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AN AUGMENTED LAGRANGIAN-BASED APPROACH
TO THE OSEEN PROBLEM∗

MICHELE BENZI† AND MAXIM A. OLSHANSKII‡

Abstract. We describe an effective solver for the discrete Oseen problem based on an aug-
mented Lagrangian formulation of the corresponding saddle point system. The proposed method is
a block triangular preconditioner used with a Krylov subspace iteration like BiCGStab. The crucial
ingredient is a novel multigrid approach for the (1,1) block, which extends a technique introduced by
Schöberl for elasticity problems to nonsymmetric problems. Our analysis indicates that this approach
results in fast convergence, independent of the mesh size and largely insensitive to the viscosity. We
present experimental evidence for both isoP2-P0 and isoP2-P1 finite elements in support of our con-
clusions. We also show results of a comparison with two state-of-the-art preconditioners, showing
the competitiveness of our approach.
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1. Introduction. We consider the numerical solution of the steady Navier–
Stokes equations governing the flow of a Newtonian, incompressible viscous fluid.
Let Ω ⊂ Rd (d = 2, 3) be a bounded, connected domain with a piecewise smooth
boundary ∂Ω. Given a force field f : Ω → Rd and boundary data g : ∂Ω → Rd, the
problem is to find a velocity field u : Ω → Rd and a pressure field p : Ω → R such that

−νΔu + (u · ∇)u + ∇p = f in Ω,(1.1)

div u = 0 in Ω,(1.2)

u = g on ∂Ω,(1.3)

where ν > 0 is the kinematic viscosity coefficient (inversely proportional to the
Reynolds number Re), Δ is the Laplace operator in Rd, ∇ denotes the gradient,
and div is the divergence. To determine p uniquely we may impose some additional
condition, such as

(p, 1) =

∫
Ω

p dx = 0.

Equation (1.1) represents conservation of momentum, while (1.2) represents the
incompressibility condition, or mass conservation. Due to the presence of the convec-
tive term (u·∇)u in the momentum equations, the Navier–Stokes system is nonlinear.
It can be linearized in various ways. A widely used linearization scheme is the one
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based on Picard’s iteration; see, e.g., [10, section 7.2.2]. Starting with an initial guess
u(0) (with div u(0) = 0) for the velocity field, Picard’s iteration constructs a sequence
of approximate solutions (u(k), p(k)) by solving the linear Oseen problem:

−νΔu(k) + (u(k−1) · ∇)u(k) + ∇p(k) = f̂ in Ω,(1.4)

div u(k) = 0 in Ω,(1.5)

u(k) = g on ∂Ω(1.6)

(k = 1, 2, . . . ). Note that no initial pressure needs to be specified. Under certain

conditions on ν (which should not be too small) and f̂ (which should not be too
large in an appropriate norm), the steady Navier–Stokes equations (1.1)–(1.3) have a
unique solution (u∗, p∗), and the iterates (u(k), p(k)) converge to it as k → ∞ for any
choice of the initial velocity u(0); see [10, Chapter 7] and the references therein.

Hence, at each Picard iteration one needs to solve an Oseen problem of the form

−νΔu + (w · ∇)u + ∇p = f̂ in Ω,(1.7)

div u = 0 in Ω,(1.8)

u = g on ∂Ω(1.9)

with a known, divergence-free coefficient w. Discretization of (1.7)–(1.9) using LBB-
stable finite elements [10, 26] results in a linear system of the form(

A BT

B O

)(
u
p

)
=

(
f
0

)
, or Ax = b,(1.10)

in which u represents the discrete velocities and p the discrete pressure. Here A =
diag (A1, . . . , Ad) is a block diagonal matrix, where each block corresponds to a dis-
crete convection-diffusion operator with the appropriate boundary conditions. Note
that A is nonsymmetric. The rectangular matrix BT represents the discrete gradi-
ent operator, while B represents its adjoint, the (negative) divergence operator. The
solvability of this system is discussed, e.g., in [2, section 3.2]; here we assume that the
coefficient matrix in (1.10) is nonsingular.

Linear systems of the form (1.10) are often referred to as generalized saddle point
systems. In recent years, a great deal of effort has been invested in solving systems of
this form. Most of the work has been aimed at developing effective preconditioning
techniques; see [10], and [2] for an extensive survey. In spite of these efforts, there
is still considerable interest in preconditioning techniques that are truly robust, i.e.,
techniques which result in convergence rates that are largely independent of problem
parameters such as mesh size and viscosity. In this paper we describe a promising
approach based on an augmented Lagrangian (AL) formulation. The success of this
method crucially depends on the availability of a robust multigrid solver for the (1,1)
block (submatrix) in the AL formulation of the saddle point system; we develop such
a method by building on previous work by Schöberl [29], together with appropriate
smoothers for convection-dominated flows. Rather than as a solver, this multigrid
iteration will be used to define a block preconditioner for the outer iteration on the
coupled saddle point system. We will show that this approach is especially appropriate
for discretizations based on discontinuous pressure approximations, but can be used
to construct preconditioners for other discretizations using continuous pressures. As
an example of the finite element (FE) method with discontinuous pressures we will
use the isoP2-P0 pair. In this case, our numerical experiments demonstrate a robust
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behavior of the solver with respect to h and ν for some typical wind vector functions
w in (1.7). Further, the isoP2-P1 FE pair is used for the continuous pressure-based
approximation. For this case numerical experiments show h-independent convergence
rates, with mild dependence on ν when the viscosity becomes very small.

The remainder of the paper is organized as follows. In section 2 we present the
(standard) abstract formulation of the Oseen problem and discuss the FE approxima-
tions. In section 3 we describe the AL approach and the resulting block preconditioner
and briefly discuss related approaches that can be found in the literature. Section 4
is devoted to a study of the spectrum of the preconditioned system, assuming ex-
act solves for the (1,1) block. The multigrid solver for the (1,1) block is described
in section 5. Numerical experiments on some two-dimensional (2D) model problems
are presented in section 6. Here we also present a comparison with two of the best
available preconditioning techniques, showing that our method is quite competitive
in terms of convergence rates, robustness, and efficiency. Some concluding remarks
are given in section 7.

2. Finite element method. For simplicity, we assume the boundary conditions
in (1.9) to be Dirichlet homogeneous (i.e., g = 0). The weak formulation of the Oseen
problem reads as follows: Given f ∈ H−1(Ω), find u ∈ H1

0(Ω) and p ∈ L2
0(Ω) such

that

L(u, p;v, q) = 〈f ,v〉 ∀ v ∈ H1
0(Ω), q ∈ L2

0(Ω),

L(u, p;v, q) := ν(∇u,∇v) + ((w · ∇)u,v) − (p,div v) + (q,div u).

Given conforming FE spaces Vh ⊂ H1
0(Ω) and Qh ⊂ L2

0(Ω), the Galerkin FE dis-
cretization of (1.7)–(1.9) is based on the following weak formulation: Find {uh, ph} ∈
Vh × Qh such that

L(uh, ph;vh, qh) = 〈f ,vh〉 ∀ vh ∈ Vh, qh ∈ Qh.(2.1)

There are several critical issues associated with the Galerkin FE method for the Oseen
problem. One is the compatibility of Vh and Qh, i.e., the validation of the LBB (inf-
sup) stability condition, which guarantees that the FE velocity space is “rich enough”
relative to the FE pressure space. This ensures well-posedness and full approximation
order for the FE linear problem. For the numerical experiments in the paper we used
the isoP2-P0 FE pair (piecewise constant pressure and piecewise linear continuous
velocity on two-times finer triangulation) and the isoP2-P1 FE pair (piecewise linear
pressure and piecewise linear continuous velocity on two-times finer triangulation).
Both pairs are LBB stable: There exists a mesh-independent constant μ(Ω) such that

inf
qh∈Qh

sup
vh∈Vh

(qh,div vh)

‖∇vh‖‖qh‖
= μh ≥ μ(Ω) > 0.(2.2)

We note that the chosen FE pairs have stable higher order variants P2-P0 and P2-P1
(the latter is also known as Taylor–Hood element). All considerations and conclusions
in the paper remain valid for these higher order finite elements. Piecewise linear
velocity-based elements were used solely for the ease of implementation.

Another potential source of instabilities in (2.1) is the presence of dominating
convection terms. This necessitates stabilization of the discrete system if the mesh is
not sufficiently fine to resolve the stiff behavior of the system. We outline below the
SUPG-type method we used. Many more details on the family of SUPG stabilization
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methods can be found in, e.g., [6, 28, 31]. Using (2.1) as the starting point, a weighted
residual for the FE solution multiplied by a solution-dependent test function is added:

(2.3) L(uh, ph;vh, qh) +
∑
τ∈Th

στ (−νΔuh + w·∇uh + ∇ph − f ,w·∇vh)τ

= (f ,vh) ∀ vh ∈ Vh, qh ∈ Qh.

The “new” term in (2.3) is evaluated elementwise for each element τ of a triangulation
Th. The parameters στ are element- and problem-dependent. The general idea behind
the choice of στ is to add almost no additional stabilization terms in regions of small
mesh Reynolds numbers, so as to recover optimality of the Galerkin method, but to
add them in regions of large mesh Reynolds numbers. Several recipes for the particular
choice of the stabilization parameters can be found in the literature. We use the one
from [22]:

στ = σ̄
hτ

‖w‖L2(τ)

2Reτ
1 + Reτ

, Reτ :=
‖w‖L2(τ)hτ

ν
.(2.4)

This formula for the parameter with σ̄ ∈ [0.2, 1] was successfully used in many nu-
merical experiments in [31]. In our experiments we take σ̄ = 0.3.

Remark 2.1. The particular choice of stabilization parameters στ can be quite
important for the discrete solution accuracy. On the other hand, using high order
finite elements [20] or sufficiently fine meshes may dispense with the need to stabilize
the problem. We found, however, that in order to have an efficient solver it is still im-
portant to add stabilization to the coarse grid problems in the multigrid method (see
details in section 5). Additionally, the efficiency of the iterative solver described below
was found to be essentially independent of the particular choice of σ̄ = O(1) or of
different formulae for στ known from the literature for convection-diffusion problems
(see, e.g., [11]). We can also assume that any pressure-dependent part in the stabi-
lization term enters the nonlinear residual in the Picard iterations, thus preserving
the saddle point structure (1.10) of the problem.

3. Augmented Lagrangian formulation. Some of the most effective solvers
for the Oseen problem found in the literature are based on block triangular precondi-
tioners of the form

P =

(
Â BT

O Ŝ

)
,(3.1)

where Â and Ŝ are approximations to A and to the Schur complement S = −BA−1BT ,
respectively; see, e.g., [2, 10]. The approximation Â often consists of an inexact
solver for linear systems with coefficient matrix A, such as one or more iterations
of an appropriate multigrid solver for convection-diffusion equations. The search for
good approximations Ŝ to the Schur complement (or its inverse) has generated much
research in recent years [10]. Note that S = −BA−1BT is a dense matrix. When ν is
relatively large (moderate Reynolds numbers), then S is well conditioned and can be
well approximated by the pressure mass matrix Mp, provided that the discretization is
LBB-stable. When ν is small, however, finding good and inexpensive approximations
to S is not easy. While the best available methods exhibit h-independent convergence
of the preconditioned iterations [10], some degradation in the rate of convergence is
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observed as ν → 0. For large Reynolds numbers, the number of iterations can be
high.

Here we follow an approach that bypasses the need for a good approximation
to the dense matrix S. Suppose we replace the original problem (1.10) with the
“regularized” one, (

A BT

B − 1
γW

)(
u
p

)
=

(
f
0

)
,(3.2)

where γ > 0 is a parameter and W is a positive definite matrix. The solution
[u(γ), p(γ)] of (3.2) tends to the solution of (1.10) for γ → ∞. Observing that the
Schur complement of the (1,1) block in the coefficient matrix of (3.2) (sometimes
referred to as the “primal” or “velocity” Schur complement) is A + γBTW−1B, we
expect

P(γ) =

(
A + γBTW−1B BT

O − 1
γW

)
(3.3)

(or, in practice, some inexact version of it) to be an effective preconditioner for the
regularized problem (3.2). Note that if W is diagonal, or block diagonal with small
blocks, the matrix A + γBTW−1B is also going to be sparse. Our choice of W is
discussed in the next section.

There is, however, a well-known difficulty with this approach. The matrix in the
regularized problem is close to the original one only for γ large, and for large γ the
(1,1) block A + γBTW−1B becomes increasingly ill conditioned (note that BTB has
a null space of dimension n − m for n = dim Vh, m = dim Qh). Hence, finding an
effective inexact solver for the (1,1) block becomes difficult. It is therefore preferable
to keep the value of γ moderate, say, γ = O(1) or, for reasons of scaling, γ ≈ ‖w‖.
This is the idea behind the classical AL approach. In its simplest form, this method
consists of replacing the original system (1.10) with the equivalent(

A + γBTW−1B BT

B O

)(
u
p

)
=

(
f
0

)
, or Âx = b.(3.4)

Clearly, this system has precisely the same solution as the original one (1.10). We
refer to [13] for an extensive discussion of AL techniques and their applications. We
propose to precondition the AL system (3.4) with the block triangular preconditioner

P =

(
Âγ BT

O Ŝ

)
,(3.5)

where the action of Â−1
γ is computed via an appropriate (inexact) solver for linear

systems involving the matrix A + γBTW−1B,

Âγ ≈ A + γBTW−1B,(3.6)

and Ŝ is implicitly defined through its inverse,

Ŝ−1 := −νM̂−1
p − γW−1.(3.7)

Here M̂−1
p denotes an approximate solve with the pressure mass matrix. This choice

of Ŝ is motivated by Lemma 4.1 below and will be analyzed in the next section. The
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pressure mass matrix Mp is diagonal for FE pairs based on piecewise constant pressure
approximations. For higher order pressure approximations Mp is no longer diagonal
but it is spectrally equivalent to a diagonal matrix M̄p; see [34]. Thus, linear systems
with Mp can be solved easily, either exactly or approximately.

It follows from the identity

P−1 =

(
Â−1

γ O
O Im

)(
In BT

O −Im

)(
In O

O −Ŝ−1

)
(3.8)

that the action of the preconditioner on a given vector requires one application of
Â−1

γ , one of Ŝ−1, and one sparse matrix-vector product with BT . The question
of the adequacy of the augmented Schur complement preconditioner (3.7) will be
addressed in sections 4 and 6. Besides this, the major issue is the definition of Â−1

γ ,
the approximate (1,1) block solver. Developing such a solver is a nontrivial task.
Note that the introduction of the additional term γBTW−1B in the (1,1) block of
the saddle point matrix introduces a coupling between the components of the velocity
vector, which is originally avoided in the Oseen linearization compared to the Newton
one. For vanishing convection the (1,1) block essentially reduces to the one for the
classical elasticity problem. For moderate and high Reynolds numbers, however, it
becomes increasingly nonsymmetric. It is nevertheless possible to develop efficient
iterative solvers for the (1,1) block, at least for some choices of the FE discretization.
In section 5 we describe an effective multigrid method for the (1,1) block.

We conclude this section with a brief discussion of related work. An AL approach
to the Oseen problem can already be found in [13, Chapter 2], in the context of the
classical Uzawa’s method. However, the crucial aspect of how to efficiently solve linear
systems involving A + γBTW−1B was not discussed there. Among more recent pa-
pers, we mention [7], where a preconditioner based on (3.2) is applied to (symmetric)
linear incompressible elasticity problems. The inexact solution of systems involving
(3.2) is accomplished by a “primal” Schur complement approach, leading to an overall
preconditioning strategy which resembles the approach taken here. There are, how-
ever, important differences. Our preconditioner is applied to the AL formulation (3.4),
whereas the authors of [7] work with the original saddle point formulation. A more
important difference is the fact that the problem tackled in [7] is symmetric; thus, the
authors are able to leverage existing techniques for linear elasticity problems when
developing an efficient solver for the (1,1) block. We mention that a related approach
has been used in [17] to construct block preconditioners for saddle point systems aris-
ing from the curl-curl formulation of the time-harmonic Maxwell’s equations, also a
symmetric problem.

The paper [14] applies a preconditioning technique similar to the one in [7] to
Stokes and linearized Navier–Stokes problems. The numerical evidence reported
in [14] indicates that as the Reynolds number increases, the rate of convergence of
the inner iterative solver used for the (1,1) block (a two-level overlapping additive
Schwarz preconditioner with a multiplicative coarse grid correction) tends to deteri-
orate as the mesh is refined. The deterioration of this solver is already noticeable for
a 2D driven cavity problem with Reynolds number Re = 400, a fairly easy problem
(close to Stokes flow). Furthermore, no analysis of the preconditioner is given. On
the positive side, the solver in [14] appears to be well suited for massively parallel
architectures, an aspect which we do not address in this paper.

Finally, adding the product γ(div uh,div vh) on the left-hand side of the FE
method formulation (2.1) is well known in the literature on stabilized FE methods
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for fluid problems and sometimes called “the ∇ div-stabilization.” Using this stabi-
lization may change the FE solution. However, the effect on the iterative solution
of (1.10) is similar to the one resulting from adding γBTW−1B (with W = Mp)
to the (1,1) block of the linear algebraic system. This linear algebra aspect of the
∇ div-stabilization was studied for the Stokes problem in [24] and for the linearized
rotation form of the Navier–Stokes problem in [25]. In particular, numerical experi-
ments in [25] demonstrate ν-independent convergence of the preconditioned BiCGstab
method if γ = O(1) and if exact solves are used for systems involving the (1,1) block.
However, in [24] and [25] the question of finding a robust solver or preconditioner for
the (1,1) block with respect to the ratio ν/γ was left open.

4. Analysis of the preconditioner. It is well known that characterizing the
rate of convergence of nonsymmetric preconditioned iterations can be a difficult task.
In particular, eigenvalue information alone may not be sufficient to give meaningful
estimates of the convergence rate of a method like preconditioned GMRES [16]. The
situation is even more complicated for a method like BiCGStab, for which virtually
no convergence theory exists. Nevertheless, experience shows that for many linear
systems arising in practice, a well-clustered spectrum (away from zero) usually results
in rapid convergence of the preconditioned iteration.

In this section we show that for the preconditioner (3.5), the eigenvalues of the

preconditioned matrix M = P−1Â are enclosed in a rectangular region contained in
the right half-plane 
(z) > 0, the sides of which do not depend on the mesh size h
and for sufficiently large γ do not depend on ν. Here we assume exact solves for the
(1,1) block, i.e., Âγ = A + γBTW−1B. Hence, at least for this “ideal” version of the
preconditioner, the eigenvalues of the preconditioned matrix are bounded away from
zero, independently of h and ν. Our analysis makes use of the following simple lemma,
which is a straightforward consequence of [12, Exercise 12.12] or [15, Proposition 2.1].

Lemma 4.1. Let A ∈ Rn×n and B ∈ Rm×n (m ≤ n). Let γ ∈ R, and assume
that matrices A, A + γBTW−1B, BA−1BT , and B(A + γBTW−1B)−1BT are all
invertible. Then[

B(A + γBTW−1B)−1BT
]−1

=
(
BA−1BT

)−1
+ γW−1.(4.1)

We note that the conditions of Lemma 4.1 are satisfied if we assume that B has
full row rank and that A is positive real (i.e., the symmetric part of A is positive
definite); see [2, section 3]. These conditions are satisfied, in particular, for the
matrices considered in this paper.

Recall that P−1Â and Â P−1 have the same eigenvalues. A simple calculation
shows that

Â P−1 =

(
In O

B(A + γBTW−1B)−1 −B(A + γBTW−1B)−1BT Ŝ−1

)
.(4.2)

Hence, the preconditioned matrix has the eigenvalue 1 of multiplicity n, with the
remaining eigenvalues λi (1 ≤ i ≤ m) being solutions of the generalized eigenproblem

B(A + γBTW−1B)−1BT p = −λŜ p.

Setting W = Mp and M̂p = Mp, Lemma 4.1 implies

(ν + γ)λ−1
i = γ + μ−1

i ,
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where μi satisfies the generalized eigenproblem

BA−1BT q = μMp q.(4.3)

Hence, the nonunit eigenvalues of P−1Â are given by

λi =
γ + ν

γ + μ−1
i

, 1 ≤ i ≤ m.(4.4)

It has been shown in [8] that the eigenvalues of (4.3) are enclosed in a rectangle
contained in the half-plane 
(z) > 0; using this result and the relation (4.4), we can

conclude that the same is true of the eigenvalues of P−1Â. If we denote by ai and
bi the real and imaginary parts of μi, respectively, easy manipulations result in the
following expressions for the real and the imaginary parts of λi:


(λi) =
(ν + γ)(ai + γ(a2

i + b2i ))

(γai + 1)2 + (γbi)2
and �(λi) =

(ν + γ)bi
(γai + 1)2 + (γbi)2

.(4.5)

The following result is an immediate consequence of (4.5).

Theorem 4.2. Assume W = Mp. The preconditioned matrix P−1Â has the
eigenvalue 1 of multiplicity n. The remaining m eigenvalues λi are given by (4.4),
where μi = ai + i bi satisfies (4.3). The following estimates hold:

1 − 1

γai + 1
≤ 
(λi) < 1 + νγ−1 and |�(λi)| < (1 + νγ−1) min

{
γbi,

1

γbi

}
.

In particular, all the eigenvalues tend to 1 for γ → ∞.
The bounds in Theorem 4.2, while independent of h, will generally depend on ν

in an implicit way through ai and bi. For the case of the Galerkin FE method (2.1)
(with no stabilization), the results in [8] provide us with the following estimates for
the eigenvalues of (4.3):

c ν ≤ ai ≤ C ν−1, |bi| ≤ C1ν
−1(4.6)

for some h- and ν-independent positive constants c, C,C1 (here we assume 0 < ν ≤ 1).
Together with the estimates from Theorem 4.2, this result implies that it is sufficient
to set γ = O(ν−1) to ensure that all nonunit eigenvalues of P−1Â are contained in a
box [a, A] × [−b, b], a > 0, in the complex plane, with a, A, b independent of ν and
h. We note that this theoretical result is of somewhat limited use, since in practice
we found that it is unnecessary to use large values of γ (!), or to solve linear systems
involving the (1,1) block “exactly” (the latter being perhaps less surprising).

Remark 4.3. In numerical experiments we found that using γ ≈ ‖w‖ already
provides ν- and h-independent convergence of the Krylov subspace method for a wide
range of values of ν and h (it should be noted that we also use streamline diffusion-
type velocity stabilization). Furthermore, assume that Â−1

γ is not a solver but a
preconditioner for the (1,1) block and that its efficiency deteriorates with ν/γ → 0.
Then the optimal value of γ in the Krylov subspace method will be quite modest for
ν � 1 (see Table 6.2 in section 6).

Remark 4.4. The result of the theorem remains valid if one considers W = M̄p

and with M̄p replacing Mp in (4.3). Following the arguments in [8], it can be easily
verified that (4.6) still holds. In general, W is not necessarily an approximation to a
mass matrix or identity; see the discussion in [15] in conjunction with other saddle
point problems. In this paper, however, we do not pursue other choices of W .
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5. A multigrid method for the (1,1) block. In this section we develop a
multigrid method to (approximately) solve the system of equations for the discrete
velocity at each outer iteration. For the purpose of analysis in this section we consider
W = Mp; however, in the implementation it is more practical to set W = M̄p. By
a simple scaling argument one can assume ‖w‖∞ = 1; thus we can let γ = 1. The
system one needs to solve is

Au + BTM−1
p B u = f.(5.1)

To define an FE counterpart of (5.1) we introduce the orthogonal projector Ph :
L2

0 → Qh. The corresponding FE problem takes the form

(5.2) ν(∇uh,∇vh) +
∑
τ∈Th

στ (w · ∇uh,w · ∇vh)τ + ((w · ∇)uh,vh)

+ (Ph div uh,div vh) = (f,vh) ∀ vh ∈ Vh.

An ideal multigrid method for solving (5.1) should be robust with respect to ν and
different types of wind w and have optimal computational complexity. There are
several difficulties in developing such a method. First, note that matrix B has a kernel
of dimension n−m. In the case of ν � 1 and if w is small in part of Ω, some vectors
from ker(B) may nearly vanish after multiplication by A+BTM−1

p B; see Figure 5.1 for
an example of locally supported functions from ker(B) for a particular FE pair. Thus,
common relaxation iterations like Gauss–Seidel could fail to smooth out oscillatory
components from ker(B) that may be present in the error. At the same time, if a
local Reynolds number is large, the problem has convection-dominated character at
least on the kernel of B. Building robust multigrid methods for convection-dominated
problems is a well-known challenge; see the overview in [23].

To define the necessary components of the multigrid method, let us consider two
pairs of finite element spaces Vh×Qh and VH ×QH , corresponding to fine and coarse
grids, respectively.

It was shown in [27, 10, 23] that a stable direct discretization on the coarse grid is
the preferred choice in geometric multigrid methods for convection-diffusion problems.
Additionally, in the case of elasticity-type problems (w = 0 in (2.1)), stability of the
coarse grid problem means that velocity and auxiliary pressure approximations on the
coarser grid remain compatible, so as to avoid the so-called locking phenomenon [1].
Thus, to build a matrix for a coarse grid problem in our multigrid method we consider
the FE formulation

ν(∇uH ,∇vH) +
∑
τ∈TH

στ (w · ∇uH ,w · ∇vH)τ + ((w · ∇)uH ,vH)

+ (PH div uH ,div vH) = (f,vH) ∀ vH ∈ VH ,

where the new set of parameters στ corresponds to the coarse grid and PH projects
on QH . We further define the problem-dependent “energy” norms on H1

0,

‖v‖2
h = ν(∇v,∇v) + (Ph div v,div v) and ‖v‖2

H = ν(∇v,∇v) + (PH div v,div v),

and set ah(u,v) = ν(∇u,∇v)+(Ph div u,div v). Consider the standard prolongation
operator p : VH → Vh induced by the embedding VH ⊂ Vh. This is a common
choice in a multigrid method for solving elliptic problems. However, it appears not
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to work well for (5.1) in the case of small ν. The reason is that vH ∈ ker(PH div)
does not yield in general vH ∈ ker(Ph div). Therefore, the standard prolongation is
not uniformly stable in the energy norm; i.e., the constant C in the estimate

‖pvH‖h ≤ C ‖vH‖H ∀ vH ∈ VH(5.3)

could grow unboundedly for ν → 0. In [29] it is suggested that to enforce the stability
of the prolongation one can make a correction of vH on a fine grid in a way involving
solution of local problems. To present this idea in a general setting we consider the
L2-orthogonal decomposition

Qh = QH ⊕ Q̃h.(5.4)

We prove the following lemma.
Lemma 5.1. Assume the subspace Ṽh ⊂ Vh is such that there is a constant c

independent of h with

inf
q̃h∈Q̃h

sup
ṽh∈Ṽh

(q̃h,div ṽh)

‖∇ṽh‖‖q̃h‖
≥ c > 0(5.5)

and Ṽh ⊂ ker(PH div). For some fixed uH let ũh be the solution of the problem

ah(ũh, ṽh) = ah(uH , ṽh) ∀ ṽh ∈ Ṽh.(5.6)

Define the prolongation p : VH → Vh by

puH = uH − ũh.(5.7)

Then p is stable; i.e., (5.3) holds with a constant C independent of h and ν.
Proof. Define the following bilinear form on H1

0 × L2
0:

B(u, p;v, q) := ν(u,v) + (p,div v) + (q,div u) − (p, q).

For given uH denote

pH = PH div uH .(5.8)

Define ũh ∈ Ṽh and p̃h ∈ Q̃h by solving

B(ũh, p̃h; ṽh, q̃h) = B(uH , pH ; ṽh, q̃h) ∀ ṽh ∈ Ṽh, q̃h ∈ Q̃h.(5.9)

This problem is well-posed thanks to (5.5). Taking ṽh = 0 in (5.9) we get

(div(uH − ũh), q̃h) = (pH − p̃h, q̃h) ∀ q̃h ∈ Q̃h.(5.10)

Also, since (5.8) implies (pH−div uH , qH) = 0 and the assumptions Ṽh ⊂ ker(PH div)
and Q̃h ⊥ QH imply (p̃h, qH) = (div ũh, qH) = 0 for any qH ∈ QH , we get

(div(uH − ũh), qH) = (pH − p̃h, qH) ∀ qH ∈ QH .(5.11)

Since Qh = QH ⊕ Q̃h, relations (5.10) and (5.11) yield

Ph div(uH − ũh) = pH − p̃h.(5.12)
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Using (5.12) and (5.9) with q̃h = 0 we can see that uH and ũh found from (5.9) satisfy

ν(∇ũh,∇ṽh) + (Ph div ũh,div ṽh) = ν(∇uH ,∇ṽh) + (Ph div uH ,div ṽh) ∀ ṽh ∈ Ṽh.

This is the same as (5.6).
Thanks to the stability assumption (5.5) the bilinear form B is stable with respect

to the norm (ν‖u‖2 +ν−1‖p‖2)−
1
2 (this can be easily verified by rescaling the problem

to a Stokes problem with the penalty term ν(p, q)). Thus, for the solution of the
problem (5.9) we obtain the estimate

(5.13) (ν‖ũh‖2 + ν−1‖p̃h‖2)−
1
2 ≤ C sup

ṽh,q̃h∈Vh×Qh

B(ũh, p̃h; ṽh, q̃h)

(ν‖ṽh‖2 + ν−1‖q̃h‖2)−
1
2

= C sup
ṽh,q̃h∈Vh×Qh

B(uH , pH ; ṽh, q̃h)

(ν‖ṽh‖2 + ν−1‖q̃h‖2)−
1
2

≤ 2C ν‖uH‖.

Using the triangle inequality and (5.13) we get

ν‖uH − ũh‖2 + ‖pH − p̃h‖2 ≤ C ((ν + ν2)‖uH‖2 + ‖pH‖2).

Thanks to (5.8) and (5.12) the last inequality is equivalent to

ν‖uH − ũh‖2 + ‖Ph div(uH − ũh)‖2 ≤ C (ν‖uH‖2 + ‖PH div uH‖2),

which is (5.3) for the prolongation defined in (5.7).
Note that for isoP2-P0 or P2-P0 finite elements, the spaces Q̃h and the appropriate

Ṽh are easy to describe. Indeed, let TH be the coarse grid (pressure) triangulation.
Then

Q̃h =

{
q̃h ∈ Qh :

∫
τ

q̃h dx = 0 ∀ τ ∈ TH

}
,

Ṽh = {ṽh ∈ Vh : ṽh|∂τ = 0 ∀ τ ∈ TH} .

The assumptions of Lemma 5.1 can be readily checked. For this choice of the sub-
space Ṽh, solving (5.6) requires the solution of Np independent problems of small
dimension (for regular subdivisions the dimension is 6 in two dimensions, and 9 in
three dimensions), where Np is the number of elements in TH . On the other hand,

for isoP2-P1 or P2-P1 finite elements we are unable to find a simple choice for Ṽh

leading to easily solved local problems (5.6). Therefore, in this case we compute the
correction ṽh in (5.7) by solving locally (5.6) on each element τ ∈ TH , taking for Ṽh

all vh ∈ Vh vanishing on ∂τ . From experiments we saw that such a prolongation still
improves the robustness of the multigrid method in the case of continuous pressure
discretization compared to the canonical prolongation (ũh = 0). Moreover, some fur-
ther improvement in this case was observed if the w-dependent terms were included
in the definition of the bilinear form ah in (5.6). However, the observed improvement
in this case was not as dramatic as for isoP2-P0 elements; see also Remark 5.2.

Typically the restriction operator r : Vh → VH is taken to be the adjoint of the
prolongation. This choice is also convenient for theoretical analysis [29]. However, an
operator adjoint to (5.7) is not easily computable. Therefore, as a restriction we use
the L2-orthogonal projection from Vh to VH . It is well known that the L2-orthogonal
projection on VH is stable in the H1-norm (see, e.g., [4]) under some assumptions
on TH . Although we did not find in the literature any results which would allow us
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Fig. 5.1. Basis of weakly divergence-free functions for isoP2-P0 and P2-P0. Pressures from
Qh are constants on each triangle; dots denote velocity nodes.

to conclude the stability of the L2-orthogonal projection with respect to the norms
‖ · ‖h, ‖ · ‖H if ν → 0, this choice works very well as the restriction operator in our
multigrid method.

Finally, we describe the smoother. As already mentioned, an effective smoother
should effectively eliminate the oscillatory components in the kernel of Ph div. For
piecewise constant pressure-based FE pairs one finds that uh ∈ ker(Ph div) if and
only if for any τ ∈ Th the total flux for uh through ∂τ equals zero. Thus, the kernel
of Ph div can be described explicitly. For example, basis functions for ker(Ph div) in
the case of P2-P0 finite elements are shown in Figure 5.1 [5, 29] (these are actually
three of nine basis functions “captured” inside the oval on the right). Note that all
basis functions have local support. Therefore an efficient smoother can be built as a
block relaxation procedure, where degrees of freedom (DOFs) supporting each basis
function from ker(Ph div) are organized in one block. The blocks can be overlapping.
This is described more formally below.

We used a block Gauss–Seidel method, which can be written as a sequential sub-
space correction method (in the terminology of Xu [36]) based on the decomposition

Vh =
∑l

i=0 Vi, Vi ⊂ Vh, where the sum is not necessarily a direct sum. Let Ai be the
stiffness matrix for (5.2) on Vi. Then one relaxation iteration consists of the following
steps: Let u0 = uold, then compute

ui+1 = ui − piA
−1
i ri((A + BTM−1

p B)ui − f) for i = 0, . . . , l,(5.14)

and put unew = ul+1. Restriction ri in (5.14) is the simple nodal one and pi = rTi .
For isoP2-P0 or P2-P0 finite elements the natural choice is to gather nodal DOFs

for velocity inside ovals similar to the one in Figure 5.1. To be more precise, let si,
i = 1, . . . , l, be the set of all interior vertices of Th. For each i define τ i as a union of
all triangles τ ∈ Th sharing si. Then

Vi := {vh ∈ Vh : vh = 0 in Ω \ τ i}.

We note that in the case of piecewise linear pressure FE pairs (e.g., isoP2-P1) it is
harder to describe the kernel of Ph div. Thus, in this case we simply use the same
choice of Vi to define the relaxation step (5.14). As we will see, the resulting smoother
remains quite effective.

As usual for Gauss–Seidel type methods, the performance of the iterations (5.14)
depends on the ordering of blocks of unknowns. Since the definition of Vi is solely
based on the choice of a node si, the relaxation method (5.14) is uniquely defined by
the ordering of nodes in Th. It is well known that smoothing iterations for convection-
dominated problems are sensitive to the numbering of unknowns and that the fastest
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convergence is achieved for the streamwise ordering of nodes; see, e.g., [3, 18, 23].
Finding appropriate orderings may be a difficult task, especially for complex three-
dimensional (3D) flow fields w. However, our numerical experiments suggest that the
multigrid method with the above-described block Gauss–Seidel smoothing applied to
(5.1) is not very sensitive to the numbering of nodes. Because of this, in our implemen-
tation we used a lexicographical ordering of the blocks of unknowns. One smoothing
iteration consists of two relaxation steps (5.14): one with left-right/top-bottom or-
dering, the other with top-bottom/left-right ordering.

We conclude the section with some remarks about the implementation and per-
formance of the multigrid scheme.

Remark 5.2. While the multigrid method described above turns out to be very
robust for (iso)P2-P0 finite elements, in the case of (iso)P2-P1 discretization some
degradation of convergence is still observed as ν

γ → 0. This results in a large number
of outer iterations. One way to improve convergence is to increase the number of
smoothing steps on each level as ν

γ → 0. Another, more efficient way (followed in the

numerical experiments; see section 6) is to take somewhat smaller γ for ν � 1, keeping
the number of smoothing steps constant and low. Doing this, one ensures that the
cost of one outer iteration does not increase. At the same time one sacrifices slightly
the quality of the Schur complement preconditioner in (3.7): Indeed, for γ = 0 the
preconditioner from (3.7) is poor for small ν (see [8]). Nevertheless, the total number
of outer iterations stays quite low for all reasonable values of ν (see section 6).

Remark 5.3. In general we found the W-cycle to be more robust than the V-cycle.
For the problems we tested, the V-cycle needs approximately twice or three times as
many smoothing steps as the W-cycle to demonstrate similar convergence rates. Thus,
the results in the next section are those obtained with the W-cycle implementation.
However, for problems with locally refined grids using the V -cycle instead may be
preferable in order to preserve the optimal complexity of the multigrid method.

Remark 5.4. The dimension of the subspace Vi equals 14 in the 2D case (two
velocity components for each node inside the oval in Figure 5.1). In the 3D case and
for a regular subdivision we get dim Vi = 39. It is a common practice in using block
smoothers for flow problems (such as Vanka smoothing [33]) that instead of applying
A−1

i in (5.14) one considers a simple, e.g., diagonal or triangular, approximation of
Ai [31, section 2.4.1]. This helps reduce significantly the computational cost of one
smoothing iteration. In this paper we solve subproblems with Ai exactly. A multigrid
scheme based on inexact block inverses will be studied elsewhere.

6. Numerical experiments. In this section we present results for both isoP2-
P0 and isoP2-P1 elements. We focus on two commonly used model problems on the
unit square. In the first problem the wind function is constant and is given by

w =

(
1
0

)
.(6.1)

The second problem is a classical recirculating flow problem. Here the wind is a
“rotating vortex,” i.e., the vector field

w =

(
4(2y − 1)(1 − x)x

−4(2x− 1)(1 − y)y

)
.(6.2)

In the experiments we use our preconditioner with the Krylov subspace method
BiCGStab [32]. Inexact solves involving the (1,1) block consist of a single W(1,1)-
cycle with the multigrid method described in the previous section, that is, one W-cycle
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Table 6.1

Results for AL approach, isoP2-P0 finite elements.

Mesh size h Viscosity ν

1 0.1 0.01 10−3 10−4

w is constant wind (6.1)

1/16 7 5 5 6 6
1/32 7 5 6 7 8
1/64 5 5 6 5 7
1/128 5 5 5 5 6

w is rotating vortex (6.2)

1/16 5 5 6 10 15
1/32 4 4 5 10 21
1/64 4 4 5 9 18
1/128 4 5 5 7 14

Number of preconditioned BiCGStab iterations

(Â−1
γ is one W(1,1)-cycle, γ = 1).

with one presmoothing and one postsmoothing step on each level. Each smoothing
step consists of two iterations of block Gauss–Seidel relaxation with the alternating
ordering described at the end of the previous section. The number of levels is such
that the coarsest grid problem corresponds to h = 1

2 . The coarsest grid problem is
solved exactly.

We set W = M̄p in all experiments. Solves involving the (2,2) block are inexpen-

sive. The action of Ŝ−1 on a vector is computed via (3.7). For isoP2-P0 elements
this amounts to a diagonal scaling operation. For the case of isoP2-P1 elements, the
pressure mass matrix is not diagonal. Linear systems involving Mp are approximately
solved by performing a fixed number (fifteen) of stationary Richardson-type relax-
ations with parameter α = 1.75. Note that the condition number of Mp is bounded
by a constant independent of h (and of ν). Since we use a fixed number of stationary
iterations for both the (1,1) and the (2,2) blocks, the overall preconditioner remains
constant from one outer iteration to the next. Hence, we can use a standard Krylov
subspace method such as BiCGStab for the outer iteration. In all runs we stop the
outer iteration once the 2-norm of the initial residual has been reduced by at least six
orders of magnitude, and we always use the zero vector as the initial guess.

The results for isoP2-P0 elements are reported in Table 6.1. For both choices
of the wind function, the convergence rate is h-independent. For the constant wind
problem, the convergence rate is also independent of ν, even for values of ν as small
as 10−4. For the recirculating flow problem, the results are virtually the same except
for an increase in the number of iterations for the smallest value of the viscosity,
ν = 10−4. Even in this extreme case, however, the convergence is quite fast.

Results for the isoP2-P1 discretization are reported in Table 6.2. The results are
still quite good. For the smallest values of the viscosity we found that γ must be
reduced in order to retain fast convergence (see Remarks 4.3 and 5.2 for a discussion).
The results are, in all cases, h-independent; some increase in the iteration count occurs
for the smallest values of ν, but overall the convergence properties remain excellent.

6.1. Other methods. In this subsection we report the results obtained when
solving the same model problems with the pressure convection-diffusion (PCD) pre-
conditioner developed in [21] and with a full Vanka multigrid method as a precondi-
tioner (see, e.g., [19, 33]). Both techniques are based on the original, nonaugmented
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Table 6.2

Results for AL approach, isoP2-P1 finite elements.

Mesh size h Viscosity ν

1 0.1 0.01 10−3 10−4

Parameter γ

1 1 1 0.1 0.02

w is constant wind (6.1)

1/16 6 6 7 8 24
1/32 7 6 10 8 22
1/64 7 6 8 7 19
1/128 7 6 9 9 18

w is rotating vortex (6.2)

1/16 6 6 7 13 25
1/32 5 6 9 11 32
1/64 4 5 10 11 37
1/128 4 4 10 12 34

Number of preconditioned BiCGStab iterations

(Â−1
γ is one W(1,1)-cycle).

formulation (γ = 0). The PCG preconditioner is built upon separately solving ve-
locity and pressure subproblems, while Vanka’s approach is a geometric multigrid
method for a coupled problem (1.10); see the review paper [35] discussing this class
of methods.

The PCD method is widely regarded as one of the best available preconditioners
in the class of block solvers for the steady Oseen problem, at least in the case of
continuous pressure approximations. The preconditioner is of the form (3.1), where
Ŝ, the approximate pressure Schur complement, is defined through the action of its
inverse:

Ŝ−1 = M−1
p FpA

−1
p .(6.3)

In (6.3) Mp denotes the pressure mass matrix, Fp denotes a convection-diffusion op-
erator acting on the pressure space, and Ap represents the pressure Laplacian; for
the latter two operators, care should be taken to enforce the appropriate bound-
ary conditions. For the given model problems we used Neumann conditions on the
entire boundary. In the case of piecewise linear pressure approximations Fp was con-
structed following [10, page 348]. For piecewise constant pressure elements we set
Ap := BM−1

u BT (so-called mixed approximation of the pressure Poisson problem)
and Fp := ru→p Ax rp→u, where Ax is the x-subblock of A, ru→p and rp→u are suit-
able mappings from Qh to Vh, and vice versa.

Note that in two dimensions each application of the PCD preconditioner requires
solving two convection-diffusion problems for the velocities and one Poisson-type prob-
lem for the pressure. These solves are usually performed inexactly in order to reduce
costs. In our implementation we used exact solves for both the (1,1) block and for
the inverses appearing in (6.3).

As recommended in [10], we use the PCD preconditioner with BiCGStab(2) [30].
This Krylov subspace method requires four matrix-vector multiplies and four applica-
tions of the preconditioner per iteration. In order to facilitate the comparison with the
results obtained with BiCGStab and our own preconditioner, we report in Table 6.3
the number of “BiCGStab-equivalent iterations” (i.e., the number of BiCGStab(2)
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Table 6.3

Results for PCD preconditioner, isoP2-P0/isoP2-P1 finite elements.

Mesh size h Viscosity ν

1 0.1 0.01 10−3 10−4

w is constant wind (6.1)

1/16 6 / 12 8 / 16 12 / 24 30 / 34 100 / 80
1/32 6 / 10 10 / 16 14 / 24 24 / 28 86 / 92
1/64 6 / 10 8 / 14 16 / 24 22 / 32 64 / 66
1/128 6 / 10 8 / 12 16 / 26 24 / 36 64 / 58

w is rotating vortex (6.2)

1/16 6 / 8 10 / 12 30 / 40 > 400 / 188
1/32 6 / 8 10 / 12 30 / 40 > 400 / 378
1/64 4 / 6 8 / 12 26 / 40 > 400 /> 400
1/128 4 / 6 8 / 10 22 / 44 228 /> 400

Number of preconditioned BiCGStab-equivalent iterations
(exact solves).

iterations multiplied by 2). We also experimented with BiCGStab, but the results
were not better.

It appears from these results that the PCD preconditioner is generally less ro-
bust and effective than the AL-based preconditioner, especially for small ν. We note,
however, that PCD preconditioners can be built on a basis of various solvers for the
(1,1) block and for the pressure Poisson problem; in particular, algebraic multigrid
methods can be used, while the efficient implementation of the AL-based precondi-
tioner described in this paper requires a hierarchy of grids to be available, as usual for
a geometric multigrid method. Also, it should be mentioned that the PCD precon-
ditioner results in preconditioned operators for which some of the eigenvalues have
an imaginary part growing like O(ν−1); see [9]. It is well known that BiCG-type
methods tend to perform poorly for such problems. Thus, it is possible that better
results could be obtained for small ν if PCD preconditioning is used with GMRES or
with BiCGStab(	) with larger values of 	.

The Vanka preconditioner is built on a geometric multigrid method with block
Gauss–Seidel smoothing for system (1.10). One relaxation step consists of l sequential
updates:(

ui+1

pi+1

)
=

(
ui

pi

)
− rTi C−1

i ri

(
A
(

ui

pi

)
−
(

f
0

))
for i = 0, . . . , l.(6.4)

Restriction ri is the simple nodal one. Entries of matrices Ci are those from A corre-
sponding to unknowns in the ith block. For approximations based on discontinuous
pressure, unknowns in one block consist of all pressure and velocity DOFs tied to one
cell (triangle). For isoP2-P0 elements this results in a matrix of the form

Ci =

(
Ai BT

i

Bi 0

)
,(6.5)

where the block Ai is 12 × 12 and Bi is 1 × 12. Since for a regular subdivision in
two dimensions the number of cells is approximately twice the number of vertices and
the dimension of Ai in (5.14) is 14 × 14, we conclude that for isoP2-P0 elements one
smoothing step in Vanka’s method is more computationally expensive than in the
multigrid method from section 5.
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Table 6.4

Vanka multigrid preconditioner, isoP2-P0/isoP2-P1 finite elements.

Mesh size h Viscosity ν

1 0.1 0.01 10−3 10−4

w is constant wind (6.1)

1/16 4 / 6 4 / 6 3 / 10 4 / 18 5 / 20
1/32 4 / 6 4 / 6 3 / 8 4 / 22 4 / 33
1/64 4 / 6 4 / 6 4 / 8 3 / 21 5 / 56
1/128 4 / 5 4 / 5 4 / 6 3 / 14 4 / 64

w is rotating vortex (6.2)

1/16 4 / 4 5 / 5 5 / 7 8 / 19 13 / 30
1/32 4 / 4 4 / 5 6 / 6 10 / 20 17 / 38
1/64 4 / 4 4 / 4 5 / 5 8 / 18 40 / 59
1/128 4 / 4 4 / 4 4 / 5 9 / 13 > 400 / 67

Number of preconditioned BiCGStab iterations.

For approximations based on the continuous pressure it is recommended in [19]
that unknowns in a block should consist of all the pressure and velocity DOFs tied to
one vertex. For isoP2-P1 elements this results in a matrix of the same structure as
(6.5). However, now each matrix Ci has dimension 39 × 39 for a regular 2D triangu-
lation (196 × 196 in three dimensions). This makes one relaxation step considerably
more expensive than in (5.14). To facilitate comparison we include in a block only
velocity DOFs in the corresponding vertex and next to it (i.e., exactly the same as in
the multigrid method described in section 5). Taking into account one pressure un-
known in the vertex, this results in a 15× 15 matrix Ci. Thus the computational cost
of one smoothing step is nearly the same as in the multigrid method used in the AL-
based preconditioner. One problem with this reduction is that now the Ci matrix for
isoP2-P1 is LBB-unstable and the relaxation fails to smooth the error in the pressure.
As typical for stabilized methods, the solution is to replace the zero (2,2) “block” in
(6.5) (its dimension is actually 1×1) by the matrix −σ(x)I, where σ(x) is an element-
dependent stabilization parameter. Numerical experiments reveal that multigrid con-
vergence is very sensitive to the value of σ(x). An ad hoc choice which we found to be
close to optimal for various values of h and ν is σ(x) = (ν/2 + 2‖w(x)‖h2)−1, where
‖w(x)‖ is the Euclidean norm of vector w(x) in the corresponding vertex.

Results for the Vanka multigrid preconditioner and both FE pairs are shown
in Table 6.4. Similar to the multigrid used in the AL-based method, one smoothing
iteration in Vanka consists of two relaxation steps with alternating ordering directions.

From the results reported in the table, it appears that the Vanka-type multigrid
preconditioner gives good results for a wide range of values of h and ν. For very small
values of the viscosity, however, the performance of the method may in some cases
deteriorate, and the preconditioned iteration may even fail to converge.

7. Conclusions. The paper presents a new preconditioning technique for finite
element discretizations of the Oseen problem arising from Picard linearizations of the
steady Navier–Stokes equations. The approach is based on an AL formulation of the
resulting saddle point system. The preconditioner is block triangular and requires an
efficient approximate solver for the (1,1) block; the second block is essentially a scaled
mass matrix and is easy to invert. The (1,1) block can be seen as the discretization
of a nonconventional, nonsymmetric operator consisting of a linear elasticity operator
plus a convection term. We have developed an effective inexact solver for this opera-
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tor by combining a multigrid method of Schöberl (originally designed for symmetric
problems) with a suitable smoother. We have shown that assuming exact solves for
the (1,1) block, the preconditioner clusters the eigenvalues in a small rectangular re-
gion of the complex plane around the point (1, 0), and that the sides of this rectangle
are independent of both h and ν. Our numerical experiments on some 2D model
problems indicate that in practice, a single W(1,1)-cycle is sufficient to achieve fast,
h-independent convergence of the outer BiCGStab iteration. Furthermore, the rate of
convergence appears to be essentially ν-independent, except for a slight degradation
for extremely low values of ν. The preconditioner is especially effective for isoP2-P0
and P2-P0 elements, but excellent performance is also observed for discretizations
using piecewise linear pressure approximations. In the latter case, a good choice of
the parameter γ is important for ν � 1.

Finally, we mention that while in this paper we have focused on the steady 2D
case, our approach can be extended to the solution of unsteady and 3D problems.
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