12]. To avoid surface triangulation and remeshing (if the surface
evolves), another approach was taken in [5]: It was proposed to extend a partial
differential equation from the surface to a set of positive Lebesgue measure in RN .
The resulting PDE is then solved in one dimension higher, but can be solved on a
mesh that is unaligned to the surface. A surface is allowed to be defined implicitly
as a zero set of a given level set function. However, the resulting bulk elliptic or
parabolic equations are degenerate, with no diffusion acting in the direction normal
to the surface. A version of the method, where only an h-narrow band around the
surface is used to define a finite element method, was studied in [8]. A fairly
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complete overview of finite element methods for surface PDEs and more references
can be found in the recent review paper [13].

For an elliptic equation on a compact hypersurface, the present paper considers
a new extended non-degenerate formulation, which is uniformly elliptic in a bulk
domain containing the surface. We analyze a Galerkin finite element method for
solving the extended equation. The bulk domain is allowed to be a narrow band
around the surface with width proportional to a mesh size. Thus the number of
degrees of freedom used in computations stays asymptotically optimal, when the
mesh size decreases. The finite element method we apply here is unfitted: The
mesh does not respect the surface or the boundary of the narrow band. This
property is important from the practical point of view. No parametrization of
the surface is required by the method. The surface can be given implicitly and
the implementation requires only an approximation of its distance function. We
analyse the approximation properties of the method and prove error estimates for
finite element solutions in the bulk domain and restricted to the surface. The
analysis allows finite elements of higher order and gives sufficient conditions for
archiving optimal convergence order in the energy norm. We remark that up to
date the analysis of higher order finite element methods for surface PDEs is largely
an open problem: In [10] a higher order extension of the method from [12] was
analysed under the assumption that a parametrization of Γ is known. The analysis
of a coupled surface-bulk problem from [17] also admits a higher order discretization
by isoparametric finite elements on a triangulation fitted to a given surface.

Another unfitted finite element method for elliptic equations posed on surfaces
was introduced in [26, 27]. That method does not use an extension of the surface
partial differential equation. It is instead based on a restriction (trace) of the outer
finite element spaces to a surface. We do not compare these two different approaches
in the paper.

The remainder of the paper is organized as follows. Section 2 collects some nec-
essary definitions and preliminary results. In section 3, we recall the extended PDE
approach from [5] and introduce a different non-degenerate extended formulation.
In section 4, we consider a finite element method. Finite element method error
analysis is presented in section 5. Section 6 shows the result of several numerical
experiments. Finally, section 7 collects some closing remarks.

2. Preliminaries

We assume that Ω is an open subset in RN , N = 2, 3 and Γ is a connected C2

compact hypersurface contained in Ω. For a sufficiently smooth function g : Ω→ R
the tangential gradient (along Γ) is defined by

∇Γg = ∇g − (nΓ · ∇g)nΓ,

where nΓ is the outward normal vector on Γ. By ∆Γ we denote the Laplace–
Beltrami operator on Γ, ∆Γ = ∇Γ · ∇Γ.

This paper deals with elliptic equations posed on Γ. As a model problem, we
consider the Laplace–Beltrami problem:

(2.1) −∆Γu+ αu = f on Γ,
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with some strictly positive α ∈ L∞(Γ). The corresponding weak form of (2.1)
reads: For given f ∈ L2(Γ) determine u ∈ H1(Γ) such that

(2.2)

∫
Γ

∇Γu∇Γv + αuv ds =

∫
Γ

fv ds for all v ∈ H1(Γ).

The solution u to (2.2) is unique and satisfies u ∈ H2(Γ), with ‖u‖H2(Γ) ≤ c‖f‖L2(Γ)

and a constant c independent of f , cf. [12].

Further we consider a surface embedded in R3, i.e. N = 3. With obvious minor
modifications all results hold if Γ is a curve in R2. Denote by Ωd a domain consisting
of all points within a distance from Γ less than some d > 0:

(2.3) Ωd = {x ∈ R3 : dist(x,Γ) < d }.

Let φ : Ωd → R be the signed distance function, |φ(x)| := dist(x,Γ) for all x ∈ Ωd.
The surface Γ is the zero level set of φ:

Γ = {x ∈ R3 : φ(x) = 0}.

We may assume φ < 0 on the interior of Γ and φ > 0 on the exterior. We define
n(x) := ∇φ(x) for all x ∈ Ωd. Thus, n = nΓ on Γ, and |n(x)| = 1 for all x ∈ Ωd.
The Hessian of φ is denoted by H:

H(x) = D2φ(x) ∈ R3×3 for all x ∈ Ωd.

The eigenvalues of H(x) are κ1(x), κ2(x), and 0. For x ∈ Γ, the eigenvalues κi(x),
i = 1, 2, are the principal curvatures.

We need the orthogonal projector

P(x) = I− n(x)⊗ n(x) for all x ∈ Ωd.

Note that the tangential gradient can be written as ∇Γg(x) = P∇g(x) for x ∈ Γ.
We introduce a locally orthogonal coordinate system by using the projection p :
Ωd → Γ:

(2.4) p(x) = x− φ(x)n(x) for all x ∈ Ωd.

Assume that d is sufficiently small such that the decomposition x = p(x)+φ(x)n(x)
is unique for all x ∈ Ωd. We shall use an extension operator defined as follows. For
a function v on Γ we define

(2.5) ve(x) := v(p(x)) for all x ∈ Ωd.

Thus, ve is the extension of v along normals on Γ, it satisfies n · ∇ve = 0 in Ωd,
i.e., ve is constant along normals to Γ. Computing the gradient of ve(x) and using
(2.4) and (2.5) gives

(2.6) ∇ve(x) = (I− φ(x)H(x))∇Γv(p(x)) for x ∈ Ωd.

For higher order derivatives, assume the surface is sufficiently smooth Γ ∈ Ck+1,
k = 2, 3, . . . . This yields φ ∈ Ck+1(Ωd), see [18], and hence p(x) ∈ [Ck(Ωd)]

3.
Differentiating (2.5) gives for a sufficiently smooth v

(2.7) |Dαve(x)| ≤ c
k∑
l=1

∑
|µ|=l

|Dµ
Γv(p(x))| for x ∈ Ωd, |α| = k,

where a constant c can be taken independent of x and v.
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From (2.5) in [9] we have the following formula for the eigenvalues of H:

(2.8) κi(x) =
κi(p(x))

1 + φ(x)κi(p(x))
for x ∈ Ωd.

Since Γ ∈ C2 and Γ is compact, the principle curvatures of Γ are uniformly bounded
and d can be taken sufficiently small to satisfy

(2.9) d ≤
(

2 max
x∈Γ

(|κ1(x)|+ |κ2(x)|)
)−1

.

For such choice of d, we obtain using (2.8)

(2.10) |φ(x)| = dist(x,Γ) ≤ d ≤ 1

2
‖H(x)‖−1

2 for x ∈ Ωd.

The inequality (2.10) yields the bounds for the spectrum and the determinant of
the symmetric matrix I− φH:

(2.11) sp(I− φH) ∈
[

1
2 ,

3
2

]
, 1

4 ≤ det(I− φH) ≤ 9
4 in Ωd.

Therefore, the matrix (I−φH)−1 is well defined and its norm is uniformly bounded
in Ωd.

3. Extensions of the surface PDEs

In this section, we review some well-known results for numerical methods based
on surface PDEs extensions and define a suitable extension of the surface equation
(2.1) to a neighborhood of Γ.

3.1. Review of results. In [5] Bertalmio et al. suggested to extend a PDE off a
surface to every level set of the indicator function φ in some neighborhood of Γ.
Applied to (2.1) this leads to the problem posed in Ωd:

(3.1) −|∇φ|−1 div |∇φ|P∇u+ αe u = fe in Ωd.

The corresponding weak formulation of (3.1) was shown to be well-posed in [6].
The weak solution is sought in the anisotropic space

HP = {v ∈ L2(Ωd) : P∇v ∈ (L2(Ωd))
3}.

On every level set of φ the solution to (3.1) does not depend on a data in a neigh-
borhood of this level set. Indeed, the diffusion in (3.1) acts only in the direction
tangential to level sets of φ and one may consider (3.1) as a collection of of indepen-
dent surface problems posed on every level set. Hence, the surface equation (2.1)
is embedded in (3.1) and if a smooth solution to (3.1) exists, then restricted to Γ
it solves the original Laplace-Beltrami problem (2.1). With no ambiguity, we shall
denote by u both the solutions to surface and extended problems.

The major numerical advantage of any extended formulation is that one may
apply standard discretization methods to solve equations in the volume domain
Ωd and further take the trace of computed solutions on Γ (or on a approximation
of Γ). Computational experiments from [5, 6, 19, 31] suggest that these traces
of numerical solutions are reasonably good approximations to the solution of the
surface problem (2.1).

Numerical analysis of surface equations discretization methods based on exten-
sions is by far not completed: Error estimates for finite element methods for (3.1)
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were shown in [6, 8]. Error estimate in [6] was established in the integral volume
norm

‖v‖2HP
:= ‖v‖2L2(Ωd) + ‖P∇v‖2L2(Ωd),

rather than in a surface norm for Γ. In [8], a finite element method based on
triangulations not fitted to the curvilinear boundary of Ωd was studied. The first
order convergence was proved in the surface H1 norm, if the band width d in (2.3)
is of the order of mesh size and if a quasi-uniform triangulation of Ω is assumed.
For linear elements this estimate is of the optimal order in energy norm.

The extended formulation (3.1) is numerically convenient, but has a number
of potential issues, as noted already in [5] and reviewed in [8, 19]. No boundary
conditions are needed for (3.1), if the boundary of the bulk domain Ωd consists of
level sets of φ. However some auxiliary boundary conditions are often required by
a numerical method. The extended equation (3.1) is defined in a domain in one
dimension higher than the surface equation. This leads to involving extra degrees
of freedom in computations. If Ωd is a narrow band around Γ, then handling nu-
merical boundary conditions may effect the quality of the discrete solution. Finally,
the second order term in the extended formulation (3.1) is degenerate, since no dif-
fusion acts in the direction normal to level sets of φ. The current understanding of
numerical methods for degenerate elliptic and parabolic equations is still limited.

An improvement to the original extension of surface PDEs was introduced by
Greer in [19]. Greer suggested to use the non-orthogonal scaled projection operator

(3.2) P̃ := (I− φH)−1P

on tangential planes of the level sets of φ instead of P. For a smooth Γ, one can

always consider small enough d > 0 such that P̃ is well defined in Ωd . If φ is the
singed distance function and all data (α and f for equations (3.1)) is extended to
the neighborhood of Γ according to (2.5), i.e. constant along normals, then one can
easily show (see [19, 7]) that the solution to the new extended equation is constant
in normal directions:

(3.3) (n · ∇)u = 0 a.e. in Ωd.

The property (3.3) is crucial, since it allows to add diffusion in the normal direc-
tion without altering solution. Doing this, one obtains a non-degenerated elliptic
operator. Thus, for solving the heat equation on a surface, it was suggested in [19]
to include the additional term −c2n div(n⊗n)∇u in the extended formulation with
a coefficient c2n. For the planar case, Ωd ∈ R2, the recommendation was to set
cn = (1 − φκ0), κ0 = κ(p(x)), κ is the curvature of Γ (Γ is a curve in the planar
case).

3.2. Non-degenerate extended equations. Here we deduce another extension
of (2.1): Let φ be the signed distance function and µ = det(I − φH), αe and fe

are the normal extensions to α and f . We look for u solving the following elliptic
problem

−divµ(I− φH)−2∇u+ αeµu = feµ in Ωd

∂u

∂n
= 0 on ∂Ωd.

(3.4)

The Neumann boundary condition in (3.4) is the natural boundary condition. To
see this, note the identity Hn = 0 and that n coincides (up to a sign) with a
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normal vector on the boundary of Ωd. Hence, one has (I− φH)−1n = n and for a
sufficiently smooth u:

((I− φH)−2∇u) · n = (∇u) · ((I− φH)−2n) = (∇u) · n =
∂u

∂n
= 0 on ∂Ωd.

The weak formulation of (3.4) reads: Find u ∈ H1(Ωd) satisfying

(3.5)

∫
Ωd

[
(I− φH)−2∇u · ∇v + αe uv

]
µdx =

∫
Ωd

fevµ dx for all v ∈ H1(Ωd).

Thanks to (2.11) the corresponding bilinear form

a(u, v) :=

∫
Ωd

[
(I− φH)−2∇u · ∇v + αe uv

]
µdx

is continuous and coercive on H1(Ωd).
The next theorem states several results about the well-posedness of (3.4) and its

relation to the surface equations (2.1).

Theorem 3.1. Assume Γ ∈ C2, α ∈ L∞(Γ), f ∈ L2(Γ). The following assertions
hold:

: (i) The problem (3.4) has the unique weak solution u ∈ H1(Ωd), which sat-
isfies ‖u‖H1(Ωd) ≤ C ‖fe‖L2(Ωd), with a constant C depending only on α
and Γ;

: (ii) For the solution u to (3.4) the trace function u|Γ is an element of H1(Γ)
and solves the weak formulation of the surface equation (2.2).

: (iii) The solution u to (3.4) satisfies (3.3). Using the notion of normal ex-
tension, this can be written as u = (u|Γ)e in Ωd;

: (iv) Additionally assume Γ ∈ C3, then u ∈ H2(Ωd) and ‖u‖H2(Ωd) ≤
C ‖fe‖L2(Ωd), with a constant C depending only on α, Γ and d;

Proof. Since the bilinear form a(u, v) is elliptic and continuous in H1(Ωd), the Lax-
Milgram lemma implies the result in (i). Assumption Γ ∈ C3 yields φ ∈ C3(Ωd),
see [18], and hence H, µ ∈ C1(Ωd) and ∂Ωd ∈ C3. The regularity theory for elliptic
PDEs with Neumann boundary data [15] implies the result in item (iv).

Now we are going to show how the bulk equation (3.4) relates to the surface
equation (2.1). For r ∈ (−d, d), denote by Γr the level set surface on distance r
from Γ:

Γr = {x ∈ Ωd : φ(x) = r}.
Since φ is the sign distance function, the coarea formula gives

(3.6)

∫
Ωd

f dx =

∫ d

−d

∫
Γr

f ds dr for f ∈ L1(Ωd).

For area elements on Γr and Γ we have

(3.7) µ(x) ds(x) = det(I− φ(x)H(x)) ds(x) = ds(p(x)) for x ∈ Γr.

Denote by u ∈ H1(Γ) the unique solution to the surface equations (2.1). Recall
that ue ∈ H1(Ωd) denotes the normal extension of u. From the weak formulation
of the surface equation (2.2) and transformation formulae (2.6) and (3.7) we infer∫

Γr

[
(I− φH)−2∇ue∇ve + αe ueve

]
µds =

∫
Γr

feve µds for any v ∈ H1(Γ).
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Since ∇ve = P∇ve and P∇v is the tangential gradient which depends only on
values of v on Γr, but not on an extension, we can rewrite the above identity as
(3.8)∫

Γr

[
(I− φH)−2∇ueP∇v + αe uev

]
µds =

∫
Γr

fev µds for any v ∈ H1(Γr).

Assuming v is a smooth function on Ωd, and so v|Γr
∈ H1(Γr), we can integrate

(3.8) over all level sets for r ∈ (−d, d) and apply the coarea formula (3.6) to obtain
(3.9)∫

Ωd

[
(I− φH)−2∇ueP∇v + αe uev

]
µds =

∫
Ωd

fev µds for any v ∈ C∞(Ωd).

Now we use P = PT and HP = PH ⇒ P(I− φH)−2 = (I− φH)−2P to get from
(3.9)∫

Ωd

[
(I− φH)−2∇ue∇v + αe uev

]
µds =

∫
Ωd

fev µds for any v ∈ C∞(Ωd).

Applying the density argument we conclude that the normal extension of the surface
solution ue solves the weak formulation (3.5) of the bulk problem (3.4). Since the
solution to (3.4) is unique, we have proved assertions (ii) and (iii) of the theorem.

�

The formulation (3.4) has the following advantages over (3.1): The equation (3.4)
is non-degenerate and uniformly elliptic, the extended problem has no parameters
to be defined, the boundary conditions are given and consistent with (3.3). One
theoretical advantage of the formulation (3.4) over (3.1) is that the Agmon-Douglis-
Nirenberg regularity theory is readily applicable if the data is smooth.

We remark that the volumetric formulation of surface equations can be easily ex-
tended for the case of anisotropic surface diffusion. Indeed, let D(x) ∈ (L∞(Γ))

3×3

be a symmetric positive definite tensor acting in tangential subspaces of Γ, i.e.
Dn = 0 on Γ. Consider the surface diffusion equation:

−divΓD∇u+ αu = f on Γ.

Thanks to D = DT , Dn = 0 ⇒ PDe = DeP = De, repeating the same arguments
as in the proof of Theorem 3.1 leads to the extended problem:

−divµD̃∇u+ αeµu = feµ in Ωd

∂u

∂n
= 0 on ∂Ωd,

with D̃ = (I− φH)−1[De + den⊗ n](I− φH)−1, De is the componentwise normal
extension of D and d ∈ L∞(Γ) is arbitrary positive on Γ. A reasonable choice of
d can be the minimizer of the K-condition number1 of the volume diffusion tensor
De + den ⊗ n on Γ. One finds d = 1

N−1 tr(D), where N = 2, 3 is the outer space

dimension. Note that the isotropic diffusion problem (2.1) fits this more general
case with D = P. Including anisotropic surface diffusion tensor would not bring
any additional difficulty to the analysis below. However, for the sake of brevity we
consider further only isotropic diffusion.

1The definition of the K-condition number of a symmetric positive definite matrix A ∈ Rn×n

is K(A) =
(tr(A)/n)n

det(A)
, see [2].
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4. Finite element method

Let Γ ∈ C2, Γ ⊂ Ω, where Ω ⊂ R3 is a polyhedral domain. Assume we a given
a family {Th}h>0 of regular triangulations of Ω such that maxT∈Th diam(T ) ≤ h.
For a tetrahedron T denote by ρ(T ) the diameter of the inscribed ball. Denote

(4.1) β = sup
T∈Th

diam(T )/ inf
T∈Th

ρ(T ) .

For the sake of analysis, we assume that triangulations of Ω are quasi-uniform,
i.e., β is uniformly bounded in h. The band width d satisfies (2.10) and such that
Ωd ⊂ Ω.

It is computationally convenient not to align (not to fit) the mesh to Γ or ∂Ωd.
Thus, the computational domain Ωh will be a narrow band containing Γ with a
piecewise smooth boundary which is not fitted to the mesh Th.

Let φh be a continuous piecewise smooth, with respect to Th, approximation of
the surface distance function. Assume φh is known and satisfies

(4.2) ‖φ− φh‖L∞(Ω) + h‖∇(φ− φh)‖L∞(Ω) ≤ c hq+1

with some q ≥ 1. Then one defines

(4.3) Ωh = {x ∈ R3 : |φh(x)| < d }.
Note, that in some applications the surface Γ may not be known explicitly and only
a finite element approximation φh to the distance function φ is known. Otherwise,
one may set φh := Ih(φ), where Ih is a suitable piecewise polynomial interpolation
operator. If φh is a P1 continuous finite element function, then Ωh has a piecewise
planar boundary. In this practically convenient case, (4.2) is assumed with q = 1.

Alternatively, for Γ given explicitly one may build a piecewise planar approxima-
tion to ∂Ωd as suggested in [4]. We briefly recall it here. Assume d ≥ h (relaxing this
assumption is possible, but requires additional technical considerations). Consider
all tetrahedra that have vertices both inside Ωd, φ(xi) < d, and outside, φ(xj) > d.
Let p1 be a intersection point of Γ with the edge xixj . For any tetrahedra there
can be three or four such points p1, ..., pk. Inside each such tetrahedron, ∂Ωd is
approximated by either by the plane (p1, p2, p3), if k = 3, or by two pieces of planes
(p1, p2, p3) and (p2, p3, p4).

Denote by Td the set of all tetrahedra having nonempty intersection with Ωh:

Td =
⋃
T∈Th

{T : T ∩ Ωh 6= ∅}.

We always assume that Γ ⊂ Ωh ⊂ Td ⊂ Ωd′ ⊂ Ω, with some d′ ≤ c d satisfying
(2.9).

The space of all continuous piecewise polynomial functions of a degree r ≥ 1
with respect to Td is our finite element space:

(4.4) Vh := {v ∈ C(Td) : v|T ∈ Pr(T ) ∀T ∈ Td}, r ≥ 1.

The finite element method reads: Find uh ∈ Vh satisfying
(4.5)∫

Ωh

[
(I− φhHh)−2∇uh · ∇vh + αe uhvh

]
µhdx =

∫
Ωh

fevh µhdx ∀ vh ∈ Vh.

This is the method we analyse further in this paper.
If Γ is given explicitly, one can compute φ and H and set φh = φ, Hh = H and

µh = det(I − φhHh) in (4.5). Otherwise, if the surface Γ is known approximately
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as, for example, the zero level set of a finite element distance function φh, then,
in general, φh 6= φ and one has to define a discrete Hessian Hh ≈ H and also set
µh = det(I−φhHh). A discrete Hessian Hh can be obtained from φh by a recovery
method, see, e.g., [1, 30]. At this point, we assume that some Hh is provided and
denote by p ≥ 0 the approximation order for Hh in the (scaled) L2-norm:

(4.6) |Ωh|−
1
2 ‖H−Hh‖L2(Ωh) ≤ chp,

where |Ωh| denotes the volume of Ωh.

Remark 4.1. From the implementation viewpoint, it is most convenient to use
polyhedral (polygonal) computation domains Ωh, which corresponds to the second
order approximation of ∂Ωd (q = 1 in (4.2)). It appears that in this case, the
optimal order convergence result with P1 finite elements in narrow-band domains,
d = O(h), holds already for p = 0 in (4.6), e.g. Hh = 0 is the suitable choice. This
follows from the error analysis below and supported by the results of numerical
experiments in Section 6.

Finally, we assume that φh and Hh satisfy condition (2.10), which is a reasonable
assumption once d and h are sufficiently small. Hence the h-dependent bilinear form

ah(uh, vh) =

∫
Ωh

[
(I− φhHh)−2∇uh · ∇vh + αe uhvh

]
µhdx

is continuous and elliptic uniformly in h.

5. Error analysis

If φh = φ and Hh = H, then (4.5) is closely related to the unfitted finite ele-
ment method from [4] for an elliptic equation with Neumann boundary conditions.
However, applied to (4.5) the analysis of [4] does not account for the anisotropy
of computational domain and leads to suboptimal convergence results in surface
norms. Therefore, to prove an optimal order convergence in the H1(Γ) norm, we
use a different framework, which also allows to cover the case φh 6= φ, Hh 6= H and
higher order finite elements.

We need a further mild assumption on how well the mesh resolves the geometry.
Since Γ ⊂ Ωh the boundary of Ωh is decomposed into two disjoint sets, ∂Ωh =
∂Ω+

h ∪ ∂Ω−h , such that φ > 0 on ∂Ω+
h and φ < 0 on ∂Ω−h . We assume that ∂Ω+

h is a
graph of a function η+(x), x ∈ Γ, in the local coordinates induced by the projection
(2.4). The same is assumed for ∂Ω−h and η−(x), x ∈ Γ.

To estimate the consistency error of the finite element method, we need results
in the next two lemmas.

Lemma 5.1. Consider Ωh as defined in (4.3) for some φh satisfying (4.2). For
sufficiently small h, there exists a one-to-one mapping Φh : Ωh → Ωd, Φh ∈(
W 1,∞(Ωh)

)3
such that

(5.1) ‖id− Φh‖L∞(Ωh) + h‖I−DΦh‖L∞(Ωh) ≤ c hq+1,

where DΦh is the Jacobian matrix. Moreover, the mapping Φh is such that p(Φh(x)) =
p(x) for any x ∈ Ωh.

Proof. Since Γ ∈ C2 and ∂Ωh is piecewise smooth, we have η± ∈W 1,∞(Γ). Further
in the proof we consider η+. Same conclusions would be true for η−.
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Consider Ωh as defined in (4.3), then η+(x) is an implicit function given by

(5.2) φh(x + η+(x)n(x)) = d, x ∈ Γ.

For the distance function it holds φ(x + αn(x)) = α, for x ∈ Γ and α ∈ [−d, d].
Hence from (5.2) and (4.2) we conclude

(5.3) |η+(x)− d| = |φ(x + η+(x)n(x))− φh(x + η+(x)n(x))| ≤ c hq+1, x ∈ Γ.

To compute the surface gradient of η+, we differentiate (5.2) and find using the
chain rule:

∇Γη+(x) = − (I + η+(x)H(x))∇Γφh(x′)

∇φh(x′) · ∇φ(x)
, x′ = x + nη+, x ∈ Γ.

Noting ∇Γφ = 0, ∇φ(x) = ∇φ(x′), and using (4.2) we estimate for sufficiently
small mesh size h

|∇Γη+(x)| =
∣∣∣∣ (I + η+(x)H(x))∇Γ(φh(x′)− φ(x′))

∇φh(x′) · ∇φ(x′)

∣∣∣∣
= 2

∣∣∣∣ (I + η+(x)H(x))∇Γ(φh(x′)− φ(x′))

|∇φh(x′)|2 + |∇φ(x′)|2 − |∇(φh(x′)− φ(x′))|2

∣∣∣∣
≤ c

∣∣∣∣ (I + η+(x)H(x))hq

|∇φh(x′)|2 + 1− ch2q

∣∣∣∣ ≤ chq a.e. on Γ.

From this and (5.3) we infer

(5.4) ‖η+ − d‖L∞(Γ) + h‖∇Γη+‖L∞(Γ) ≤ c h2.

Now the required mapping can be defined as

Φh(x) =


x− n(x)

(
ηe+(x)− d

)
φ(x)

ηe+(x)
if φ(x) ≥ 0

x− n(x)

(
ηe−(x) + d

)
φ(x)

ηe−(x)
if φ(x) < 0

x ∈ Ωh.

The property p(Φh(x)) = p(x) is obviously satisfied by the construction of Φh.
Due to the triangle inequality and (5.3) we have

d ≤ |η+(x)|+ |d− η+(x)| ≤ |η+(x)|+ chq+1 ≤ |η+(x)|+ cdhq x ∈ Γ

Therefore, for sufficiently small h there exists a mesh independent constant c > 0
such that |ηe+(x)| ≥ cd ≥ c|φ(x)|. Hence the estimate for |x− Φh(x)| follows from
(5.4). The estimate for ‖I−DΦh‖2 also follows from (5.4) with the help of (2.6).

�

Lemma 5.2. For two symmetric positive definite matrices A,B ∈ RN×N , assume
‖A−B‖2 ≤ δ, where ‖ · ‖2 denotes the spectral matrix norm. Then it holds

‖A2 −B2‖2 ≤ δ‖A+B‖2,(5.5)

‖A−1 −B−1‖2 ≤ δ‖B−1‖2‖A−1‖2,(5.6)

|det(A)− det(B)| ≤ δN max{‖A‖N−1
2 , ‖B‖N−1

2 }.(5.7)
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Proof. For completeness, we give the proof of these elementary results. For a sym-
metric matrix A ∈ RN×N we have ‖A‖2 = sup

06=x∈R3

| 〈Ax, x〉 |/|x|2. Hence the esti-

mate (5.5) follows from

|
〈
(A2 −B2)x, x

〉
| = | 〈(A−B)x, (A+B)x〉 |

≤ |(A−B)x||(A+B)x| ≤ ‖A−B‖2‖A+B‖2|x|2.

We write A ≤ B if the matrix B − A is positive semidefinite and recall that for
two symmetric positive definite matrices A ≤ B yields B−1 ≤ A−1. Using this and
that ‖A−B‖2 ≤ δ is equivalent to −δI ≤ A−B ≤ δI we obtain

A ≤ δI +B ⇒ A ≤ (δλ−1
min(B) + 1)B ⇔ B−1 ≤ (δλ−1

min(B) + 1)A−1

This implies

B−1 −A−1 ≤ δλ−1
min(B)A−1 ≤ δλ−1

min(B)λmax(A−1)I = δ‖B−1‖2‖A−1‖2I

Same arguments show A−1 −B−1 ≤ δ‖B−1‖2‖A−1‖2I.

To prove (5.7), note that det(A) =
∏N
k=1 λk(A) for eigenvalues 0 < λ1(A) ≤

· · · ≤ λN (A). Hence

|det(A)− det(B)| ≤ N max
k=1,...,N

|λk(A)− λk(B)|max{λN−1
N (A), λN−1

N (B)}.

The Courant–Fischer theorem gives for the kth eigenvalue of a symmetric matrix
the characterization

λk(A) = max
S∈Vk−1

min
06=y∈S⊥

〈Ay, y〉
|y|2

,

where Vk−1 denotes the family of all (k − 1)-dimensional subspaces of RN . The
inequality miny(a(y) + b(y)) ≤ miny a(y) + maxy b(y) implies that miny a(y) −
miny b(y) ≤ maxy(a(y)− b(y)). Using this we estimate

λk(A)−λk(B) ≤ max
S∈Vk−1

max
y∈S⊥

〈(A−B)y, y〉
|y|2

≤ max
y∈RN

〈(A−B)y, y〉
|y|2

≤ ‖A−B‖2 ≤ δ.

One can estimate the difference λk(B)− λk(A) in the same way.
�

Now we are prepared for the error analysis of our finite element method. First
we prove an estimate for the error in a volume norm.

Theorem 5.3. Let Γ ∈ C3. Assume ue and uh solve problems (3.4) and (4.5),
respectively, and ue ∈W 1,∞(Ωd), f ∈ L∞(Γ). Then it holds

(5.8) ‖ue − uh‖H1(Ωh) ≤ C
(

inf
vh∈Vh

‖ue − vh‖H1(Ωh) + d
1
2hq + d

3
2 hp

)
,

where q and p are defined in (4.2) and (4.6), respectively.

Proof. Since ue is constant along normals, we can consider a normal extension of
ue on Ωd′ . Then the bilinear form ah(ue, vh) is well defined and we can apply the
second Strang’s lemma. Hence, to show (5.8), we need to check the bound

(5.9)
|ah(ue, vh)−

∫
Ωh
fevhµh|

‖vh‖H1(Ωh)
≤ C (d

1
2hq + d

3
2hp).
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We introduce the auxiliary bilinear form

ah(u, v) :=

∫
Ωh

[
(I− φH)−2∇u · ∇v + αe uv

]
µdx, for u, v ∈ H1(Ωh).

It holds

|ah(ue,vh)− ah(ue, vh)|
≤ ‖ue‖W 1,∞(Ωh)‖vh‖H1(Ωh)

×
(∫

Ωh

‖µ(I− φH)−2 − µh(I− φhHh)−2‖22 + |αe||µ− µh|2dx
) 1

2

.

(5.10)

Recall that matrices (I− φH) and (I− φhHh) are symmetric positive definite and
µ = det(I− φH), µh = det(I− φhHh). Since φ,H and φh,Hh both satisfy (2.10),
for the spectrum and determinants of (I−φH) and (I−φhHh) the bounds in (2.11)
hold uniformly in x and h. We use this and Lemma 5.2 to estimate

‖µ(I− φH)−2 − µh(I− φhHh)−2‖2 + |αe||µ− µh|
≤ C ‖φH− φhHh‖2 ≤ C(|φ|‖H−Hh‖2 + ‖Hh‖2|φ− φh|)
≤ C(d ‖H−Hh‖2 + hq+1).

Applying (4.6) we get from (5.10)

(5.11)
|ah(ue, vh)− ah(ue, vh)| ≤ C|Ωh|

1
2 (d hp + hq+1)‖ue‖W 1,∞(Ωh)‖∇vh‖L2(Ωh)

≤ C d 1
2 (dhp + hq+1)‖vh‖H1(Ωh).

It remains to estimate |ah(ue, vh)−
∫

Ωh
fevhµh|. Following [8] we consider vh ◦

Φ−1
h ∈ H1(Ωd) as a test function in (2.2). By the triangle inequality we have

(5.12) |ah(ue, vh)−
∫

Ωh

fevhµh|

≤ |ah(ue, vh)− a(ue, vh ◦ Φ−1
h )|+

∣∣∣∣∫
Ωd

fevh ◦ Φ−1
h µ−

∫
Ωh

fevhµh

∣∣∣∣ .
Using the integrals transformation rule and the identities

∇(vh ◦ Φ−1
h ) = (DΦh)−T (∇vh) ◦ Φ−1

h ,

(∇ue) ◦ Φh = (DΦh)−T∇(ue ◦ Φh) = (DΦh)−T∇ue,
αe ◦ Φh = αe, ue ◦ Φh = ue,

we calculate

a(ue, vh ◦ Φ−1
h ) =

∫
Ωd

[
(I− φH)−2∇ue · ∇(vh ◦ Φ−1

h ) + αe ue(vh ◦ Φ−1
h )
]
µdx

=

∫
Ωh

[
(I− φH)−2 ◦ Φh

(
(DΦh)−T∇ue

)
·
(
(DΦh)−T∇vh

)
+αe uevh] |det(DΦh)|µ ◦ Φhdx.

Thus, we have

(5.13) a(ue, vh ◦ Φ−1
h )− ah(ue, vh) =

∫
Ωh

R1∇ue · ∇vh +R2u
evh dx,
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with

‖R1‖2 = ‖(DΦh)−1µ(I− φH)−2 ◦ Φh(DΦh)−T |det(DΦh)| − µ(I− φH)−2‖2
≤ C‖µ(I− φH)−2 − µ(I− φH)−2 ◦ Φh‖2

+ ‖(DΦh)−1µ(I− φH)−2(DΦh)−T |det(DΦh)| − µ(I− φH)−2‖2
≤ C sup

Ωd′

‖∇(µ(I− φH)−2)‖F ‖id− Φh‖2

+ C ‖µ(I− φH)−2‖2‖(DΦh)−1 − I‖2 |det(DΦh)| − 1|
≤ chq.

(5.14)

and

(5.15) |R2| = |αe(|det(DΦh)|µ◦Φh−µ)| ≤ chq‖αe‖L∞(Ωh) ≤ c hq‖α‖L∞(Γ) ≤ c hq.

The notion ‖ · ‖F was used above for the Frobenius norm of a tensor. The term
‖∇(µ(I − φH)−2)‖F is uniformly bounded on Ωd′ thanks to the assumption Γ ∈
C3 ⇒ φ ∈ C3(Ωd′)⇒ µ,H ∈ C1(Ωd′). From (5.13)–(5.15) we obtain

|a(ue, vh ◦ Φ−1
h )− ah(ue, vh)| ≤ c hq|Ωh|

1
2 ‖ue‖W 1,∞(Ωh)‖vh‖H1(Ωh)

≤ c d 1
2 hq‖vh‖H1(Ωh).

(5.16)

Since fe ◦ Φh = fe, we also have∫
Ωd

fevh ◦ Φ−1
h µdx =

∫
Ωh

fevh|det(DΦh)|µ ◦ Φhdx.

Hence∣∣∣∣∫
Ωd

fevh ◦ Φ−1
h µ−

∫
Ωh

fevhµh

∣∣∣∣ ≤ c(hq‖fe‖L2(Ωh) + hpd
3
2 ‖fe‖L∞(Ωh))‖vh‖L2(Ωh)

≤ c(hq‖fe‖L2(Ωh) + hpd
3
2 ‖fe‖L∞(Ωh))‖vh‖L2(Ωh).

Since for the normal extension it holds ‖fe‖L2(Ωd′ )
≤ c(d′) 1

2 ‖f‖L∞(Γ), and d′ ≤ c d,
we obtain

(5.17)

∣∣∣∣∫
Ωd

fevh ◦ Φ−1
h µ−

∫
Ωh

fevhµh

∣∣∣∣ ≤ c(d 1
2 hq + d

3
2 hp)‖vh‖L2(Ωh).

Combining estimates in (5.11), (5.16), (5.17) we prove (5.9).
�

Remark 5.4. Note that the extra regularity assumption ue ∈ W 1,∞(Ωd) was only
used to estimate the consistency error in (5.10) due to the Hessian approximation
and (5.16). If we alternatively assume the Hessian O(hp) approximation order in
the stronger norm L∞(Ωh), then it is sufficient to let u ∈ H1(Γ) and employ the

estimate ‖ue‖H1(Ωd′ )
≤ c(d′)

1
2 ‖u‖H1(Γ) in (5.10) and (5.16). The same remark is

valid for the statement of Theorem 5.6 below.

Now we turn to proving the error estimate in the surface H1-norm. The result
of the lemma below follows from Lemma 3 in [22], see also Lemma 4.4 in [7].

Lemma 5.5. Let T ∈ Th. Denote K̃ = T ∩ Γ, then for any v ∈ H1(T ) it holds

(5.18) ‖v‖2
L2(K̃)

≤ C (h−1‖v‖2L2(T ) + h‖∇v‖2L2(T )),
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where the constant C may depend only on Γ and the minimal angle condition for
Th.

Now we prove our main result concerning the convergence of the finite element
method (4.5).

Theorem 5.6. Let Γ ∈ Cr+2, d ≤ c h, f ∈ L∞(Γ), and assume u ∈ W 1,∞(Γ) ∩
Hr+1(Γ) solves the surface problems (2.1) and uh ∈ Vh solves (4.5). Then it holds

‖u− uh‖H1(Γ) ≤ C (hr + hp+1 + hq),

where a constant C is independent of h, and r ≥ 1, p ≥ 0, q ≥ 1 are the finite
elements, Hessian recovery, and distance function approximation orders defined in
(4.4), (4.2) and (4.6), respectively.

Proof. Since Γ ∈ C3, the regularity u ∈ W 1,∞(Γ) ∪H2(Γ) implies for the normal
extension: ue ∈ W 1,∞(Ωd) ∪H2(Ωd). Hence the assumptions of Theorem 5.3 are
satisfied.

We apply estimate (5.18) componentwise to v = ∇(ue − uh). This leads to the
bound

(5.19) ‖∇(ue − uh)‖2
L2(K̃)

≤ C (h−1|ue − uh|2H1(T ) + h|ue − uh|2H2(T )),

Denote by Ihu
e the Lagrange interpolant for ue on Td ⊂ Ωd′ . Thanks to the inverse

inequality and approximation properties of finite elements we have

|ue − uh|H2(T ) ≤ |ue − Ihue|H2(T ) + |Ihue − uh|H2(T )

≤ C(hr−1|ue|Hr+1(T ) + h−1|Ihue − uh|H1(T ))

≤ C(hr−1|ue|Hr+1(T ) + h−1(|ue − Ihue|H1(T ) + |ue − uh|H1(T ))

≤ C(hr−1|ue|Hr+1(T ) + h−1|ue − uh|H1(T )).

Substituting this estimate to (5.19) and summing up over all elements from Th with
non-empty intersection with Γ and using |∇Γ(u−uh)| = |∇Γ(ue−uh)| ≤ |∇(ue−uh)|
on Γ, we get

‖∇Γ(u− uh)‖2L2(Γ) ≤ C
∑
T ∈ TΓ

T ∩ Γ 6= ∅

(
h−1‖∇(ue − uh)‖2L2(T ) + h2r−1|ue|2Hr+1(T )

)

≤ C (h−1‖∇(ue − uh)‖2L2(Ωh) + h2r−1|ue|2Hr+1(Ωd′ )
).

To estimate the first term on the righthand side, we apply the volume error estimate
from Theorem 5.3, a standard approximation result for finite element functions from
Vh and recall d = O(h). This leads to

(5.20) ‖∇Γ(u− uh)‖2L2(Γ) ≤ C (h2q + h2p+2 + h2r−1|ue|2Hr+1(Ωd′ )
).

Finally, integrating (2.7) for k = r + 1 over Ωd′ and repeating arguments of
Lemma 3.2 in [26] we find

(5.21) |ue|2Hr+1(Ωd′ )
≤ C d′ ‖u‖2Hr+1(Γ).

Estimate (5.20), (5.21) and d′ ≤ ch yield

‖∇Γ(u− uh)‖2L2(Γ) ≤ C (h2q + h2p+2 + h2r).

To show an estimate for the surface L2-norm of the error, we apply the estimate
(5.18) for v = ue − uh and proceed with similar arguments. �
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6. Numerical examples

In this section, we present results of several numerical experiments. They il-
lustrate the performance of the method and the analysis of the paper. In all
experiments the band width, d = γh, is ruled by the parameter γ and always
stays proportional to the mesh width. Results of a few experiments with a fixed
mesh-independent band width and fitted meshes can be found in [7].

If Ωh is a polyhedral domain (the approximation order equals q = 1 in (4.2)),
then the implementation of the method is straightforward and this is what we use
in all numerical examples. In this case, already P1 finite elements deliver optimal
convergence results. The technical difficulty of using higher order approximations
of Ω is the need to define a suitable numerical integration rule over a part of
tetrahedra T ∈ Fd bounded by a zero level set of φh, where φh is a polynomial of
degree ≥ 2 on T . In this paper for higher order elements, we use an implementation
where sufficiently many quadrature nodes are taken within each cut triangle to
guarantee accurate enough integration. Integrating over arbitrary cut element in
O(1) (asymptotically optimal for h → 0 number of operation) is a non-standard
task (see, i.g., a recent paper [25]) and we address it in a separate paper, currently
in preparation.

Experiment 1. We start with the example of the Laplace–Beltrami problem (2.1)
on a unit circle in R2 with a known solution so that we are able to calculate the
error between the continuous and discrete solutions. We set α = 1 and consider

u(r, φ) = cos(5φ)

in polar coordinates, similar to the Example 5.1 from [8].
We perform a regular uniform triangulation of Ω = (−2, 2)2 and h = 2−` ×

10−1 denotes further a maximal edge length of triangles for the refinement level `.
Thus the grid is not aligned with ∂Ωd. We use piecewise affine continuous finite
elements, r = 1, and Ωh is a polygonal approximation of Ωd as described in [4],
q = 1. Convergence results in H1(Γ) and L2(Γ) norms are shown in Tables 1
and 2 for the choices Hh = H and Hh = 0, respectively. Error reduction in H1(Γ)
perfectly confirms theoretical analysis. The optimal order L2 error estimate was
not covered by the theory. In experiments, we observe a somewhat less regular
behaviour of L2(Γ) error for the band width d = h. It becomes more regular if the
bandwidth slightly growth, and for d = 5h we clearly see the optimal second order
of convergence. To compare results for two band widths in terms of accuracy versus
computational costs, Table 1 also shows the number of active degrees of freedom
involved in computations in each case. Running experiments with varying γ (not
shown), we concluded that taking any γ ∈ [1, 5] would be a reasonable choice, while
increasing the band width further does not pay off in terms of accuracy versus
CPU time. Results for Hh = 0 are very much similar to the ’exact’ choice Hh = H.
We note that this would not be the case if the band width d is chosen to be h
independent. In this case, setting Hh = 0 leads to suboptimal convergence rates.

Experiment 2. The second experiment is still for a 2D problem, but now we test the
method for a PDE posed on a surface with boundary. This case was not covered
by the theory in this paper. Let Γ be a part of the curve y =

√
x for s ∈ (0, 2),

where s is the arc length of Γ from the origin. We are looking for the solution to
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Table 1. Error norms and estimated convergence orders in Ex-
periment 1 with Hh = H.

d = h d = 5h

` #d.o.f. L2(Γ) H1(Γ) #d.o.f. L2(Γ) H1(Γ)

0 55 5.49e-2 1.25e-1 138 6.19e-2 1.27e+0
1 107 1.35e-2 2.02 6.22e-1 1.01 274 1.51e-2 2.03 6.29e-1 1.01
2 211 3.56e-3 1.92 3.18e-1 0.97 536 3.78e-3 2.00 3.20e-1 0.98
3 411 8.88e-4 2.00 1.60e-1 0.99 1066 9.32e-4 2.02 1.60e-1 1.00
4 834 2.34e-4 1.93 7.95e-2 1.00 2118 2.34e-4 1.99 7.98e-2 1.00
5 1665 6.71e-5 1.80 3.97e-2 1.01 4251 5.88e-5 2.00 3.99e-2 1.00
6 3329 1.27e-5 2.41 1.98e-2 1.00 8479 1.46e-5 2.01 1.99e-2 1.00
7 6669 5.25e-6 1.27 9.86e-3 1.00 16955 3.65e-6 2.00 9.90e-3 1.01
8 13319 2.82e-6 0.90 4.89e-3 1.00 33911 8.82e-7 2.05 4.91e-3 1.01
9 26619 4.73e-7 2.57 2.40e-3 1.00 67924 2.34e-7 1.91 2.41e-3 1.03

10 53317 2.24e-7 1.08 1.15e-3 1.00 135692 5.41e-8 2.11 1.16e-3 1.06
11 106630 5.61e-8 1.99 5.75e-4 1.00 271544 1.34e-8 2.02 5.35e-4 1.12

Table 2. Error norms and estimated convergence orders in Ex-
periment 1 with Hh = 0.

d = h d = 5h

` L2(Γ) H1(Γ) L2(Γ) H1(Γ)

0 5.55e-2 1.25e+0 2.90e-2 1.23e+0
1 1.41e-2 1.98 6.22e-1 1.00 9.68e-3 1.58 5.94e-1 1.05
2 3.74e-3 1.91 3.18e-1 0.97 5.51e-3 0.81 3.12e-1 0.93
3 9.33e-4 2.00 1.60e-1 1.00 1.82e-3 1.60 1.59e-1 0.97
4 2.44e-4 1.93 7.95e-2 1.01 4.91e-4 1.89 7.96e-2 1.00
5 6.94e-5 1.82 3.97e-2 1.00 1.25e-4 1.97 3.98e-2 1.00
6 1.33e-5 2.39 1.98e-2 1.00 3.14e-5 2.00 1.99e-2 1.00
7 5.35e-6 1.31 9.86e-3 1.01 7.85e-6 2.00 9.90e-3 1.01
8 2.83e-6 0.92 4.89e-3 1.01 1.93e-6 2.02 4.91e-3 1.01
9 4.75e-7 2.57 2.40e-3 1.03 4.93e-7 1.97 2.41e-3 1.03

10 2.24e-7 1.09 1.15e-3 1.06 1.19e-7 2.05 1.16e-3 1.06
11 5.60e-8 2.00 5.75e-4 1.01 3.06e-8 1.97 5.35e-4 1.12

the problem

−∆Γu+ u = f on Γ, u′(0) = u′(2) = 0

The right hand side f(s) is taken such that the exact solution is u(s) = cos(4πs).
In this experiment, φh was used to define the narrow band Ωh in (4.3). The ap-

proximate signed distance function was computed using the Matlab implementation
of the closest point method from [23], which also gives the approximate projection
p needed to find the extension fe on Ωh. The extended problem uses approximate
Hessian matrix recover from the distance function.

The unfitted finite element scheme is slightly modified to allow for Neumann
conditions on both part of the boundary {(x, y) : ‖φ(x, y)‖ = kh} and {(x, y) :
s = 0 or s = 2}, and to handle the end points of Γ, as shown in Figure 1(a).
H1(Γ) and L2(Γ) error norms for this experiment are shown in Table 3. The
optimal convergence order is clearly seen in the energy norm. In the L2(Γ) norm
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the convergence pattern is slightly less regular, but close to the optimal order as
well. Same conclusions hold if we set Hh = 0 in Ωh.

Table 3. Error norms and estimated convergence orders in Ex-
periment 2 with d = 3h.

Hh ≈ H Hh = 0

` L2(Γ) H1(Γ) L2(Γ) H1(Γ)

0 8.54e-4 2.70e-2 8.95e-4 2.66e-2
1 2.22e-4 1.95 1.18e-2 1.19 2.10e-4 2.09 1.16e-2 1.20
2 7.13e-5 1.64 5.69e-3 1.06 9.73e-5 1.11 5.42e-3 1.10
3 1.64e-5 2.12 2.82e-3 1.01 2.01e-5 2.28 2.66e-3 1.03
4 3.67e-6 2.16 1.41e-3 1.00 4.60e-6 2.13 1.33e-3 1.00
5 1.04e-6 1.82 7.01e-4 1.01 1.69e-6 1.44 6.63e-4 1.00
6 8.14e-7 0.35 3.48e-4 1.01 1.55e-6 0.13 3.28e-4 1.02
7 1.36e-7 2.58 1.72e-4 1.02 2.80e-7 2.47 1.62e-4 1.02
8 1.53e-8 3.15 8.38e-5 1.04 3.67e-8 2.93 7.88e-5 1.04

Figure 1. Left: Unfitted narrow-band mesh for a surface with
boundary in Experiment 2 ; Right: Cutaway of a narrow band
domain and numerical solution (full active tetrahedra from Fd are
shown, while integration is performed over cut tetrahedra, i.e. over
Ωh).

Experiment 3. As the next test problem, we consider the Laplace–Beltrami equation
(2.1) on the unit sphere, Γ = {x ∈ R3 | ‖x‖2 = 1}. The source term f is taken
such that the solution is given by

u(x) =
12

‖x‖3
(
3x2

1x2 − x3
2

)
, x = (x1, x2, x3) ∈ Ω.

Note that u and f are constant along normals at Γ.
We perform a regular uniform tetrahedra subdivision of Ω = (−2, 2)3 with h =

21−` × 10−1. Thus the grid is not aligned with ∂Ωd. We further refine only those
elements which have non-empty intersection with Ωd. As before, we use piecewise
affine continuous finite elements. Optimal convergence rates in H1(Γ) and L2(Γ)
norms are observed with the narrow band width d = h both with the exact choice
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Table 4. Error norms and estimated convergence orders in Ex-
periment 3 with d = h.

Hh = H Hh = 0

` #d.o.f. L2(Γ) H1(Γ) L2(Γ) H1(Γ)

0 1432 4.94e-1 2.78e+0 6.40e-1 3.01e+0
1 5474 1.39e-1 1.83 5.67e-1 2.29 1.64e-1 1.96 5.55e-1 2.44
2 22084 3.62e-2 1.94 1.89e-1 1.58 4.23e-2 1.96 1.87e-1 1.57
3 88122 8.98e-3 2.01 8.08e-2 1.22 1.05e-2 2.00 8.09e-2 1.21
4 353920 2.35e-3 1.93 3.85e-2 1.07 2.74e-3 1.94 3.86e-2 1.07
5 1416810 5.91e-4 1.99 1.90e-2 1.02 6.93e-4 1.98 1.90e-2 1.02

of Hh = H and Hh = 0, see Table 4. The cutaway of Ωh and computed solution
with d = h are illustrated in Figure 1.

Experiment 4. We repeat the previous experiment, but now for the equation posed
on a torus instead of the unit sphere. Let Γ = {x ∈ Ω | r2 = x2

3 +(
√
x2

1 + x2
2−R)2}.

We take R = 1 and r = 0.6. In the coordinate system (ρ, φ, θ), with

x = R

cosφ
sinφ

0

+ ρ

cosφ cos θ
sinφ cos θ

sin θ

 ,

the ρ-direction is normal to Γ, ∂x∂ρ ⊥ Γ for x ∈ Γ. The following solution u and the

corresponding right-hand side f are constant in the normal direction:

u(x) = sin(3φ) cos(3θ + φ),

f(x) = r−2(9 sin(3φ) cos(3θ + φ))

+ (R+ r cos(θ))−2(10 sin(3φ) cos(3θ + φ) + 6 cos(3φ) sin(3θ + φ))

− (r(R+ r cos(θ)))−1(3 sin(θ) sin(3φ) sin(3θ + φ)) + u(x).

(6.1)

Near optimal convergence rates in H1(Γ) and L2(Γ) norms are observed with
the narrow band width d = h, both with the exact choice of Hh = H and Hh = 0.
The surface norms of approximation errors for the example of torus are given in
Table 5. The solution is visualized in Figure 6.

Table 5. Error norms and estimated convergence orders in Ex-
periment 4 with d = h.

Hh = H Hh = 0

` # d.o.f. L2(Γ) H1(Γ) L2(Γ) H1(Γ)

1 10094 7.16e-2 3.03e+0 7.64e-2 4.29e+0
2 41018 1.93e-2 1.89 1.35e+0 1.17 2.04e-2 1.91 1.60e+0 1.42
3 165244 4.95e-3 1.96 6.30e-1 1.10 5.28e-3 1.95 6.63e-1 1.27
4 664090 1.26e-3 1.98 2.96e-1 1.09 1.31e-3 2.01 3.04e-1 1.12
5 2656782 3.06e-4 2.04 1.48e-1 1.00 3.23e-4 2.02 1.48e-1 1.04

Experiment 5. Finally, we perform a few experiments with higher order finite ele-
ment approximations. According to the analysis of section 5, to achieve the optimal
error convergence, one has to reconstruct φ and H with higher accuracy, cf. (4.2),
(4.6). For example, P2 elements call for the approximation of φ with a piecewise
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Figure 2. Cutaway of a narrow band domain and numerical so-
lution for experiment 4 (full active tetrahedra are shown, while
integration is performed over cut tetrahedra).

second order polynomial function φh, while a first order reconstruction of H is suf-
ficient. The main technical difficulty here is implementing a sufficiently accurate
and cost efficient numerical integration over implicitly given curved triangles, re-
sulting from the intersection of Ωh with a bulk triangulation. In this paper, we
get around this difficulty by constructing local (inside each cut triangle) piecewise
linear approximation of φh with some h′ = O(hq), with q from (4.2), i.e. h′ = O(h2)
for P2 elements and h′ = O(h3) for P3 elements. Further, an integral over a cut
element is computed as a sum of integrals over the resulting set of smaller triangles;

Figure 3. Local subdi-
visions of cut triangles
for the numerical inte-
gration of P2 elements.

see Figure 6 for the illustration of
how such local triangulations were con-
structed for two cut triangles K1 and
K2 of a bulk triangulation (FE func-
tions are integrated over the green
area). The approach is suboptimal with
respect to how the computational cost
of building stiffness matrices scales if
h → 0. We use this approach to il-
lustrate the error analysis of this pa-
per. The results of numerical experi-
ments for the same problem as in Ex-
periment 1 are shown in Table 6. Here
we set d = 3h, Hh = H and observe op-
timal convergence order for P2 and P3

finite elements (the convergence stag-
nation for fine levels with P3 elements
is due to the influence of rounding off
errors in our implementation). Unlike

the case of P1 finite elements, setting Hh = 0 led to suboptimal convergence rates.
This is consistent with the analysis.
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Table 6. Error norms and estimated convergence orders for
higher order elements in Experiment 5.

P2 FE P3 FE

` #d.o.f. L2(Γ) H1(Γ) #d.o.f. L2(Γ) H1(Γ)

0 181 1.30e-3 7.36e-2 379 8.47e-5 7.13e-3
1 357 1.75e-4 2.89 2.03e-2 1.86 751 5.31e-6 4.00 8.51e-4 3.07
2 709 2.31e-5 2.92 5.29e-3 1.94 1495 3.24e-7 4.03 1.04e-4 3.03
3 1381 2.96e-6 2.96 1.35e-3 1.97 2911 1.95e-8 4.06 1.27e-5 3.03
4 2817 3.73e-7 2.99 3.38e-4 2.00 5950 2.98e-9 2.71 1.55e-6 3.03
5 5629 4.69e-8 2.99 8.48e-5 1.99 11893 2.55e-8 -3.10 2.08e-7 2.90
6 11261 5.90e-9 2.99 2.14e-5 1.99

7. Conclusions

We studied a formulation and a finite element method for elliptic partial differ-
ential equation posed on hypersurfaces in RN , N = 2, 3. The formulation uses an
extension of the equation off the surface to a volume domain containing the surface.
The extension introduced in the paper results in uniformly elliptic problems in the
volume domain. This enables a straightforward application of standard discretiza-
tion techniques, including higher order finite element methods. The method can
be applied in a narrow band (although this is not a necessary requirement) and
can be used with meshes not fitted to surface or computational domain boundary.
Numerical analysis reveals the sufficient conditions for the method to have optimal
convergence order in the energy norm. For P1 finite elements and h-narrow band,
the optimal convergence is achieved for a particular simple formulation. For higher
order elements, an optimal complexity efficient implementation of the method is a
subject of current research and will be reported in a follow-up paper.
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