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The paper considers a system of equations that models a lateral flow of a Boussinesq–

Scriven fluid on a passively evolving surface embedded in R3. For the resulting Navier–
Stokes type system, posed on a smooth closed time-dependent surface, we introduce a

weak formulation in terms of functional spaces on a space-time manifold defined by the

surface evolution. The weak formulation is shown to be well-posed for any finite final time
and without smallness conditions on data. We further extend an unfitted finite element

method, known as TraceFEM, to compute solutions to the fluid system. Convergence of

the method is demonstrated numerically. In another series of experiments we visualize
lateral flows induced by smooth deformations of a material surface.
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1. Introduction

There is extensive literature on analysis and numerical simulation of the incom-

pressible Navier–Stokes equations, a fundamental model of fluid mechanics. While
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the overwhelming majority of papers in this field treats these equations in Euclidean

domains, there also is literature on analysis of the incompressible Navier–Stokes

equations on surfaces, or more general on Riemannian manifolds. Building on a

fundamental observation made by Arnold2 that relates equations of incompressible

fluid to finding geodesics on the group of all volume preserving diffeomorphisms,

local existence and uniqueness results for Navier–Stokes equations on compact ori-

ented Riemannian manifolds were proved in the seminal paper (Ref. 11). This work

has been followed by many other studies, cf. Refs. 44 and 42 and the overview in

Ref. 8. Very recent activity in the field includes the work,33, 40 in which local-in-

time-well-posedness in the framework of maximal regularity is established. All these

papers restrict to stationary surfaces or manifolds.

In recent years there has been a growing interest in fluid equations on evolving

surfaces,16, 20, 24, 38, 47 motivated in particular by applications to modeling of bio-

logical membranes, e.g. see Refs. 39, 34, 4 and 45. In Ref. 6 one finds an overview

and comparison of different modeling approaches for evolving viscous fluid lay-

ers that result in the surface Navier–Stokes equations. We are not aware of any

literature presenting well-posedness analysis of this system on evolving surfaces.

Furthermore, only very few papers address numerical treatment of such equations.

In Refs. 36 and 37 computational results are presented, based on a surface vorticity-

stream function formulation of the Navier–Stokes equations. The surface motion is

prescribed and the evolving SFEM of Dziuk–Elliott9, 10 is applied to the partial

differential equations for the scalar vorticity and stream function unknowns. The

authors of Ref. 26 consider another discretization approach that is based on the

techniques developed in Ref. 38. These papers focus on modeling and illustration

of certain interesting flow phenomena but not on the performance of the numerical

methods. Several recent papers5, 14, 17, 19 present error analysis of finite element

discretization methods for vector-valued PDEs on stationary surfaces. We are not

aware of any paper with a systematic numerical study or an error analysis of a dis-

cretization method for vector-valued PDEs on evolving surfaces. We conclude that

in the field of incompressible Navier–Stokes equations on time-dependent surfaces

basic problems related to well-posedness of the systems, development and analysis

of numerical methods remain open. This paper addresses two of these problems:

well-posedness and numerical method development.

It is shown in Ref. 6 that several different modeling approaches all yield the

same tangential surface Navier–Stokes equations (TSNSE). These equations govern

the evolution of tangential velocity and surface pressure if the normal velocity of

the surface is prescribed. The main topic of this paper is the analysis of a vari-

ational formulation of the TSNSE. In particular, a well-posedness result for this

formulation is proved. To the best of our knowledge, this is the first well-posedness

result for evolving surface Navier–Stokes equations. The paper also touches on the

development of a new discretization method for the TSNSE. This method combines

an implicit time stepping scheme with a TraceFEM28, 29 for discretization in space.

We explain this method, validate its optimal second-order convergence for a test
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problem with a known solution and apply it to the simulation of a lateral flow

induced by deformations of a sphere. Error analysis of this method is not addressed

in this paper and left for future research.

The remainder of the paper is organized as follows. In Sec. 2, we recall the surface

Navier–Stokes equations known from the literature. In particular, the TSNSEs are

described. Appropriate function spaces for a variational formulation of the TSNSE

are introduced in Sec. 3. Relevant properties of these spaces are derived. The main

results of this paper are given in Sec. 4. We introduce and analyze two variational

formulations of the TSNE: The first one is for the tangential velocity only, which is

solenoidal by construction of the solution space. Then we introduce the pressure and

study a mixed variational problem. For both formulations well-posedness results

are derived. In Sec. 5, we explain a discretization method. Finally, Sec. 6 collects

and discusses results of numerical experiments.

2. Surface Navier–Stokes Equations

We first introduce necessary notations of surface quantities and tangential differen-

tial operators. For a closed smooth surface Γ embedded in R3, the outward pointing

normal vector is denoted by n, and the normal projector on the tangential space at

x ∈ Γ is P = P(x) = I− nnT . Let H = ∇Γn ∈ R3×3 be the Weingarten mapping

(second fundamental form) and κ := tr(H) twice the mean curvature. For a scalar

function p : Γ→ R or a vector field u : Γ→ R3 their smooth extensions to a neigh-

borhood O(Γ) of Γ are denoted by pe and ue, respectively. Surface gradients and

covariant derivatives on Γ can be defined through derivatives in R3 as ∇Γp = P∇pe,
DΓu := ∇ueP, and ∇Γu := P∇ueP. These definitions are independent of a par-

ticular smooth extension of p and u off Γ. The surface rate-of-strain tensor13 is

given by Es(u) := 1
2 (∇Γu +∇ΓuT ), the surface divergence and curlΓ operators for

a vector field u : Γ→ R3 are divΓu := tr(∇Γu) and curlΓ u := (∇Γ × u) · n. For a

tensor field A = [a1,a2,a3] : Γ → R3×3, divΓA is defined row-wise and DΓA is a

third-order tensor such that (DΓA)i,j,k = (DΓaj)i,k.

We now let Γ(t) be a material surface embedded in R3 as defined in Refs. 13

and 25, with a density distribution ρ(t,x). By u(t,x), x ∈ Γ(t), we denote a velocity

field of the density flow on Γ, i.e. u(t,x) is the velocity of a material point x ∈ Γ(t).

The derivative
.
f of a surface quantity f along the corresponding trajectories of

material points is called the material derivative. Assuming the surface evolution is

such that the space-time manifold

S =
⋃

t∈[0,T ]

{t} × Γ(t) ⊂ R4

is smooth, the material derivative can be defined as

.
f =

∂fe

∂t
+ (u · ∇)fe on S, (2.1)
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where fe is a smooth extension of f : S → R into a spatial neighborhood of S. Note

that
.
f is a tangential derivative for S, and hence it depends only on the surface

values of f on S. For a vector field v on S, one defines
.
v componentwise.

The conservation of mass and linear momentum for a thin material layer rep-

resented by Γ(t) together with the Boussinesq–Scriven constitutive relation for the

surface stress tensor and an inextensibility condition leads to the surface Navier–

Stokes equations:
ρ
.
u = −∇Γπ + 2µdivΓ(Es(u)) + b + πκn,

divΓu = 0,
.
ρ = 0,

on Γ(t), (2.2)

where π is the surface fluid pressure and µ stands for the viscosity coefficient. Equa-

tions (2.2) model the evolution of an inextensible viscous fluidic material surface

with acting area force b, cf. Refs. 20 and 16 for derivations of this model and Ref. 6

for a literature overview and alternative forms of this system. The pure geometrical

evolution of Γ(t) is defined by its normal velocity VΓ = VΓ(t,x) that is given by the

normal component of the material velocity,

VΓ = u · n on Γ(t). (2.3)

If b is given or defined through other unknowns, then (2.2) and (2.3) form a closed

system of six equations for six unknowns u, π, ρ, and VΓ, subject to suitable initial

conditions.

2.1. Tangential surface Navier–Stokes equations

We now introduce a major simplification by assuming that the geometric evolution

of Γ is known. We make this more precise below and derive equations governing

the unknown lateral motions of the surface fluid. To this end, consider a smooth

velocity field w = w(t,x) in [0, T ]×R3 that passively advects the embedded surface

Γ(t) given by

Γ(t) = {y ∈ R3 |y = x(t, z), z ∈ Γ0}, (2.4)

where the trajectories x(t, z) are the unique solutions of the Cauchy problem
x(0, z) = z,

d

dt
x(t, z) = w(t,x(t, z)),

(2.5)

for all z on an initial smooth connected surface Γ0 = Γ(0) embedded in R3. We

now assume that the normal material motion of Γ is completely determined by the

ambient flow w and the lateral material motion is free, i.e. for the given w the

relation

u · n = w · n on Γ(t) (2.6)
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holds for the normal componenta uN = u · n, while the tangential component uT
of the surface fluid flow is unknown and depends on w only implicitly through

the variation of Γ(t) and conservation laws represented by Eq. (2.2). The resulting

system can be seen as an idealized model for the motion of a fluid layer embedded

in bulk fluid, where one neglects friction forces between the surface and the bulk

as well as any effect of the layer on the bulk flow. In such a physical setting, (2.6)

means non-penetration of the bulk fluid through the material layer.

Material trajectories of points on the surface are defined by the flow field u,

rather than w. We are also interested in a derivative determined by the variation

of a quantity along the so-called normal trajectories defined below.

Definition 2.1. Let Φnt : Γ0 → Γ(t), be the flow map of the pure geometric

(normal) evolution of the surface, i.e. for z ∈ Γ0, the normal trajectory xn(t, z) =

Φnt (z) solves 
xn(0, z) = z,

d

dt
xn(t, z) = wN (t,xn(z, t)).

(2.7)

Equation (2.7) defines a bijection between Γ0 and Γ(t) for every t ∈ [0, T ] with

inverse mapping Φn−t. The Lagrangian derivative for the flow map Φnt is denoted

by ∂◦:

∂◦v(t,x) =
d

dt
v(t,Φnt (z)), x = Φnt (z). (2.8)

We call ∂◦v the normal time derivative of v.

It is clear from (2.8) that this normal time derivative is an intrinsic surface

quantity. Similar to the material derivative in (2.1), it can be expressed in terms of

bulk derivatives if one assumes a smooth extension of v from S to its neighborhood:

∂◦v(t,x) =
d

dt
v(t,xn(t, z)) =

(
∂ve

∂t
+ (wN · ∇)ve

)
(t,x) (2.9)

for (t,x) ∈ S. Comparing the material and normal time derivatives of a flow field

v on the surface we find the equality

P
.
v = P∂◦v + (∇Γv)uT .

With the splitting v = vT + vN , we get

P
.
v = P∂◦vT + P∂◦vN + (∇ΓvT )uT + (∇ΓvN )uT . (2.10)

Noting that Pn = 0 and P∂◦n = −∇ΓwN (cf. (2.16) in Ref. 16), we rewrite

P∂◦vN as

P∂◦vN = ∂◦vNPn + vNP∂◦n = vNP∂◦n = −vN∇ΓwN .

aFor velocity fields v ∈ R3 defined on Γ(t) we use a splitting into tangential and normal compo-

nents v = vT + vN = vT + vNn, with vN = v · n.
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We also have the relation (∇ΓvN )uT = vNHuT . Using these results and letting

v = u in (2.10) one obtains

P
.
u = P∂◦uT + (∇ΓuT )uT + wNHuT −

1

2
∇Γw

2
N , (2.11)

where we also used uN = wN . To derive an equation for the unknown tangential

velocity uT , we apply the projection P to the first equation in (2.2). For P
.
u we have

the result (2.11). Note that the term 1
2∇Γw

2
N is known and can be treated as a source

term. For a stationary surface (wN = 0) the normal time derivative is just the usual

time derivative, P∂◦uT = ∂uT

∂t . The term (∇ΓuT )uT is the analog of the quadratic

term in the Navier–Stokes equations. Using divΓuN = uNκ and uN = wN , the

second equation in (2.2) yields divΓuT = −wNκ. We are not interested in variable

density case and let ρ = 1. Summarizing, from the surface Navier–Stokes equations

(2.2) we get the following reduced system for uT and π which we call the TSNSE:{
P∂◦uT + (∇ΓuT )uT + wNHuT − 2µP divΓEs(uT ) +∇Γπ = f ,

divΓuT = g,
(2.12)

with right-hand sides known in terms of geometric quantities, wN and the tangential

component of the external area force b:

g = −wNκ, f = bT + 2µP divΓ(wNH) +
1

2
∇Γw

2
N . (2.13)

In the remainder of this paper, we study this TSNSE. Note that these equations

have a structure similar to the standard incompressible Navier–Stokes equations

in Euclidean domains. Important differences are that TSNSE is formulated on a

space-time manifold that does not have an evident tensor product structure and,

related to this, a normal time derivative P∂◦ instead of the standard time derivative

is used and an additional term wNHuT occurs. After some preliminary results in

the following section, we introduce a well-posed weak formulation of the TSNSE in

Sec. 4.

Remark 2.1. If one does not assume a given normal velocity uN = wN , an equa-

tion for uN can be derived from (2.2), cf. Ref. 16. The surface Navier–Stokes equa-

tions (2.2) are then rewritten as a coupled system for uT , π and uN , that consists

of TSNSE (2.12) and the coupled equation

.
uN = −2µ(tr(H∇ΓuT ) + uN tr(H2)) + uT ·HuT − uT · ∇ΓuN + πκ+ bN .

(2.14)

A challenging problem, not addressed in this paper, is the well-posedness of the

surface Navier–Stokes equations (2.2), i.e. of the coupled system (2.12)–(2.14). For

studying this problem, results on well-posedness of only the TSNSE (2.12) may be

useful.
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3. Preliminaries

In this section, we introduce several function spaces and derive relevant properties of

these spaces. We will use these spaces to formulate a well-posed weak formulation of

the TSNSE (2.12). At this point, we make our assumptions on Γ0 and its evolution

more precise. We introduce the following smoothness assumptions:

Γ0 ∈ C3 and w ∈ C3([0, T ]× R3,R3), sup
[0,T ]×R3

|w| < +∞. (3.1)

Then the ODE system (2.5) has a unique solution for any z ∈ Γ0 ⊂ R3, which

defines a one-to-one mapping Γ0 → Γ(t) for all t ∈ [0, T ] (Theorems II.1.1, V.3.1

and remark to Theorem V.2.1 in Ref. 15). Moreover, this mapping is C3(S0,R4)

(Corollary V.4.1 in Ref. 15) with

S0 := [0, T ]× Γ0.

Therefore, S is a C3 manifold as the image of S0 ∈ C3 under a smooth mapping.

We need a globally C2-smooth extension of the spatial normal n(t, x), (t, x) ∈ S
that can be constructed as follows. Let φ0 be the signed distance function to Γ0. On a

tubular neighborhood Uδ of Γ0, with diameter δ > 0 sufficiently small, we have φ0 ∈
C3(Uδ), cf. Lemma 2.8 in Ref. 10. We extend this function to be from C3(R3) and

zero outside U2δ. Thus, we have φ0 ∈ C3(R3) and φ0 is a signed distance function

in a neighborhood of Γ0. Let Φt be the flow map for the velocity field w. The

mapping (t,x)→ Φt(x) is C3([0, T ]×R3,R3) and ∇xΦt(x) is regular.15 Define the

level set function φ(t, x) := φ0(Φ−t(x)) and the neighborhood Sex := ∪t∈[0,T ]{t} ×
Φt(Uδ) of S. Then we have φ ∈ C3([0, T ] × R3,R) and for (t,x) ∈ Sex it holds

|∇φ(t, x)| ≥ c > 0, and φ(t, x) = 0 iff (t, x) ∈ S. Set n̂(t,x) := ∇φ(t, x)/|∇φ(t, x)|
for (t,x) ∈ Sex. Clearly n̂ = n on S and n̂ ∈ C2(Sex,R3), and by a standard

procedure we can extend it to n̂ ∈ C2([0, T ] × R3,R3). To simplify the notation,

this extension is denoted by n. For such an extended vector field n we have that

wN = (w · n)n ∈ C2([0, T ]× R3,R3) holds. Arguing in the same way as above, we

conclude that for the normal flow mapping from Definition 2.1, we have

Φn(·) ∈ C
2(S0,S). (3.2)

Note that S0 = S0 and S = S, i.e. S0 and S are closed manifolds.

We need function spaces suitable for a weak formulation of the TSNSE. For

this we make use of a general framework of evolving spaces presented in Ref. 1. In

Sec. 3.2, we introduce specific evolving Hilbert spaces, based on a Piola pushfor-

ward mapping. Based on results from Ref. 1 several properties of these spaces are

derived. In Sec. 3.4, an evolving space of functions for which suitable weak “mate-

rial” derivatives exist is introduced. Here we deviate from Ref. 1 in the sense that

this “material” derivative is not based on the pushforward map but on the normal

time derivative defined above.
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3.1. Surface Piola transform

To define evolving Hilbert spaces based on standard Bochner spaces, we need a

suitable pushforward map. In the context of this paper, it is natural to use a surface

Piola transform as pushforward map, since this transform conserves the solenoidal

property of a tangential vector field.

To define a surface variant of the Piola transform based on the normal flow

map Φnt : Γ0 → Γ(t), we need some further notation. Below we always take z ∈ Γ0

and x := Φnt (z) ∈ Γ(t). Since for each t ∈ [0, T ] the map Φnt : Γ0 → Γ(t) is

a C2-diffeomorphism, the differential DΦnt (z) : (TΓ0)z → TΓ(t)x, is invertible.

Define J = J(t, z) := detDΦnt (z), J−1 = J−1(t,x) = detDΦn−t(x) = J(t, z)−1.

Denote by D = D(t, z) and D−1 = D−1(t,x) the matrices of linear mappings given

by DΦnt (z)P(z) : R3 → R3 and DΦn−t(x)P(x) = [DΦnt (z)]−1P(x) : R3 → R3,

respectively. Note that D−1D = P(z) and DD−1 = P(x) hold. For these mappings

the following useful identities hold:

DΓ (v ◦ Φn−t) = (DΓ0
v)D−1 for v ∈ C1(Γ0)3,

(DΓ v)D = DΓ0
(v ◦ Φnt ) for v ∈ C1(Γ(t))3.

(3.3)

We need the Piola transform for arbitrary, not necessarily tangential vectors. For

this it is convenient to define an invertible operator A(t, z) : R3 → R3 such that

A|TΓ0
= J−1DΦnt : TΓ0 → TΓ(t) and A : TΓ⊥0 → TΓ(t)⊥. We use the operator

A(t, z)v := J−1(t,x)D(t, z)v + nΓ(t)(x)nΓ0(z) · v, v ∈ R3, x = Φnt (z). (3.4)

For A−1(t,x) := J(t, z)D−1(t,x)+nΓ0(z)nΓ(t)(x)T it holds A−1(t,x)A(t, z) = IR3 .

The matrices of A and A−1 in the standard basis are also denoted by A and A−1,

respectively. Note that det A = 1 holds. We define the surface Piola transform

Pt : R3 → R3 by

(Ptv)(x) := A(t, z) v(z), z ∈ Γ0. (3.5)

This operator maps tangential vectors on Γ0 to tangential vectors on Γ(t) and for

tangential vectors v it satisfies divΓPtv = 0 a.e. on Γ(t) iff divΓv = 0 a.e. on Γ0,

cf. Ref. 41.

We need some regularity properties of D, A and D−1, A−1, which are col-

lected in the following lemma. For a function g ∈ C1(S0) the maximum norm is

‖g‖C1(S0) := max(t,z)∈S0
(|g(t, z)|+|∇S0

g(t, z)|) and similarly for vector and matrix-

valued functions as well as for such functions on S.

Lemma 3.1. It holds that D,A ∈ C1(S0)3×3, D−1,A−1 ∈ C1(S)3×3 and, in

particular,

‖J‖C1(S0) + ‖D‖C1(S0) + ‖A‖C1(S0) + ‖J−1‖C1(S)

+ ‖D−1‖C1(S) + ‖A−1‖C1(S) ≤ C. (3.6)
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Proof. From (3.2), we know that Φ : (t, z)→ (t,Φnt (z)) is in C2(S0,S) and hence

DΦ ∈ C1(TS0, TS). Moreover, PS0
is C1-smooth, so (DΦ)PS0

is a C1 smooth

mapping with matrix representation[
1 wT

N

0 D

]
∈ C1(S0)4×4. (3.7)

Hence, D ∈ C1(S0)3×3 and J ∈ C1(S0) hold. Combining this with nΓ0 ,nΓ(·)◦Φn(·) ∈
C1(S0), (3.4) and the property that S0 is closed, implies the bound in (3.6) for D,

J and A. The mapping Φ : S0 → S is one-to-one. By the inverse mapping theorem

the inverse Φ−1 is C2(S,S0) and for its differential we have DΦ−1 ∈ C1(TS, TS0).

The matrix of the C1 smooth mapping DΦ−1PS is[
1 −wT

ND−1

0 D−1

]
∈ C1(S)4×4.

This and A−1 = JD−1 + nΓ0
nTΓ(·)(Φ

n
(·)) imply the desired bound for D−1, J−1

and A−1.

3.2. Evolving Hilbert spaces

For constructing suitable evolving Hilbert spaces, we first define tangential velocity

spaces on Γ(t). The notation (·, ·)0,t and ‖ · ‖0,t is used for the canonical inner

product and norm in L2(Γ(t)). We need the Sobolev spaces of order one

H1(t) := {v ∈ H1(Γ(t))3 |v · n = 0 onΓ(t)},

with the inner product (·, ·)1,t := (·, ·)0,t + (DΓ·, DΓ·)0,t, and its closed subspace of

divergence free tangential fields

V1(t) := {v ∈ H1(t) | divΓv = 0 a.e. on Γ(t) }.

The space V0(t) is defined as closure of a space of smooth div-free tangential fields

in the L2(Γ(t)) norm:

V0(t) := V(t)
‖·‖0,t

, V(t) := {v ∈ C1(Γ(t))3 |v · n = 0, divΓv = 0 on Γ(t) }.

The space of smooth functions V(t) is dense not only in V0(t) but also in V1(t).

Indeed, for any tangential velocity field u ∈ L2(Γ(t))3 on the C2 smooth surface

Γ(t) we have a Helmholtz decomposition u = ∇Γψ + n × (∇Γφ) + h with some

ψ, φ ∈ H1(Γ(t)) and a harmonic field h ∈ C1(Γ(t))3, see Ref. 35. For u ∈ V1(t)

we have ψ = 0 and the result follows from the density of C2-smooth functions in

H1(Γ(t)). Therefore, endowed with canonical scalar products, the spaces form a

Gelfand triple V1(t) ↪→ V0(t) ↪→ V1(t)′. We also have that the dense embedding

V1(t) ↪→ V0(t) is compact. Here and later H ′ always denotes a dual of a Hilbert

space H, and we adopt the common notation H−1(t) for H1(t)′.
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For the space L2(t) := {v ∈ L2(Γ(t))3 | v · n = 0 a.e. on Γ(t)} we define a

pushforward map φt : L2(0)→ L2(t), based on the Piola transform, by

(φtv)(x) = (Ptv)(x) = A(t, z)v(z), v ∈ L2(0), x = Φnt (z), z ∈ Γ0. (3.8)

The inverse map (pullback) is given by (φ−tv)(z) = A−1(t,x)v(x), v ∈ L2(t). Since

A ∈ C1(S0)3×3, the restriction of φt to H1(0) is a pushforward map from H1(0) to

H1(t). Because φt is based on the Piola transform and thus conserves the solenoidal

property, we also have that φt is a pushforward map from V0(0) to V0(t), and from

V1(0) to V1(t). For this pushforward map we have for v ∈ H1(0):

‖φtv‖1,t = (‖A v ◦ Φn−t‖20,t + ‖DΓ(A v ◦ Φn−t)‖20,t)
1
2

≤ (‖A‖C(Γ(t)) + ‖DΓA‖C(Γ(t)))‖v ◦ Φn−t‖0,t + ‖A‖C(Γ(t))‖DΓ(v ◦ Φn−t)‖0,t

≤ (‖A‖C(Γ(t)) + ‖DΓA‖C(Γ(t)))‖J‖
1
2

C(Γ0)‖v‖0,0

+ ‖A‖C(Γ(t))‖D−1‖C(Γ(t))‖J‖
1
2

C(Γ0)‖DΓv‖0,0.

The result (3.6) implies that the norms ‖A‖C(Γ(t)), ‖D−1‖C(Γ(t)), ‖DΓA‖C(Γ(t)),

‖J‖C(Γ0) are uniformly bounded in t and thus

sup
t∈[0,T ]

‖φtv‖1,t ≤ C‖v‖1,0

holds with some C independent of v ∈ H1(0). With similar arguments one easily

shows that ‖φ−tv‖1,0 ≤ C‖v‖1,t holds for all v ∈ H1(t), with C independent of

v and t. These bounds remain obviously true if H1(0), H1(t) and the correspond-

ing norms are replaced by V0(0), V0(t) and the corresponding norms. Using (3.6)

one shows that the maps t → ‖φtv‖1,t and t → ‖φtv‖0,t are continuous. These

properties imply that {V0(t), φt}t∈[0,T ], {H1(t), φt}t∈[0,T ], and {V1(t), φt}t∈[0,T ] are

“compatible pairs” in the sense of Definition 2.4 in Ref. 1. This compatibility struc-

ture induces some useful properties of the evolving spaces defined as follows:

L2
V1

:=

v : [0, T ]→
⋃

t∈[0,T ]

{t} × V1(t), t→ (t, v̄(t)) |φ−(·)v̄(·) ∈ L2(0, T ;V1(0))

,
L2
V ′1

:=

g : [0, T ]→
⋃

t∈[0,T ]

{t} × V1(t)′, t→ (t, ḡ(t)) |φ∗(·)ḡ(·) ∈ L2(0, T ;V1(0)′)

,
L2
V0

:=

v : [0, T ]→
⋃

t∈[0,T ]

{t} × V0(t), t→ (t, v̄(t)) |φ−(·)v̄(·) ∈ L2(0, T ;V0(0))

,
where φ∗t is the dual of φt. We shall also need the spaces L∞V0

, L2
H1 , L2

H−1 , which

are defined analogously, and the spaces of smooth space-time functions

D = {v ∈ L2
V1
|φ−(·)v̄(·) ∈ C∞([0, T ];V(0))},

D0 = {v ∈ L2
V1
|φ−(·)v(·) ∈ C∞0 ((0, T );V(0)) }.

(3.9)
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Note that functions in D0 have zero traces on ∂S. With a slight abuse of notation

we identify v̄(t) with v(t) = (t, v̄(t)).

In Ref. 1, it is shown that if V1(0) ↪→ V0(0) ↪→ V1(0)′ is a Gelfand triple,

with a compact embedding V1(0) ↪→ V0(0), and both {V0(t), φt}t∈[0,T ] and

{V1(t), φt}t∈[0,T ] are compatible pairs, then the L-spaces inherit certain properties

of the standard Bochner spaces. In particular, cf. Sec. 2 in Ref. 1, the spaces L2
V1

and L2
V0

with

(u,v)1 =

∫ T

0

(u(t),v(t))1,t dt, (u,v)0 =

∫ T

0

(u(t),v(t))0,t dt,

are separable Hilbert spaces, homeomorphic to L2(0, T ;V1(0)) and L2(0, T ;V0(0)),

respectively. Furthermore, the embedding L2
V1

↪→ L2
V0

is dense and compact, the

dual space (L2
V1

)′ is isometrically isomorphic to L2
V ′1

, and

L2
V1
↪→ L2

V0
↪→ L2

V ′1

is a Gelfand triple. The space D0 is dense in L2
V1

and so D0 is dense also in L2
V0

.

By the same arguments L2
H1 is also a Hilbert space with inner product (·, ·)1. The

subspace of smooth functions

D̂0 = {v ∈ L2
H1 | φ−(·)v(·) ∈ C∞0 ((0, T );C1(Γ0, TΓ0))} (3.10)

is dense in L2
H1 and (L2

H1)′ ' L2
H−1 holds. Note that L2

V1
is a closed subspace of

L2
H1 and that functions in D0 are solenoidal and functions in D̂0 are not necessarily

solenoidal.

3.3. Some uniform inequalities

We need to establish several basic inequalities on Γ(t) with constants uniformly

bounded in t.

We first consider a Korn inequality. Recall that the estimate

‖v‖1,t ≤ c(‖v‖0,t + ‖Es(v)‖0,t) for all v ∈ H1(t) (3.11)

holds with a constant c = c(t) that depends on smoothness properties of Γ(t), cf.

Ref. 16. In the next lemma, we show that the constant can be taken such that

maxt∈[0,T ] c(t) <∞ holds.

Lemma 3.2. The constant c in (3.11) can be chosen finite and independent of t.

Proof. Fix any t ∈ [0, T ] and v ∈ H1(t). Define u = DTv◦Φnt ∈ H1(0). Below, for

the 3-tensor T = DΓDT and v ∈ R3, Tv ∈ R3×3 is the second-mode tensor-vector

product. With the help of (3.3) one computes

∇Γ0
u(z) = P(z)[DΓ0

u(z)] = P(z)[DΓ0
(DTv ◦ Φnt (z))]

= P(z)Tv(x) + P(z)DTDΓv(x)D,

= P(z)Tv(x) + DT∇Γv(x)D, x = Φnt (z).
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The latter inequality holds since DTP(x) = P(z)DT . From this we find

Es(u)(z) =
1

2
(P(z)Tv(x) + (Tv(x))TP(z)) + DTEs(v)(x)D. (3.12)

With the help of DΓv = DΓ(D−Tu◦Φn−t), (3.6), (3.11) applied for t = 0, and (3.12)

we estimate

‖DΓv‖0,t = ‖J 1
2 ([DΓD−T ]u + D−T (DΓu)D−1)‖0,0

≤ C(‖u‖0,0 + ‖DΓu‖0,0) ≤ C(‖u‖0,0 + ‖Es(u)‖0,0)

= C

(
‖J− 1

2 DTv‖0,t +

∥∥∥∥J− 1
2

(
1

2
(PTv + (Tv)TP) + DTEs(v)D

)∥∥∥∥
0,t

)

≤ C(‖J− 1
2 DTv‖0,t + ‖J− 1

2 PTv‖0,t + ‖J− 1
2 DTEs(v)D‖0,t)

≤ C(‖v‖0,t + ‖Es(v)‖0,t)

with some C independent of t ∈ [0, T ] and v.

The following inf-sup estimate holds16: there exists c(t) > 0 such that

‖∇Γπ‖H−1(t) := sup
06=v∈H1(t)

∫
Γ(t)

π divΓv ds

‖v‖1,t
≥ c(t)‖π‖0,t, ∀π ∈ L2(Γ(t)),

(3.13)

with
∫

Γ(t)
π = 0. A uniformity result for this inf-sup constant is derived in the

following lemma.

Lemma 3.3. The constant c(t) in (3.13) can be taken such that inft∈[0,T ] c(t) > 0

holds.

Proof. We use a similar approach as in the proof of the previous lemma, and derive

an estimate on Γ(t) by pulling forward the result on Γ0. We use the pullforward φt
that is based on the Piola transform and satisfies divΓ(t)(φtw)(x) = J−1 divΓ0

w(z),

z ∈ Γ0, x = Φnt (z) ∈ Γ(t). Take v ∈ H1(t) and π ∈ L2(Γ(t)) with
∫

Γ(t)
π = 0. Define

c := −|Γ0|−1
∫

Γ0
π ◦ Φnt ds and w := φ−tv ∈ H1(0). Note that ‖v‖1,t ≤ C‖w‖1,0

with a constant C uniformly bounded in t ∈ [0, T ] (compatibility property). We

have

(π,divΓ(t)v)0,t = (π,divΓ(t)(φtw))0,t = (π ◦ Φnt ,divΓ0
w)0,0.

Using this and the result (3.13) for t = 0 we get

C sup
06=v∈H1(t)

∫
Γ(t)

π divΓv ds

‖v‖1,t
≥ sup

06=w∈H1(0)

∫
Γ0

(π ◦ Φnt )divΓ0w ds

‖w‖1,0

≥ c(0)‖π ◦ Φnt + c‖0,0 ≥ c(0)‖J 1
2 ‖−1
C(S)‖π + c‖0,t
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= c(0)‖J 1
2 ‖−1
C(S)(‖π‖0,t + c|Γ(t)| 12 )

≥ c(0)‖J 1
2 ‖−1
C(S)‖π‖0,t,

which yields a t-independent strictly positive lower bound for c(t) in (3.13).

We now derive a uniform interpolation estimate.

Lemma 3.4. The interpolation inequality (Ladyzhenskaya’s inequality)

‖v‖L4(Γ(t)) ≤ C‖v‖
1
2
0,t‖v‖

1
2
1,t, v ∈ H1(t). (3.14)

holds with a constant C <∞ independent of t.

Proof. Consider v ∈ H1(Γ(t)) and let v̂ = v ◦ Φn−t. For a compact Riemann man-

ifold Γ0, the estimate (II.38) from Ref. 3 yields ‖v̂‖L4(Γ0) ≤ C‖v̂‖
1
2
0,0‖v̂‖

1
2
1,0. An

examination of the proof shows that the estimate remains true if Γ0 is a C2 com-

pact manifold. With the help of this estimate applied component-wise and (3.6) we

calculate for v ∈ H1(t)

‖v‖L4(Γ(t)) = ‖v̂J 1
4 ‖L4(Γ0) ≤ C‖J‖

1
4

C(S0)‖v̂‖L4(Γ0) ≤ C‖v̂‖
1
2
0,0‖v̂‖

1
2
1,0

≤ C‖J− 1
2 v‖

1
2
0,t

(
‖J− 1

2 v‖0,t + ‖J− 1
2 D−T∇Γv‖0,t

) 1
2

≤ C‖v‖
1
2
0,t (‖v‖0,t + ‖∇Γv‖0,t)

1
2 ≤ C ‖v‖

1
2
0,t‖v‖

1
2
1,t,

with some C independent of t.

For ξ ∈ H1(t) consider the Helmholtz decomposition (see e.g. Ref. 35)

ξ = ξ1 + ξ2, with ξ1 = ∇Γφ, φ ∈ H1(Γ(t)) and ξ2 ∈ V1(t). (3.15)

Lemma 3.5. For ξi as in (3.15) we have ξi ∈ H1(t) and ‖ξi‖1,t ≤ C‖ξ‖1,t,
i = 1, 2, with a constant C finite and independent of t.

Proof. Due to the L2 orthogonality of the Helmholtz decomposition we have

‖ξ1‖20,t+‖ξ2‖20,t = ‖ξ‖20,t. Also note that divΓξ2 = 0, divΓξ = divΓξ1, curlΓξ1 = 0,

curlΓξ = curlΓξ2. Furthermore on H1(t) we have the norm equivalence ‖u‖1,t ∼
‖u‖0,t + ‖ divΓu‖0,t + ‖ curlΓu‖0,t. A t-dependence in the constants in this norm

equivalence enters only through the Gaussian curvature of Γ(t), cf. Ref. 35 . Due to

the smoothness property S ∈ C3 the Gaussian curvature is uniformly bounded on

S and thus the constants in this norm equivalence can be taken independent of t.

Using these results we get

‖ξ1‖1,t ≤ C(‖ξ1‖0,t + ‖divΓξ1‖0,t + ‖curlΓξ1‖0,t)

= C(‖ξ1‖0,t + ‖divΓξ‖0,t) ≤ C‖ξ‖1,t,

and by similar arguments ‖ξ2‖1,t ≤ C‖ξ‖1,t with a constant C uniformly bounded

in t.
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3.4. Solution space

In this section, we introduce a subspace of L2
V1

consisting of functions for which a

suitable weak normal time derivative exists. This space will be the solution space

in the weak formulation of TSNSE.

We recall the Leibniz rule

d

dt

∫
Γ(t)

v ds =

∫
Γ(t)

(∂◦v + v divΓwN ) ds =

∫
Γ(t)

(∂◦v + vwNκ) ds,

Thus for velocity fields v,u ∈ C1(S) we get

d

dt

∫
Γ(t)

v · u ds =

∫
Γ(t)

(∂◦(v · u) + (v · u)wNκ) ds. (3.16)

This implies the integration by parts identity∫ T

0

∫
Γ(t)

(∂◦v · u + v · ∂◦u + (v · u)wNκ) ds dt

=

∫
Γ(T )

v · u ds−
∫

Γ0

v · u ds, v,u ∈ C1(S)3. (3.17)

Based on this we define for v ∈ L2
H1 the normal time derivative as the functional

∂◦v:

〈∂◦v, ξ〉 := −
∫ T

0

∫
Γ(t)

(v · ∂◦ξ + (v · ξ)wNκ) ds dt, ξ ∈ D̂0. (3.18)

Note that functions in D̂0 are not necessarily solenoidal, cf. (3.10). Restricting now

to L2
V1
⊂ L2

H1 , assume v ∈ L2
V1

is such that

‖∂◦v‖(L2
V1

)′ := sup
ξ∈D0

〈∂◦v, ξ〉
‖ξ‖1

is bounded. Since D0 is dense in L2
V1

, ∂◦v can then be extended to a bounded linear

functional on L2
V1

. We use (L2
V1

)′ ∼= L2
V ′1

and introduce the space

W(V1, V
′
1) = {v ∈ L2

V1
| ∂◦v ∈ L2

V ′1
}, with

(v,u)W :=

∫ T

0

(v(t),u(t))1,t + (∂◦v(t), ∂◦u(t))V1(t)′ dt.

This space is used as solution space in the weak formulation of TSNSE below.

In the remainder of this section, we derive certain useful properties of this space.

For this it will be helpful to introduce in addition to the Lagrangian derivatives
.
v (material derivative) and ∂◦v (normal time derivative) one other Lagrangian

derivative, which is based on the pushforward operator φt:

∂∗v(t) := φt

(
d

dt
φ−tv(t)

)
, v ∈ D. (3.19)
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The reason that we introduce the ∂∗ derivative is, that it is the same as the one

used in the general framework in Ref. 1 and we can use results derived in that

paper. Note that the ∂∗ derivative is defined for tangential flow fields and based on

the Piola transform implying

n · ∂∗v = 0 and divΓ∂
∗v = 0 for v ∈ D. (3.20)

We now derive relations between the derivatives ∂∗ and ∂◦.

Lemma 3.6. For v ∈ D the following holds:

∂◦v = ∂∗v −A(∂◦A−1)v, (3.21)

P∂◦v = ∂∗v −AP(∂◦A−1)v. (3.22)

Proof. Using the definitions of the pushforward and pullback mappings we

compute

φt

(
d

dt
φ−tv(t)

)
(x) = A(t, z)

d

dt

[
A−1(t,Φnt (z))v(t,Φnt (z))

]
= A(t, z)(∂◦A−1(t,x)v(t,x) + A−1(t,x)∂◦v(t,x))

= A(t, z)∂◦A−1(t,x)v(t,x) + ∂◦v(t,x),

which yields the result (3.21). The result (3.22) follows from (3.21) using P∂∗v =

∂∗v and PA = P(x)A(t, z) = A(t, z)P(z).

From (3.21) we obtain the identity

(∂∗v, ξ)0 = (∂◦v, ξ)0 + (Cv, ξ)0, ∀v ∈ D, ξ ∈ D̂0,

with C := AP(∂◦A−1). Based on this, we define ∂∗v for v ∈ L2
V1

as the functional

〈∂∗v, ξ〉 := 〈∂◦v, ξ〉+ (Cv, ξ)0, ξ ∈ D̂0. (3.23)

with 〈∂◦v, ξ〉 defined in (3.18). The density of D̂0 in L2
H1 and of D0 ⊂ D̂0 in L2

V1

allows us to define ∂∗v as an element of L2
H−1 and L2

V ′1
, respectively. The following

result holds:

∂∗v ∈ L2
V ′1
⇔ ∂∗v ∈ L2

H−1 , v ∈ L2
V1
. (3.24)

Implication “⇐” in (3.24) is trivial since V1 ⊂ H1. To see “⇒”, consider any v ∈ D
and ξ ∈ L2

H1 together with its Helmholtz decomposition ξ = ∇Γφ + ξ2, cf. (3.15).

Thanks to Lemma 3.5 we get ∇Γφ ∈ L2
H1 , ξ2 ∈ L2

V1
and ‖∇Γφ‖1 +‖ξ2‖1 ≤ C‖ξ‖1.

Since ξ2 ∈ L2
V1

we have

|〈∂∗v, ξ2〉| ≤ ‖∂∗v‖L2
V ′1
‖ξ2‖1 ≤ C‖∂∗v‖L2

V ′1
‖ξ‖1, (3.25)

while for the other component we get employing (3.20)

〈∂∗v,∇Γφ〉 = (∂∗v,∇Γφ)0 = −( divΓ∂
∗v, φ)0 = 0. (3.26)
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We thus conclude |〈∂∗v, ξ〉| ≤ C‖∂∗v‖L2
V ′1
‖ξ‖1 for all v ∈ D and ξ ∈ L2

H1 . The

result in (3.24) follows from the density of D in L2
V1

.

We are now ready to prove the following result.

Lemma 3.7. The space W(V1, V
′
1) is a Hilbert space and D is dense in W(V1, V

′
1).

For any v ∈ W(V1, V
′
1) and t ∈ [0, T ], v(t) is well defined as an element of V0(t)

and it holds

sup
t∈[0,T ]

‖v(t)‖0,t ≤ C‖v‖W .

Proof. The idea of the proof is to relate the space W(V1, V
′
1) to the space

W∗(V1, V
′
1) := {v ∈ L2

V1
| ∂∗v ∈ L2

V ′1
}, with ‖ · ‖W∗ = (‖ · ‖21 + ‖∂∗ · ‖2

L2
V ′1

)
1
2 ,

and to show that the latter is homeomorphic to a standard Bochner space for S0.

Lemma 3.1 ensures C ∈ C(S)3×3 and thus from (3.23) we obtain

|〈∂∗v, ξ〉| − c ‖v‖0‖ξ‖0 ≤ |〈∂◦v, ξ〉| ≤ |〈∂∗v, ξ〉|+ c ‖v‖0‖ξ‖0.

Therefore, ∂∗v is a linear bounded functional on L2
V1

iff ∂◦v has this property.

We conclude v ∈W(V1, V
′
1) iff v ∈W∗(V1, V

′
1). Moreover, the above inequalities,

definition of the W(V1, V
′
1)-norm, W∗(V1, V

′
1)-norm and L2

V1
↪→ L2

V0
yield

c‖v‖W ≤ ‖v‖W∗ ≤ C‖v‖W ,

with constants 0 < c and C < +∞ independent of v ∈ W(V1, V
′
1) and so

W(V1, V
′
1) = W∗(V1, V

′
1) algebraically and topologically. Thus, it is sufficient to

check the claims of the lemma for W∗(V1, V
′
1). For the latter we apply results from

Ref. 1, more specifically, Corollary 2.32 (W∗(V1, V
′
1) is a Hilbert space), Lemma

2.35 (continuous embedding W∗(V1, V
′
1) ↪→ C([0, T ];V0(0))) and Lemma 2.38 (den-

sity of smooth functions). For these results to hold one has to verify Assumption

2.31 in Ref. 1, which requires the mapping v → φ−(.)v to be a homeomorphism

between W∗(V1, V
′
1) and W(V1(0), V1(0)′), the standard Bochner space

W(V1(0), V1(0)′) = {v ∈ L2((0, T ), V1(0)) | ∂tv ∈ L2((0, T ), V1(0)′)}.

It remains to check this homeomorphism property. We already derived the norm

equivalence ‖v‖1 ' ‖φ−(.)v‖L2([0,T ],V1(0)), cf. Sec. 3.2. To relate the norms

‖∂tφ−(·)v‖L2((0,T ),V1(0)′) and ‖∂∗v‖L2
V ′1

we consider the following equalities for

v ∈ L2
V1

, ξ ∈ D0, ξ̃ = φ−(·)ξ ∈ C∞0 ((0, T ),V(0)) and A−1(t, ·) : TΓ(t)→ TΓ0:

〈∂t(φ−(·)v), ξ̃〉 = (φ−(·)v, ∂tξ̃)L2(S0) = (A−1v(·,Φnt (·)), ∂t(φ−(·)ξ))L2(S0)

= (A−TA−1v(·,Φnt (·)),A∂t(φ−(·)ξ))L2(S0)

= (J−1(AAT )−1v , ∂∗ξ)0

= (v , ∂∗(Tξ)− (∂∗T)ξ)0 with T := J−1(AAT )−1.
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Note that φ := Tξ is smooth and has zero trace on ∂S. Using this, (3.22), (3.18)

and (3.23), we have

(v, ∂∗φ)0 = (v, ∂◦φ)0 + (v,Cφ)0

= −〈∂◦v,φ〉+ (v,Cφ)0 − (v, wNκφ)0

= −〈∂∗v,φ〉+ (Cv,φ)0 + (v,Cφ)0 − (v, wNκφ)0,

with C := AP(∂◦A−1), and thus

〈∂t(φ−(·)v), ξ̃〉 = −〈∂∗v ,Tξ〉 − (v, wNκTξ − (C + CT )Tξ + (∂∗T)ξ)0.

(3.27)

Note that T : TΓ(t)→ TΓ(t) for all t ∈ [0, T ] and from Lemma 3.1 it follows that

T,T−1 ∈ C1(S̄)3×3. Hence it holds

Tξ ∈ L2
H1 and ‖Tξ‖1 ' ‖ξ‖1 ' ‖ξ̃‖L2([0,T ],V1(0)).

From this, equality (3.27) and (3.24) one obtains after simple calculations

‖∂t(φ−(.)v)‖L2([0,T ],V1(0)′) ≤ C(‖∂∗v‖L2
H−1

+ ‖v‖0) ≤ C(‖∂∗v‖L2
V ′1

+ ‖v‖0)

≤ C‖v‖W∗ .

The reverse estimate ‖∂∗v‖L2
V ′1
≤ C‖v‖W(V1(0),V1(0)′) follows from the identity

〈∂∗v, ξ〉 = −〈∂t(φ−(·)v), φ−(·)T
−1ξ〉 − (v, wNκ ξ − (C + CT )ξ + (∂∗T)T−1ξ)0

by similar arguments (in particular the analogue result to (3.24) holds for the time

derivative ∂t on S0). Therefore we proved ‖v‖W ' ‖φ−(.)v‖W(V1(0),V1(0)′) and hence

W(V1, V
′
1) and W(V1(0), V1(0)′) are homeomorphic.

4. Well-Posed Weak Formulation

In this section, we introduce and analyze a weak formulation of TSNSE (2.12). We

restrict our arguments to the solenoidal case g = 0. The extension of the analysis to

the case g 6= 0 is discussed in Sec. 4.3. In the weak formulation we take a solution

space with only solenoidal vector fields, and thus the pressure term vanishes. The

existence of a corresponding unique pressure solution is shown in Sec. 4.1.

We introduce the notation

a(u,v) := 2µ(Es(u), Es(v))0, c(u, ũ,v) := ((∇Γu)ũ,v)0,

`(u,v) := (wNHu,v)0,
(4.1)

and consider the following weak formulation of TSNSE (2.12) with g = 0: For given

f ∈ L2(S)3, with f = fT , u0 ∈ V0(0), find uT ∈ W(V1, V
′
1) such that uT (0) = u0

and

〈∂◦uT ,v〉+ a(uT ,v) + c(uT ,uT ,v) + `(uT ,v) = (f ,v)0 for all v ∈ L2
V1
. (4.2)

One easily checks that any smooth solution of (2.12) satisfies (4.2).
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For the analysis of the weak formulation (4.2) we apply an established approach,

e.g. see Ref. 43. Compared to the analysis of the non-stationary Navier–Stokes

equations in Euclidean domains the main differences are that we use evolving spaces

as introduced above instead of the standard Bochner ones, we have a normal time

derivative ∂◦ in place of the usual d
dt , and an additional curvature-dependent term

(wNHuT ,v)0. We show the existence of a Galerkin solution, derive a priori bounds

and based on this show existence of a solution uT . We then show uniqueness of the

solution with the help of Ladyzhenskaya’s inequality.

Faedo–Galerkin approximation

The space V1(0) has a countable basis ψ1,ψ2, . . ., which is pushed forward to a

countable basis {ψ̃i} of V1(t) by letting ψ̃i = φtψi. Consider

um :=

m∑
i=1

gi,m(t)ψ̃i. (4.3)

We determine the unknown functions gi,m from (4.3) by considering the system of

ODEs

(∂◦um, ψ̃j)0,t + 2µ(Es(um), Es(ψ̃j))0,t + ((∇Γum)um, ψ̃j)0,t

+ (wNHum, ψ̃j)0,t = (f , ψ̃j)0,t for all 1 ≤ j ≤ m.

um(0) = u0m.

(4.4)

Here u0m is the L2-orthogonal projection of u0 on span{ψ1, . . . ,ψm}.

A priori bounds

Assume um as in (4.3) satisfies (4.4). Multiplying (4.4) by gj,m(t) and summing

over j = 1, . . .m, we get, using ((∇Γum)um,um)0,t = 0,

(∂◦um,um)0,t + 2µ(Es(um), Es(um))0,t + (wNHum,um)0,t = (f ,um)0,t, (4.5)

and applying integration by parts (3.17), we have

d

dt
‖um‖20,t + 4µ‖Es(um)‖20,t = −2(wNHum,um)0,t

+ (wNκum,um)0,t + 2(f ,um)0,t. (4.6)

From this we obtain for 0 < τ ≤ T ,

‖um‖20,τ + 4µ

∫ τ

0

‖Es(um)‖20,t dt .
∫ τ

0

‖um‖20,t dt+

∫ τ

0

‖f‖20,t dt+ ‖u0m‖2L2(Γ0).

(4.7)

Here and in the remainder we write A . B to denote A ≤ cB with some constant c

which may depend on the final time T , the maximum normal velocity ‖wN‖L∞(S)

and on smoothness properties of the space-time manifold, quantified by ‖H‖L∞(S).
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Note that ‖κ‖L∞(S) = ‖tr(H)‖L∞(S) ≤ 2‖H‖L∞(S). The Gronwall lemma and (4.7)

yield the a priori bound,

max
0≤t≤T

‖um‖0,t + ‖Es(um)‖0 . ‖f‖0 + ‖u0‖L2(Γ0). (4.8)

The uniform Korn inequality and the estimates in (4.7) and (4.8) yield the a

priori estimate

‖um‖1 . ‖f‖0 + ‖u0‖L2(Γ0). (4.9)

Existence of solution

Consider the ODEs system (4.4). Due to Lemma 3.6 we have P∂◦(ψ̃i) = ∂∗(ψ̃i)−
Cψ̃i = −Cψ̃i, with C = AP∂◦A−1. Thus (4.4) results in the following system

for gi,m:

m∑
i=1

dgi,m(t)

dt
(ψ̃i, ψ̃j)0,t = −

m∑
i,k=1

gi,m(t)gk,m(t)((∇Γψ̃k)ψ̃i, ψ̃j)0,t

−
m∑
i=1

gi,m(t){2µ(Es(ψ̃i), Es(ψ̃j))0,t + ((wNH−C)ψ̃i, ψ̃j)0,t}+ (f , ψ̃j)0,t,

(4.10)

for 1 ≤ j ≤ m. From the fact that the pushforward map φt is one-to-one and linear

for every t, and ψi are linear independent we infer that ψ̃i are linear independent

for every t and thus the matrix M(t) := (ψ̃i(t), ψ̃j(t))1≤i,j≤m is invertible for

t ∈ [0, T ]. Moreover, (3.6) and the definition of ψ̃ implies M ∈ C1[0, T ]m×m. Since

any eigenvalue of M, denoted by λ(M), continuously depends on matrix coefficients,

the bound λ(M) > 0 for each t ∈ [0, T ] implies λ(M) ≥ c > 0 uniformly on

[0, T ]. The uniform lower bound for the eigenvalues and the symmetry of M ensures

‖M−1‖C[0,T ] ≤ C. Multiplying both sides of (4.10) with M−1, one verifies that the

Picard–Lindelöf theorem applies. Hence a unique solution gi,m(t), 1 ≤ i ≤ m, exists

for a maximal interval [0, te], te > 0. If te < T , then limt↑te ‖um(t)‖0,t =∞, which

contradicts the established bound (4.8) with T replaced by te. Hence, a unique

solution um(t) exists for t ∈ [0, T ].

From the a priori bounds (4.8), (4.9) it follows that there is a subsequence of

(um′)m′≥1 of (um)m≥1 that is weak-star convergent in L∞H and weakly convergent

in L2
V1

to u∗ ∈ L∞H ∩ L2
V1

. Due to the compactness of L2
V1

↪→ L2
V0

this sequence

also strongly converges in L2
V0

. Now note that, with ψ̃j , j = 1, 2, . . . , as above,

functions
∑N
j=1 gj(t)ψ̃j , N ∈ N, gj ∈ C1([0, T ]), with gj(T ) = 0, are dense in L2

V1
.

We multiply (4.4) with such a function gj , integrate over [0, T ] and apply partial

integration (3.17), which yields

−(um′ , ∂
◦(ψ̃jgj))0 − (κwNum′ , ψ̃jgj)0 (4.11)
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+ 2µ(Es(um′), Es(ψ̃jgj))0 + (∇Γum′um′ , ψ̃jgj)0 (4.12)

+ (wNHum′ , ψ̃jgj)0 = (u0m,ψjgj(0))L2(Γ0) + (f , ψ̃jgj)0. (4.13)

Due to the strong convergence um′ → u∗ in L2
V0

we can pass to the limit in the two

terms in (4.11) and the first term in (4.13). Since (Es(·), Es(v))0 is a functional

on L2
V1

for any v ∈ L2
V1

, we can pass to the limit in the first term in (4.12). Using

the strong convergence in L2
V0

we can also pass to the limit in the second term in

(4.12), cf. Ref. 43 . By definition of u0m we have u0m → u(0) strongly in L2(Γ0).

Thus we get, cf. (4.1),

−(u∗, ∂◦(ψ̃jgj))0 − (κwNu∗, ψ̃jgj)0 = −a(u∗, ψ̃jgj)

− c(u∗,u∗, ψ̃jgj)− `(u∗, ψ̃jgj) + (u0,ψjgj(0))L2(Γ0) + (f , ψ̃jgj)0. (4.14)

We restrict to gj with gj(0) = 0 and build linear combinations of (4.14) to arrive at

−(u∗, ∂◦v)0 − (κwNu∗,v)0 = −a(u∗,v)− c(u∗,u∗,v)− `(u∗,v) + (f ,v)0

(4.15)

for all v =
∑N
j=1 ψ̃jgj . We estimate the nonlinear term with the help of uniform

Ladyzhenskaya inequality and (4.8), (4.9):

c(u∗,u∗,v) = −c(v,u∗,u∗) ≤
∫ T

0

‖∇Γv‖0,t‖u∗‖2L4(Γ(t))dt

.
∫ T

0

‖v‖1,t‖u∗‖0,t‖u∗‖1,tdt . sup
t∈[0,T ]

‖u∗‖0,t‖u∗‖1‖v‖1

. (‖f‖0 + ‖u0‖L2(Γ0))
2‖v‖1. (4.16)

Using the above estimate and obvious continuity estimates for other terms on the

right-hand side in (4.15) together with a density argument we conclude that

‖∂◦u∗‖L2
V ′1

. F (1 + F ), with F := ‖f‖0 + ‖u0‖L2(Γ0), (4.17)

hence u∗ ∈W(V1, V
′
1) and furthermore uT = u∗ satisfies (4.2).

To check that u∗(0) = u0 holds, we apply standard arguments. Using conti-

nuity of t → ‖v(t)‖0,t for v ∈ W(V1, V
′
1) (1 ) and density of smooth functions in

W(V1, V
′
1) it follows that the partial integration rule (3.17) can be generalized to

W(V1, V
′
1). Test (4.2) with v = ψ̃jgj(t), with gj(0) = 1, applying partial integration

and comparing the result with (4.14) we obtain (u∗,ψj)L2(Γ0) = (u0,ψj)L2(Γ0).

Since (ψj)j∈N is dense in V0(0) we conclude that u∗(0) = u0 holds.

Uniqueness of solution

We prove uniqueness of the solution using essentially the same arguments as in

Euclidean space. For the sake of presentation below, we use 〈〈·, ·〉〉 to denote L2
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duality pairing between V1(t) and V1(t)′ and introduce the notation for t-level bilin-

ear forms, cf. (4.1):

at(v,ψ) := 2µ(Es(v), Es(ψ))0,t, ct(v, ṽ,ψ) := ((∇Γv)ṽ,ψ)0,t,

`t(v,ψ) := (wNHv,ψ)0,t.

Note that ct(v, ṽ,v) = 0 holds. A solution uT ∈W(V1, V
′
1) of (4.2) satisfies

〈〈∂◦uT (t),v(t)〉〉+ at(uT (t),v(t)) + ct(uT (t),uT (t),v(t))

+ `t(uT (t),v(t)) = (f(t),v(t))0,t a.e. in t for v ∈ L2
V1
. (4.18)

The Leibniz rule (3.16) extends to v ∈W(V1, V
′
1) (cf. Ref. 1 ) yielding

d

dt
(v(t),v(t))0,t = 2〈〈∂◦v(t),v(t)〉〉+

∫
Γ(t)

|v(t)|2wNκ ds.

Let u1
T , u2

T be solutions of (4.2) with u1
T (0) = u2

T (0) = u0. Letting ψ := u1
T − u2

T

and using ct(ψ,u
1
T ,ψ) = 0 we compute, with C1 := ‖wNκ‖C(S),

d

dt
‖ψ(t)‖20,t + 2at(ψ(t),ψ(t))

= 2〈〈∂◦ψ(t),ψ(t)〉〉+

∫
Γ(t)

|ψ(t)|2wNκ ds+ 2at(ψ(t),ψ(t))

≤ 2〈〈∂◦u1
T (t),ψ(t)〉〉+ 2at(u

1
T (t),ψ(t))

− 2〈〈∂◦u2
T (t),ψ(t)〉〉 − 2at(u

2
T (t),ψ(t)) + C1‖ψ(t)‖20,t

= −2ct(u
1
T (t),u1

T (t),ψ(t))− 2`t(u
1
T (t),ψ(t))

+ 2ct(u
2
T (t),u2

T (t),ψ(t))− 2`t(u
2
T (t),ψ(t)) + C1‖ψ(t)‖20,t

= −2ct(u
2
T (t),ψ(t),ψ(t))− 2`t(ψ(t),ψ(t)) + C1‖ψ(t)‖20,t.

We have |`t(ψ(t),ψ(t))| ≤ ‖wNH‖C(S)‖ψ(t)‖20,t. For the other terms on the right-

hand side above we use (3.14) and the Korn inequality (3.11) to estimate

d

dt
‖ψ(t)‖20,t + 2at(ψ(t),ψ(t))

≤ C‖u2
T ‖1,t‖ψ(t)‖2L4(Γ(t)) + C‖ψ(t)‖20,t

≤ C‖u2
T ‖1,t‖ψ(t)‖0,t‖ψ‖1,t + C‖ψ(t)‖20,t

≤ C‖u2
T ‖1,t‖ψ(t)‖0,t(‖ψ(t)‖0,t + at(ψ(t),ψ(t))

1
2 ) + C‖ψ(t)‖20,t

≤ C(‖u2
T ‖1,t + ‖u2

T ‖21,t)‖ψ(t)‖20,t + 2at(ψ(t),ψ(t)),

with a suitable constant C independent of t ∈ [0, T ] and of u1
T ,u

2
T . Thus, we get

d

dt
‖ψ(t)‖20,t ≤ fu(t)‖ψ(t)‖20,t, fu(t) := C(‖u2

T ‖1,t + ‖u2
T ‖21,t).
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Now, u2
T ∈ L2

V1
implies that

∫ T
0
fu(s) ds is bounded and so the Gronwall inequal-

ity together with ‖ψ(0)‖L2(Γ0) = 0 yields ψ(t) = 0 for t ∈ [0, T ] and thus the

uniqueness result holds.

Summarizing we proved the following main well-posedness result.

Theorem 4.1. The weak formulation (4.2) of the TSNSE has a unique solution

uT ∈W(V1, V
′
1). The solution satisfies

‖uT ‖W ≤ C(1 + F )F, with F := ‖f‖0 + ‖u0‖L2(Γ0). (4.19)

4.1. Surface pressure

For v ∈ L2
V1

, (3.18) defines ∂◦v as a functional on D̂0. The density of D̂0 in L2
H1

and the density of D0 ⊂ D̂0 in L2
V1

is used to define the bounded linear functionals

∂◦v ∈ L2
H−1 and ∂◦v ∈ L2

V ′1
, respectively. The following equivalence holds:

∂◦v ∈ L2
V ′1
⇔ ∂◦v ∈ L2

H−1 , v ∈ L2
V1
. (4.20)

Implication “⇐” in (4.20) is trivial since V1 ⊂ H1. The “⇒” implication follows

from (3.24) and Lemma 3.6.

Below we introduce a weak formulation of TSNSE on the velocity space

W(H1, H−1) = {v ∈ L2
H1 : ∂◦v ∈ L2

H−1}

with (·, ·)W (H1,H−1) = (·, ·)1 + (·, ·)L2
H−1

,

with a pressure unknown π ∈ L2(S). One checks that W(H1, H−1) is a Hilbert

space by the same arguments as for W(V1, V
′
1). Consider the following mixed for-

mulation of TSNSE, which relates to the well-posed weak formulation (4.2): For

given f ∈ L2(S)3, with f = fT , u0 ∈ V0(0), find uT ∈W(H1, H−1) and π ∈ L2(S),

with
∫

Γ(t)
π ds = 0 a.e. t ∈ [0, T ], such that uT (0) = u0 and

〈∂◦uT ,v〉+ a(uT ,v) + c(uT ,uT ,v) + `(uT ,v) + (π, divΓv)0 = (f ,v)0

(q, divΓuT )0 = 0
(4.21)

for all v ∈ L2
H1 , q ∈ L2(S).

Theorem 4.2. The problem (4.21) has a unique solution (uT , π). The velocity

solution uT is also the unique solution of (4.2). Furthermore, with F := ‖f‖0 +

‖u0‖L2(Γ0) the following estimate holds:

‖uT ‖W + ‖π‖0 ≤ C(1 + F )F. (4.22)

Proof. Let uT ∈W(V1, V
′
1) be the solution of (4.2). Define

f̃(v) := 〈∂◦uT ,v〉+ a(uT ,v) + c(uT ,uT ,v) + `(uT ,v)− (f ,v)0, v ∈ L2
H1 .
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Using (4.20) and straightforward estimates we obtain f̃ ∈ L2
H−1 .b We use the stan-

dard argument (e.g. Remark I.1.9 in Ref. 43) that for every t ∈ [0, T ] estimate

(3.13) implies that ∇Γ ∈ L(L2(Γ(t)), H−1(t)) has a closed range R(∇Γ) in H−1(t)

and so

R(∇Γ) = ker(∇∗Γ)⊥, with ker(∇∗Γ) = V1(t).

Note that f̃(t) is an element of H−1(t) for a.e. t ∈ [0, T ] and, since uT is the solution

of (4.2), 〈〈f̃(t),v〉〉 = 0 for all v ∈ V1(t). Hence, f̃(t) ∈ R(∇Γ) which means

f̃(t) = ∇Γπ(t) for some π(t) ∈ L2(Γ(t)) for a.e. t ∈ [0, T ].

We take π(t) such that
∫

Γ(t)
π(t) = 0 holds. To see that t→ ‖π(t)‖0,t is measurable

we argue as follows. First note that t → ‖π(t)‖0,t is measurable if t → π0(t) is

Bochner-measurable on [0, T ] for π0 := Jπ◦Φnt . Since L2(Γ0) is separable, it suffices

to check that t → (π0(t), q)0,0 is a measurable function for any q ∈ L2(Γ0) such

that
∫

Γ0
q = 0. Property (3.13) for t = 0 implies that there exists v0 ∈ H1(0) such

that q = divΓv0 and ‖v0‖1,0 ≤ C0‖q‖0,0. Let v = φtv0. We then have

(π0(t), q)0,0 = (π0(t), divΓv0)0,0 = (π(t), divΓv)0,t = 〈∇Γπ(t),v〉H−1(t)×H1(t),

which implies that t → 〈∇Γπ(t),v〉H−1(t)×H1(t) is measurable, since ∇Γπ ∈ L2
H−1

and v ∈ L2
H1 .

From (4.21) we get, with notation as in (4.1),

(π, divΓv)0,t = (f(t),v(t))0,t − 〈〈∂◦uT (t),v(t)〉〉 − at(uT (t),v(t))

− ct(uT (t),uT (t),v(t))− `t(uT (t),v(t)) a.e. in t for v ∈ L2
V1
.

Using the uniform inf-sup estimate, cf. Lemma 3.3, we get

‖π(t)‖0,t ≤ C(‖f(t)‖0,t + ‖∂◦uT ‖V1(t)′ + ‖uT (t)‖1,t(1 + ‖uT (t)‖0,t)),

with a constant C independent of t. Hence, π ∈ L2(S) holds. The estimate for

velocity in (4.22) is the same as in Theorem 4.19. Note that maxt∈[0,T ] ‖uT (t)‖0,t .
F holds, cf. (4.8). Using this and the velocity estimate we obtain the bound for the

pressure in (4.22). Uniqueness of uT follows by restricting to v ∈ L2
V1

in (4.21) and

using the fact that (4.2) has a unique solution. Uniqueness of π is easily derived

using the inf-sup property.

4.2. Energy balance

Multiplying (2.12) by uT , integrating over Γ(t) and using (3.16), we obtain, for a

smooth solution, the energy balance of the system at any t ∈ (0, T ),

1

2

d

dt
‖uT ‖20,t + 2µ‖Es(uT )‖20,t +

(
wN

(
H− 1

2
κI

)
uT ,uT

)
0,t

= (f ,uT )0,t.

(4.23)

bTo see v→ c(uT ,uT ,v) ∈ L2
H−1 , one uses the same arguments as in (4.16).
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Next, we comment on the contribution of the third term in (4.23), which appears if

the surface is both evolving and non-flat. First, we note that H− 1
2κI = H− 1

2κP on

TΓ(t) and H− 1
2κP = H− 1

2 tr(H)P. Since tr(P) = 2 we get tr(H− 1
2κP) = 0. This

implies that the symmetric matrix H − 1
2κP has real eigenvalues {0, λ,−λ} with

the 0 eigenvalue corresponding to vectors normal to Γ(t). Take a fixed point x on

the surface Γ(t) with wN (x) 6= 0. Denote by κ1 and κ2 the two principle curvatures

of Γ(t). For the eigenvalue of H(x)− 1
2κ(x)P(x) we have λ(x) = 1

2

(
κ1(x)−κ2(x)

)
.

Therefore wN (x)(H(x)− 1
2κ(x)P(x)) = 0 iff κ1(x) = κ2(x) holds, and it is indefinite

otherwise. In the latter case the increase or decrease of kinetic energy due to this

term depends on the alignment of the flow with the principle directions and the

sign of wN .

4.3. Non-solonoidal solution

The tangential surface Navier–Stokes system (2.12) admits non-solonoidal solutions

with divΓuT = g, where g = −wNκ,
∫

Γ(t)
g ds = 0 for t ∈ [0, T ], is defined by the

surface geometry and evolution. We outline how the analysis for the solonoidal case

presented above can be extended to such a problem. We assume that g : S → R
is sufficiently regular. Let φ(t,x) be the unique solution of the Laplace–Beltrami

equation ∆Γ(t)φ = g,
∫

Γ(t)
φds = 0, and define ũT := ∇Γφ. Then (uT , π) solves

(2.12) iff ûT = uT − ũT and π solve the system
P∂◦ûT + (∇ΓûT )ûT + (∇ΓũT )ûT + (∇ΓûT )ũT

+wNHûT − 2µP divΓEs(ûT ) +∇Γπ = f̂

divΓûT = 0,

(4.24)

with

f̂ = f − (P∂◦ũT + (∇ΓũT )ũT + wNHũT − 2µP divΓEs(ũT )).

The two additional terms (∇ΓũT )ûT and (∇ΓûT )ũT in the momentum equation in

(4.24) are linear with respect to the unknown velocity field ûT and can be treated

very similar to the zero order term wNHûT . The necessary regularity of f̂ can be

established using the smoothness of g and S. We skip working out further details.

5. Discretization Method

As discussed in the introduction, only very few papers are available in which finite

element discretization methods for vector- or tensor-valued surface PDEs, such

as the surface Navier–Stokes equations, on evolving surfaces are treated. In this

section, we present a discretization method for the TSNSE (2.12). The method

is based on a combination of an implicit time stepping scheme with a TraceFEM

for discretization in space. The general idea behind TraceFEM is to use standard

time-independent (bulk) finite element spaces to approximate surface quantities.

The method is based on tangential calculus in the ambient space R3 ⊃ Γ(t). For
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scalar PDEs on evolving surfaces, a space-time variant of TraceFEM is treated in

Ref. 30. A finite difference (FD) in time — FEM in space variant for PDEs on time-

dependent surfaces is treated in Ref. 23 (scalar problems) and in time-dependent

volumetric domains in Ref. 22 (scalar equations) and Ref. 46 (Stokes problem).

Compared to the space-time variant the FD-FEM approach is more flexible in

terms of implementation and the choice of elements. Below we explain this FD-

FEM approach applied to the TSNSE. We start with the numerical treatment of

the system’s evolution in time.

5.1. Time-stepping scheme

Consider uniformly distributed time nodes tn = n∆t, n = 0, . . . , N , with the time

step ∆t = T/N . We assume that the time step ∆t is sufficiently small such that

Γ(tn) ⊂ O(Γ(tn−1)), n = 1, . . . , N, (5.1)

with O(Γ(t)) a neighborhood of Γ(t) where a smooth extension of surface quantities

on Γ(t) is well defined. Assuming a smooth extension ueT , we rewrite the normal

time derivative ∂◦ used in (2.12) in terms of standard time and space derivatives:

P∂◦uT + (∇ΓuT )uT = P

(
∂ueT
∂t

+ (∇ueT )wN + (∇ueT )uT

)
= P

(
∂ueT
∂t

+ (∇ueT )(wN + uT )

)
. (5.2)

On Γ(tn) the time derivative term is approximated by

P
∂ueT
∂t
≈ uT (tn)−P(tn)uT (tn−1)e

∆t
.

Note that due to (5.1) uT (tn−1)e is defined on Γ(tn). The normal surface velocity

wN is known, so a natural linearization of the nonlinear term in (5.2) is given by

P∇ueT (wN + uT ) ≈ P(tn)∇uT (tn)e(wN (tn) + uT (tn−1)e) on Γ(tn).

The FD approximations above need extensions of quantities defined on Γ(tj) to

O(Γ(tj)). It is natural to consider a normal extension, which can be characterized

as follows. Let n = ∇φ in O(Γ(tj)), where φ is the signed distance function for

Γ(tj), and g a function defined on Γ(tj). The normal extension ge of g is such that

ge = g on Γ(tj) and

n · ∇ge = 0 in O(Γ(tj)). (5.3)

For practical purposes, φ can be a smooth level set function for Γ rather than a

signed distance. In this case, the vector field n = ∇φ/|∇φ| is normal on Γ but

defines quasi-normal directions in a neighborhood. Extension of the velocity field

along quasi-normal directions is equally admissible. We assume that at t = 0 an

extension uT (0)e on O(Γ0) solving (5.3) is given. We use the notation ujT and pj for

an approximation of uT (tj)
e and p(tj), respectively. Based on the approximations
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above and (5.3) consider the following time discretization method for (2.12). Given

u0
T = uT (0)e, for n = 1, . . . N , find unT , defined on O(Γ(tn)) and tangential to Γ(tn),

i.e. (unT · n)|Γ(tn) = 0, and pn defined on Γ(tn) such that
unT −Pun−1

T

∆t
+ P∇unT (wn

N + un−1
T )

+wnNHunT − 2µP divΓEs(u
n
T ) +∇Γp

n = fn

divΓunT = gn

on Γ(tn), (5.4)

n · ∇unT = 0 in O(Γ(tn)), (5.5)

with wnN := wN (tn), wn
N := wN (tn), fn := f(tn), gn := g(tn). Geometric informa-

tion in (5.4) is taken for Γ(tn), i.e. P = P(tn), H = H(tn). For space discretization,

the stationary linearized surface PDE in (5.4) can be treated using a variational

approach known from Refs. 16 and 18, in which the tangential constraint for the

solution unT is relaxed using a penalty approach. This technique is now outlined.

We set c := wn
N + un−1

T , Γn := Γ(tn) and introduce the following bilinear forms on

Γn, with arguments u,v, vector functions on Γn that are not necessarily tangential:

A(u,v) =
1

∆t

∫
Γn

u ·Pv ds+

∫
Γn

v ·P(∇u)c ds+

∫
Γn

wnNuTHv ds

+ 2µ

∫
Γn

Es(Pu) : Es(Pv) ds+ τ

∫
Γn

uNvN ds, (5.6)

B(u, p) = −
∫

Γn

p divΓPu ds, (5.7)

where τ > 0 is a penalty parameter. We introduce two Hilbert spaces

L2
0(Γn) :=

{
p ∈ L2(Γn)

∣∣∣∣ ∫
Γn

p ds = 0

}
, and

V∗ := {v ∈ L2(Γn)3 |vT ∈ H1(Γn)3, vN ∈ L2(Γn)},

with the norm ‖v‖2V∗ = ‖vT ‖2H1(Γn) + ‖vN‖2L2(Γn). A variational formulation corre-

sponding to (5.4) is as follows: Find u∗ ∈ V∗, p ∈ L2
0(Γn) such that

A(u∗,v) +B(v, p) =

∫
Γn

f̃ · v ds for all v ∈ V∗

B(u∗, q) = −
∫

Γn

gnq ds for all q ∈ L2
0(Γn),

(5.8)

with f̃ := f + 1
∆tPun−1

T . This variational formulation is consistent in the sense that

if (unT , p
n) is a strong solution of (5.4) then (u∗, p) = (unT , p

n) solves (5.8). Using

the Korn type inequality (3.11) and an inf-sup property of B(·, ·) it can be shown

that for ∆t sufficiently small and τ sufficiently large (but independent of ∆t) the

problem (5.8) is well-posed and its unique solution u∗ satisfies u∗ ·n = 0, cf. Ref. 16

for a precise analysis. Therefore, for such ∆t and τ Eq. (5.8) is a well-posed weak
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formulation of (5.4). For a finite element method introduced later it is important

that the space V∗ admits vector functions not necessarily tangential to Γn. The

solution u of (5.8) is defined only on Γn and we do not specify an extension as in

(5.5), yet. Such an extension will be determined in the finite element method, as

explained in the following section.

Remark 5.1. In the practical implementation of a finite element method for (5.8)

the surface Γ(tn) will be approximated by a piecewise planar surface Γh and the

corresponding projection operator Ph has discontinuities across boundaries between

different planar segments of this approximate surface. This causes difficulties for

the terms in the bilinear forms A(·, ·), B(·, ·) where derivatives of Ph are involved.

These can be avoided by eliminating derivatives of P as follows. For p ∈ H1(Γn)

we have B(u, p) =
∫

Γn
∇Γp ·Pu ds =

∫
Γn
∇Γp ·u ds, which eliminates derivatives of

P. For the bilinear form A(·, ·) we can use the relation ∇Γ(Pu) = ∇Γu−uNH and

thus Es(Pu) = Es(u)− uNH.

5.2. Finite element method

We now explain the spatial discretization of (5.8). Consider a fixed polygonal

domain Ω ⊂ R3 that strictly contains Γ(t) for all t ∈ (0, T ). Let {Th}h>0 be

a family of shape-regular consistent triangulations of the bulk domain Ω, with

maxK∈Th diam(K) ≤ h. Corresponding to the bulk triangulation we define a stan-

dard finite element space of piecewise polynomial continuous functions of a fixed

degree k ≥ 1:

V kh = {vh ∈ C(Ω) : vh ∈ Pk(K), ∀ K ∈ Th}. (5.9)

The bulk velocity and pressure finite element spaces are standard Taylor–Hood

spaces:

Uh := (V 2
h )3, Qh := V 1

h .

For efficiency reasons, we use an extension not in the given (h and ∆t-

independent) neighborhood O(Γ(tn)) of Γn = Γ(tn) but in a narrow band around

Γn. This ∆t-dependent narrow band consists of all tetrahedra within a δn distance

from the surface, with

δn := cδ sup
t∈(tn−1,tn)

‖wN‖L∞(Γ(t))∆t (5.10)

and cδ ≥ 1, an O(1) mesh-independent parameter. More precisely, we define the

mesh-dependent narrow band

O∆t(Γn) :=
⋃
{K : K ∈ Th : dist(x,Γn) ≤ δn for some x ∈ K}.

We also need a subdomain of O∆t(Γn) only consisting of tetrahedra intersected

by Γn,

ωnΓ :=
⋃
{K ∈ Th : K ∩ Γn 6= ∅}.
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In a time step from tn−1 to tn, the surface may move up to ∆t supt∈(tn−1,tn)

‖wN‖L∞(Γ(t)) distance in normal direction, which is thus the maximum distance

from Γn to Γn−1. Therefore, cδ in (5.10) can be taken sufficiently large, but inde-

pendent of h, such that

ωnΓ ⊂ O∆t(Γn−1). (5.11)

This condition is the discrete analog of (5.1) and it is essential for the well-posedness

of the finite element problem at time step n.

Next, we define finite element spaces for velocity and pressure as restrictions to

the narrow band O∆t(Γn) of the time-independent bulk spaces Uh and Qh:

Un
h := {v|O∆t(Γn) |v ∈ Uh}, Qnh := {q|O∆t(Γn) | q ∈ Qh}. (5.12)

Denote by Ih(v) ∈ Un
h the Lagrange interpolation of v ∈ C(O∆t(Γn))3. Our finite

element formulation is based on formulation (5.8). Recall that in (5.8) we do not

require u∗ to be tangential to Γ(t). The tangential condition is weakly enforced

by the penalty term in (5.6) with penalty parameter τ . Such a penalty approach

is often used in finite element methods for vector values surface PDEs.14, 18, 27, 32

In the discretization in addition to this penalty term we include two volume terms

with integrals over ωnΓ and O∆t(Γn). The discrete problem is as follows: For given

un−1
h ∈ Un−1

h and cn−1
h = un−1

h + Ih(weN (tn)n) find unh ∈ Un
h, pnh ∈ Qnh, satisfying∫

Γn

(
unh − un−1

h

∆t
+ (∇unh)cn−1

h + unNHunh

)
·Pvh ds

+ 2µ

∫
Γn

Es(Punh) : Es(Pvh) ds+ τ

∫
Γn

(n · unh)(n · vh) ds

+

∫
Γn

∇Γp
nvh ds+ ρu

∫
O∆t(Γn)

(n · ∇unh)(n · ∇vh) dx

=

∫
Γn

fnvh ds ∀ vh ∈ Un
h

−
∫

Γn

∇Γq unh ds+ ρp

∫
ωn

Γ

(n · ∇pnh)(n · ∇qh) dx

=

∫
Γn

gnqh ds ∀ qh ∈ Qnh, (5.13)

for n = 1, . . . , N . The term
∫
O∆t(Γn)

(n · ∇unh)(n · ∇vh) dx, with a parameter ρu,

is included for two reasons. First, this term is often used in TraceFEM to improve

the conditioning of the resulting stiffness matrix, e.g. see Ref. 7. Second, this vol-

ume term weakly enforces the extension condition (5.5) with O(Γ(tn)) replaced by

O∆t(Γn). In particular, at time tn a well-conditioned algebraic system is solved for

all discrete velocity degrees of freedom in the neighborhood O∆t(Γn); we refer to
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Ref. 23 for a stability and convergence analysis of such an extension procedure for

a scalar surface equation. The volume term in the pressure equation is added for

the purpose of numerical stabilization of pressure.31 The formulation (5.13) is con-

sistent in the sense that the equations hold if the solution of (5.4), extended along

normal directions, is substituted instead of unh and pnh. Penalty and stabilization

parameters are set following the error analysis in Ref. 31:

τ = h−2, ρu = h−1, ρp = h.

In practice, Γn, n = 1, 2, . . ., is replaced by a sufficiently accurate approximation

Γnh in such a way that integrals over Γnh can be computed accurately and efficiently.

Other geometric quantities, i.e. n, H and P, are also replaced by sufficiently accu-

rate approximations. The derivatives of projected fields, i.e. Es(Punh) and Es(Pvh),

are handled as discussed in Remark 5.1. For the surface Stokes problem discretized

by the trace Pk+1–Pk, k ≥ 1, elements, the introduced geometric error is analyzed

in Ref. 17. Below we will use the lowest order trace Taylor–Hood pair P2–P1. An

approximation Γnh that is piece-wise planar with respect to Th leads to an O(h2)

geometric error. This geometric error order is suboptimal given the interpolation

order of the Taylor–Hood pair P2–P1. This suboptimality can be overcome by the

isoparametric TraceFEM.12 For numerical results in this paper, we use the following

less efficient but simpler approach. For the geometry approximation (only) we con-

struct a piece-wise planar Γnh with respect to a local refinement of each tetrahedron

from ωnΓ . The number of local refinement levels is chosen sufficiently large to restore

the optimal O(h3) convergence. Note that this local refinement only influences the

surface approximation and not the finite element spaces used.

Finally we note that the use of BDF2 instead of implicit Euler in the implicit

time stepping scheme leads to obvious modifications of (5.13). In the experiments

in the following section, we used this second order in time variant of (5.13).

6. Numerical Examples

For discretization, an initial triangulation Th0 was build by dividing Ω = (− 5
3 ,

5
3 )3

into 23 cubes and further splitting each cube into 6 tetrahedra with h0 = 5
3 . Fur-

ther, the mesh is refined in a sufficiently large neighborhood of a surface so that

tetrahedra cut by Γ(t) belong to the same refinement level for all t ∈ [0, T ]. ` ∈ N
denotes the level of refinement and h` = 5

3 2−`. The trace P2–P1 Taylor–Hood finite

element method with BDF2 time stepping, as described in the previous section, is

applied.

6.1. Convergence for a smooth solution

To verify the implementation and to check the convergence order of the discrete

solution, we set up an experiment with a known tangential flow along an expand-

ing/contracting sphere. In this example the total area of Γ is not preserved, but it

allows to prescribe a flow u analytically and calculate f and g.
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The surface Γ is given by its distance function

d(x, t) := ‖x‖ − r(t), r(t) := 1 +
1

4
sin(2π t), (6.1)

We consider t ∈ [0, 1]. The surface normal velocity is then wN = wNn, with wN (t) =

r′(t) = π cos(2π t)
2 , n(x) = x/|x|. We choose µ = 5× 10−3.

The exact solution is given by

u(x, t) := P(x, t) (1− 2 t, 0, 0)T , p(x) := x y2 + z, (6.2)

and right-hand sides f and g = divΓuT +wNκ are computed accordingly from (6.1)

and (6.2). For numerical integration, exact solutions and right-hand sides are

extended along normal directions to Γ.

The numerical solution was computed on four consecutive meshes with refine-

ment levels ` ∈ {2, . . . , 5} and a time step ∆t = 0.05 on level 2; ∆t is halved in each

spatial refinement, and for parameter in (5.10) we set cδ = 1.1. A mesh in O∆t(Γn)

together with the embedded Γ(t) and computed solution is illustrated in Fig. 1. In

Table 1, we show the mesh parameter h and the resulting (averaged over all time

steps) number of active degrees of freedom (# d.o.f.). We see that a mesh refinement

leads to approximately four times more degrees of freedom. Table 1 further reports

the velocity and pressure errors measured in (approximate) L2
V1

and L2(S) norms.

Fig. 1. Illustration of the extension mesh and solution at mesh level ` = 3.

Table 1. Convergence results for the example with analytical solution.

Mesh level ` 2 3 4 5

h 4.17× 10−1 2.08× 10−1 1.04× 10−1 5.21× 10−2

Averaged # d.o.f. 4.41× 103 1.73× 104 6.82× 104 2.73× 105

‖u− uh‖1 Order ‖u− uh‖L2(S) Order ‖p− ph‖L2(S) Order

9.3× 10−1 1.3× 10−1 3.2× 10−1

1.9× 10−1 2.3 9.9× 10−3 3.72 3.5× 10−2 3.2

4.3× 10−2 2.13 9.2× 10−4 3.42 7.3× 10−3 2.27

1.2× 10−2 1.92 1.2× 10−4 2.98 1.8× 10−3 2.02
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These norms were computed using a quadrature rule for time integration. Results

demonstrate the expected second-order convergence in the “natural” norms and a

higher order for the velocity error in the L2(S) norm. These orders are optimal for

the P2–P1 elements used.

6.2. Tangential flow on a deforming sphere

In this numerical example we consider a deforming unit sphere and compute the

induced tangential flow, i.e. the numerical solution of the TSNSE (2.12). Denote

by Γ0 the reference sphere of radius 1 with the center in the origin O. Consider

spherical coordinates (r, θ, ϕ) ∈ (0,∞) × [0, π] × [0, 2π) and denote by Hmn (θ, ϕ),

the spherical harmonic of degree n and order m. Assume that Hmn are normalized,

i.e. ‖Hmn ‖L2(Γ0) = 1. For the evolving surface we consider as ansatz

Γ(t) =

x = (r, θ, ϕ) | r = 1 +

N∑
n=1

∑
|m|≤n

An,m(t)Hmn (θ, ϕ)

 , (6.3)

with suitably chosen coefficients An(t). The function ξ :=
∑N
n=1

∑
|m|≤nAn,m(t)

Hmn (θ, ϕ) describes the radial deformation. We assume small oscillations, ‖ξ‖ � 1.

Under this assumption, an accurate approximation of the normal velocity is given

by wN = wNn, with

wN =
dξ

dt
=

N∑
n=1

∑
|m|≤n

dAn,m
dt
Hmn , n(x) = x/|x|. (6.4)

We want the surface to be inextensible, i.e. d
dt |Γ(t)| = 0. Appropriate coefficients

An,m(t) such that we have inextensibility can be determined as follows. Application

of the surface Reynolds transport formula and integration by parts gives for the

variation of surface area:

d

dt
|Γ(t)| = d

dt

∫
Γ(t)

1 ds =

∫
Γ(t)

divΓwN ds =

∫
Γ(t)

κwN ds. (6.5)

Fig. 2. Relative surface area variation
|Γ(0)|−|Γ(t)|
|Γ(0)| as a function of time for axisymmetric (left

plot) and asymmetric (right plot) deformations of the sphere.
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For the doubled mean curvature we have, cf. Ref. 21,

κ = 2− 2ξ −∆Γξ = 2−
N∑
n=1

∑
|m|≤n

{2An,mHmn − n(n+ 1)An,mHmn }

= 2 +

N∑
n=1

∑
|m|≤n

An,m(n− 1)(n+ 2)Hmn .

Using
∫

Γ0
Hmn = 0, n ≥ 1, and

∫
Γ0
Hmn Hm

′

n′ = δn
′

n δ
m′

m , we compute for the area

variation:

d

dt
|Γ(t)| =

∫
Γ(t)

κwNds =

N∑
n=1

∑
|m|≤n

(n− 1)(n+ 2)
dAn,m
dt

An,m. (6.6)

Fig. 3. Visualization of velocity field for axisymmetric deformations of the sphere; mesh level

` = 4, ∆t = 0.01. Click here to see the full animation.
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Based on this formula we set A2,0 = ε
2 cos(ωt), A3,0 = ε√

10
sin(ωt), and An,m = 0

for other coefficients. For this choice of coefficients one easily verifies d
dt |Γ(t)| = 0.

The TSNSE equations (2.12) are then solved with the right-hand side given by

(2.13) with uN = wN computed from (6.4). The initial velocity is zero.

In the first numerical example we let ε = 0.2, ω = 2π, µ = 1
210−4, and include

H0
2 and H0

3, two zonal spherical harmonics of degrees 2 and 3. The relative variation

of the surface area Γ(t) in the left plot in Fig. 2 shows less than 0.1% of surface

variation. Non-zero variation is due to approximation errors and finite (rather than

infinitesimal) deformations. The latter causes an approximation error in (6.4).

The velocity field induced by these axisymmetric deformations of the sphere

is visualized in Fig. 3. We see that the velocity pattern is dominated by a

Fig. 4. Visualization of velocity field for asymmetric deformations of the sphere; mesh level ` = 4,
∆t = 0.01. Click here to see the full animation.
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sink-and-source flow driven by the term −κwN on the right-hand side of the diver-

gence condition in (2.12).

We repeat the experiment, but decrease the viscosity to µ = 1
210−5 and add

two more spherical harmonics, the sectorial H1
3 harmonic and the tesseral H2

4 one,

to make the deformation asymmetric. The radial displacement in this experiment

is then given by

ξ = 0.2

(
1

2
cos(2π t)H0

2(x) +
1√
10

sin(2π t)H0
3(x)

)
,

+ 0.1

(
1

2
cos(4π t)H1

3(x) +
5

18
sin(4π t) H2

4(x)

)
.

Again, the coefficients are such that d
dt |Γ(t)| = 0 according to Eq. (6.6). The result-

ing velocity field is visualized in Fig. 4. The velocity pattern is still dominated by

the sink-and-source flow. Note that in both cases there are no outer forces and the

flow is completely “geometry driven”.
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