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Abstract

The paper proposes a stable time-splitting method for the numerical simulation of free-
surface viscous flows. The key features of the method are a semi-Lagrangian scheme for
the level set function transport improved with MacCormack predictor–corrector step and
an adaptive volume-correction procedure. The spacial discretization is done by a hybrid
finite volume / finite difference method on dynamically adaptive hexahedral meshes.
Numerical verification is done by comparing full-scale 3D numerical simulations of the
sloshing tank and the costal wave run-up with other numerical and experimental results
known from the literature.
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1 Introduction

Free surface flows over submerged and partially submerged obstacles are of great practical
interest. Examples of such flows in naval engineering include the baffled tanks and sea waves
run-up over oil ridge or costal constructions. Numerical simulations play an important role
in predicting fluid motion and its interaction with structures in these and other situations.
For successful numerical simulations one has to use free surface capturing techniques com-
bined with local mesh adaptivity in order to resolve different length scales in fluid solution
and geometry. For realistic large-scale 3D problems, free surface capturing and local mesh
adaptivity cause serious challenge in designing an accurate and reliable numerical method.
This work continues our effort in developing such a method for 3D free surface flows using
dynamically adapted octree hexahedral meshes; see [13–16,18,23,24].
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In the present paper we propose a simple yet accurate and stable time-splitting scheme
for the system of fluid flow equations coupled with the transport equation for the indicator
function of the free surface. The presented approach features the semi-Lagrangian method for
the surface transport enhanced with the MacCormack predictor–corrector step. For the free-
surface transport description we apply the level-set method. Semi-Largangian method is also
applied for the re-initialization of the level-set function. A particular attention is paid here to
the volume correction method applied after re-initialization and semi-Lagrangian advection
steps. The volume correction proposed here is based on the local adjustments of the discrete
level-set function.

In our earlier work [14] we proved the stability of the splitting semi-discrete scheme similar
to the one studied here, but with only first order semi-Larangian method for the fluid and
level-set transport. An improvement for better accuracy of this approach on adaptive octree
meshes was suggested in [24], where the semi-Lagrangian method was used with a higher
order interpolation, a limiting strategy and a back and forth correction of the numerical
solution. The resulting method was verified on several benchmarks with excellent results
and used in realistic applications. For the spatial discretization we apply a hybrid finite
volume / finite difference method on octree hexahedral meshes. The discretization includes a
high order interpolation with limiting strategy for the semi-Lagrangian transport; see details
in [15, 24]. In this paper, we replace a computationally expensive semi-Lagrangian step
with back and forth correction for transport by a cheaper yet accurate semi-Lagrangian
MacCormack predictor–corrector method. Another new contribution here is an improved
volume correction scheme applied after the transport and re-initialization steps. We avoid
any unnecessary details about spatial discretization which can be found in [15,24]. Only those
details about spatial discretization that are important for the presentation of the limiting and
volume correction procedures are included in this paper.

Let us comment on the related work found in the literature. The volume preserving
variants of the level-set method based on localized mass correction for different discretizations
were previously addressed in [1, 2, 25, 26], back and forth error compensation and correction
methods were suggested to improve the accuracy of the level-set function transport in [6, 7],
also with a limiting strategy [9], an idea to replace the more expensive back and forth error
compensation and correction method with MacCormack correction in the context of the semi-
Lagrangian approach is due to [22], semi-Lagrangian method for the re-initialization of an
indicator function was used in [26].

The rest of the paper is organized into three sections. Section 2 introduces the math-
ematical model. Section 3 presents the time stepping scheme with an emphasis on new
findings which provide higher order approximation in time and improve monotonicity and
conservation properties of the overall method. Section 4 collects the results of numerical
experiments which validate our approach for numerical simulation of free surface flows over
partially submerged obstacles.
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2 Mathematical model

A motion of viscous incompressible fluid is driven by the Navier-Stokes equations for unknown
fluid velocity vector field u and pressure pρ

(
∂u

∂t
+ (u · ∇)u

)
− divσ(u, p) = g

∇ · u = 0

in Ω(t), t ∈ (0, T ], (1)

where σ(u, p) = ν[∇u + (∇u)T ]− p I is the stress tensor of the fluid; g is the external force
(e.g., gravity), ρ is the density, and ν is the kinematic viscosity, all are assumed to be given.
The equations are posed in the time-dependent fluid domain Ω(t) and for t ∈ [0, T ]. At the
initial time t = 0 the domain and the velocity field are known:

Ω(0) = Ω0, u|t=0 = u0, ∇ · u0 = 0. (2)

For t > 0 finding the evolution of the domain Ω(t) is a part of the problem. For the definition
of the domain evolution we use the level-set approach. This is an Eulerian approach that
uses the indicator function for the implicit definition of the domain Ω(t) ∈ R3 occupied by
the fluid:

ϕ(t,x) =


< 0 if x ∈ Ω(t)

> 0 if x ∈ R3 \ Ω(t)

= 0 if x ∈ Γ(t)

for all t ∈ [0, T ]. (3)

The level set function ϕ(t,x) is assumed to be at least Lipschitz continuous. Then for the
free-surface flow, one can show that ϕ(t,x) satisfies the transport equation [19]:

∂ϕ

∂t
+ ũ · ∇ϕ = 0 in R3 × (0, T ]. (4)

The transport field ũ coincides with the velocity u in Ω(t) and is extended to R3. The
initial condition (2) defines ϕ(0,x). Equations (4) and (1) are coupled through the boundary
equations for (1) and definitions of ũ and Ω(t).

To set up suitable boundary conditions, let ∂Ω(t) = ΓW ∪ Γ(t) ∪ Γout ∪ Γin, where ΓW is
the static boundary (walls), Γ(t) is the free surface of fluid, Γin, Γout are inflow and outflow
parts of the boundary, respectively. In general, the sets ΓW , Γin, Γout are time-dependent.
On the static part of the flow boundary, the boundary condition Bu|ΓW

for the velocity is
given by either no-slip boundary condition

u = 0 on ΓW , (5)

or no-penetration and free-slip boundary conditions:

u · n = 0 and
∂(u · ti)
∂n

= 0, i = 1, 2, on ΓW , (6)

where ti and n are tangential and normal vectors on ΓW . On Γin, u is assumed to be given,
on Γout we assume σ(u, p)n = 0. The flows of our interest have large Weber numbers and
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so we ignore the capillary forces. Hence, on the free surface boundary Γ(t) one has vanishing
normal stress,

σ(u, p)n = 0 on Γ(t), (7)

where n is the normal vector for Γ(t). The normal vector n to the implicitly defined Γ(t) can
be computed as n = ∇ϕ/|∇ϕ| or simply n = ∇ϕ, if the level set function ϕ possesses the
signed distance property, i.e. satisfies the Eikonal equation

|∇ϕ| = 1. (8)

3 Discretization in time

In this section, we describe the time-stepping procedure. The numerical method splits the
coupled fluid–level-set system of equations into the transport problem for ϕ, convection-
diffusion problem for velocity and the Poisson problem for the pressure. The divergence-free
constrain is enforced by the projection as in the classical projection schemes by Chorin,
Yanenko, Pironneau and others; see, for example, [4, 20].

At each time step t = tn we shall use the notation un, pn, ϕn for approximations to the
velocity field u(tn), the pressure p(tn), and the level set function ϕ(tn). The initial condition
(2) provides u0 = u(t0) and ϕ0 = ϕ(t0). The fluid domain is implicitly given by ϕn through
Ωn := {x ∈ R3 : ϕn(x) < 0}. The time-stepping scheme is as follows.

Given un, ϕn such that div un = 0, |∇ϕn| = 1, for n = 0, 1, . . . we find un+1, pn+1, ϕn+1

by performing the following steps:

1: The mesh is refined according to the prediction of the new position of the zero level set.
The refinement is important for large time steps when Step 2 may advect the zero level
set into coarse cells with a loss of well-resolved features.

2: Semi-Lagrangian step, Ωn → Ωn+1. Given ϕn and un, compute ϕn+1 by a semi-Lagrangian
MacCormack predictor-corrector scheme; see section 3.1;

3: Volume correction. Update the level set function ϕn+1 to conserve the volume of fluid;
see section 3.2;

4: Re-meshing. Locally update the octree mesh by adapting it to ∂Ωn+1;
5: Re-interpolation. Map all discrete variables to the new grid; see section 3.4;
6: Re-initialization. Update the level set function ϕn+1 to satisfy the Eikonal equation (8)

and make the volume correction again; see section 3.3;

7: Convection–diffusion solve. Compute the new velocity field ũn+1 in Ωn+1 by solving the
convection–diffusion equation; see section 3.5;

8: Projection step. Project the vector field ũn+1 onto the discrete divergence-free subspace.
Compute the new velocity un+1 and pressure pn+1; see section 3.6.

In the following sections we discuss these steps in more detail.

The stability of a simpler semi-discrete scheme was studied in [14]. The simple method

is built of semi-Lagrangian steps for both ϕn and un, diffusion step for velocity ũn+1; it does
not include re-initialization, volume correction, remeshing, or re-interpolation. This scheme
was shown to conserve global momentum and angular momentum, and to satisfy an energy
inequality.
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3.1 Semi-Lagrangian step

The physical velocity field un is defined in Ωn. To evolve ϕ, we need to extend un to R3 (in
practice, to a bulk computational domain). We use the closest-point extension of the velocity
at the boundary to the exterior of fluid un|Ωn → ũn|R3 . The semi-Lagrangian step is the
solution of the characteristic equation backward in time

∂x(τ)

∂τ
= ũn(x(τ)), x(tn+1) = y, for y ∈ R3, τ ∈ [tn+1, tn]. (9)

The equation (9) defines an isomorphism X : y→ x(tn) on R3; one finds ϕn+1 from ϕn+1(y) =
ϕn(X(y)). The numerical integration of (9) is based on the trapezoidal rule

x(tn +
∆t

2
) = x0 −

∆t

2
u(x0, tn), x(tn) = x0 −∆tũn+ 1

2 , (10)

where ũn+ 1
2 is extrapolated linearly in time:

ũn+ 1
2 = (1 + η)u(x(tn + ∆t/2), tn)− ηu(x(tn + ∆t/2), tn−1), η =

tn+1 − tn
tn − tn−1

,∆t = tn− tn+1.

The tri-cubic interpolation combined with a limiter to enforce monotonicity [24] is used to
define the values of ϕ in x(tn). The same operations are performed for the ‘missing’ velocity
values in x(tn + ∆t/2).

The semi-Lagrangian method as described above produces an error which can be reduced
by the MacCormack predictor-corrector scheme with a limiter. We describe this correction
procedure below. Backward integrating in time, interpolating and limiting define a nonlinear
operator B(ϕn+1). Same way the numerical integration can be performed forward in time.
It defines another nonlinear operator F(ϕn). A combination of B and F in a MacCormack
predictor-corrector type of method and using minmod limiting procedure gives

Algorithm 1 Semi-Lagrangian MacCormack method with limiting.

1: Perform forward semi-Lagrangian step ϕ̂n+1 = Fϕn.
2: Perform backward semi-Lagrangian step ϕ̂n = Bϕ̂n+1 = BFϕn.
3: Compute error estimate e = 1

2(ϕn − ϕ̂n) = 1
2(I − BF)ϕn and correct ϕ̃n+1 = ϕ̂n+1 + e =

(F − 1
2(I − BF))ϕn.

4: Perform backward semi-Lagrangian step ϕ̃n = B(ϕ̃n+1) and compute error estimate ê =
ϕn − ϕ̃n − e = (I − B)e.

5: Compute ẽ by performing limiting of e at nodes where |ê| > |e| using (11).
6: Compute ϕn+1 = ϕ̂n+1 + ẽ.

We note that if at node x0 one detects |ê(x0)| > |e(x0)|, the limiting of e is applied at
all nodes xi involved in the interpolation procedure for x0. This is done by inspecting a row
rF (x0) and a row rB(x0) of the discrete operators F and B as shown below:

for all x0 initialize ẽ(x0) = e(x0)

for all x0 s.t. |ê(x0)| > |e(x0)|
for all xi contributing to rF (x0) or rB(x0)

ẽ(xi) = minmod(e(x0), ẽ(xi)).

(11)
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The function minmod(a, b) is:

minmod(a, b) =


min(a, b) a, b > 0,

max(a, b) a, b < 0,

0, otherwise.

The method presented here is a simpler analogue of the semi-Lagrangian BFECC method
with the limiter [9, 24].

3.2 Volume correction

Advection and re-initialization steps for the level set function lead to the divergence (loss
or gain) of the fluid volume. The higher accuracy of the MacCormack predictor-corrector
method ameliorates the situation, but does not eliminate the volume loss/gain, which becomes
perceptible over long-time simulations. Therefore, we apply volume correction after advection
and re-initialization sub-steps.

The volume correction is performed through the following steps:

Algorithm 2 Volume correction.

1: Computation of the level set correction constants ϕC in each surface computational cell;
section 3.2.2.

2: Averaging of the cell-wise level set corrections ϕC to nodes adjacent to surface compu-
tational cells. This gives the nodal function ϕN . Extension of the nodal correction level
set function ϕN to the whole domain; sections 3.2.2–3.2.3.

3: Solve a nonlinear problem for a constant Q such that the correction of level set func-
tion ϕn+1 by Q · ϕN minimizes the difference between the volume of |Ωn| and |Ωn+1|;
section 3.2.4.

3.2.1 An estimate of error in fluid volume

From the semi-Lagrangian method we know backward characteristics. Using this information,
we consider a cell C(tn+1) intersected by the free surface at time tn+1 (further we call any
such cell “surface cell”) and track its original C(tn), which is a polyhedron. In the nodes of
C(tn) we interpolate the level-set function ϕ̂n with the third order method of interpolation
with limiter (see [24]) and calculate the volume of the subset of C(tn) where ϕ̂n is negative,
fluid volume for C(tn) denoted further by V (ϕ̂n, C(tn)).

The error at the cell is computed as a weighted difference between the fluid volume for
C(tn) and the fluid volume for the cell at initial position C(tn+1) with the advected level set
ϕn+1 as follows:

Err =
∣∣V (ϕn+1, C(tn+1)

)
V (C(tn))− V (ϕ̂n, C(tn))V

(
C(tn+1)

)∣∣ . (12)

Note that here we also account for possible compression or expansion of the cell due to the
violation of the incompressibility condition for interpolated velocity. If we ignore this effect,
Err is computed as the error indicator based on interpolations of different orders, as it is
done in embedded Runge-Kutta time-stepping methods [5].
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The volume is calculated by splitting each computational cell into tetrahedra and extract-
ing an isosurface of the nodal level-set function on each tetrahedron. The isosurface splits
the tetrahedron into either two prisms or into a prism and a tetrahedron. Each prism can be
split into three tetrahedra. Therefore, the space occupied by liquid can be split into a set of
tetrahedra, which provides the cell fluid volume as the sum of the volumes of all tetrahedra.
Note, that computational cell is not necessarily a hexagon but may contain hanging nodes
on octree mesh. We account these nodes when we split the cell into tetrahedra.

3.2.2 Local correction

For each given surface cell C we use a combination of the secant algorithm and the conjugate
gradient algorithm as in [2] to find such a constant ϕC that

Err(ϕC) =
∣∣V (ϕn+1 + ϕC , C(tn+1)

)
V (C(tn))− V (ϕ̂n, C(tn))V

(
C(tn+1)

)∣∣ = 0. (13)

Further for each node x that is adjacent to any surface cell C we average nodal volume
correction according to

ϕN (x) =
∑
k

ϕCk
V (Ck) /

∑
k

V (Ck) , (14)

where the summation runs over all cells sharing x.

3.2.3 Smooth extension

To avoid non-smooth artifacts at the surface after the volume correction, we first iteratively
project ϕN at nodes x adjacent to the surface. On the k-th iteration of the algorithm for each
node xn adjacent to a surface cell C we find the closest-point projection xs = xn−ϕn+1∇ϕn+1

on the surface and assign ϕk
N (xn) = ϕ̃k−1

N (xs) where ϕ̃ is the trilinear interpolation. The
algorithm stops once either a critical number of iterations or a steady state is reached.

For the rest of the nodes, ϕN is also iteratively extended by similar procedure with
xs = xn − sign(ϕn+1)∇ϕn+14x. Here 4x is twice the size of the smallest cell of the mesh.
This results in extension of ϕN to the whole computational domain. In practice, ϕN is
extended to a narrow band around the surface consisting of only few layers of computational
cells.

3.2.4 Minimization problem

Finally, we solve the following nonlinear problem for the unknown factor Q using the secant
algorithm ∣∣V (ϕn+1 +QϕN ,Ω

comp
)
− V (ϕn,Ωcomp)

∣∣ = 0. (15)

where Ωcomp is the computational domain. Addition of QϕN with the optimal factor Q to
the level-set function ϕn+1 completes the volume correction algorithm.

3.3 Re-initialization

After application of the semi-Lagrangian method to the transport of the level set function
ϕn+1, the latter does not satisfy equation (8). The level set function ϕn+1 is corrected to
satisfy Eikonal equation in the following four steps:
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Algorithm 3 Re-initialization.

1: Re-initialize the level set function in cells adjacent to the surface.
2: Estimate volume loss near surface.
3: Correct volume loss with the algorithm from the previous section.
4: Correct the level set function in the rest of the domain.

3.3.1 Initial re-initialization

We first perform re-initialization in the set of cells closest to the free surface. For each
such cell we extract the triangulated isosurface of ϕn+1 = 0. To achieve this, we split each
computational cell into a set of tetrahedra accounting for the presence of hanging nodes in
the octree mesh. On each tetrahedron we compute the surface that corresponds to ϕn+1.

On each node k shared by a surface cell with the center xk we seek for the closest triangle
and obtain the initial position for the closest point x̂s on the surface. We further improve the
position of the point x̂s to xs using the gradient descent algorithm xs = x̂s −ϕn+1∇ϕn+1 to
find the zero of the level-set function. The latter is computed with the 4-th order interpolation
method with the limiter. Since level set function does not satisfy the signed distance property,
one may iteratively refine the position of xs.

The corrected value for level set at node k becomes ϕ̃n+1
k = sign(ϕn+1

k ) |xs − xk|.

3.3.2 Volume loss estimation and correction

The algorithm for the volume correction is similar to the one described in section 3.2.2,
except for the estimation of the volume error indicator. For each surface cell C we estimate
the volume divergence as follows:

Err =
∣∣V (ϕn+1, C

)
− V

(
ϕ̃n+1, C

)∣∣ . (16)

The volume correction for the re-initialization algorithm proceeds similarly to Algorithm 2
starting from step 3.

3.3.3 Semi-Lagrangian re-initialization

The semi-Lagrangian method is used for the extension of the corrected level set function to
the rest of the domain. In other words, the method is applied to all the nodes except of
those, where ϕ̃n+1 was defined already in Section 3.3.1. Therefore, the extension does not
shift the interface and does not change the sign of the level set function. The re-initialization
step presented below is an iterative process and is close to a method from [26]. On the

k-th iteration, for each node i with vector of coordinates xi and level set value ϕ̃n+1,k−1
i

we compute xs = xi − sign
(
ϕ̃n+1,k−1
i

)
∇ϕ̃n+1,k−1/|∇ϕ̃n+1,k−1|4x. Then we interpolate the

level set function at the point xs with the 4-th order method with limiter. Next we check the
sign of ϕ̃n+1,k

i ϕ̃n+1,k−1(xs). If it is positive, then we do not cross the zero level set and we

set ϕ̃n+1,k
i = ϕ̃n+1,k−1(xs) + sign

(
ϕ̃n+1,k−1
i

)
4x with account of the distance passed by the

characteristic. Otherwise, we search for a point xz on the segment between xi and xs, such
that ϕ̃n+1,k−1(xz) = 0 and define ϕ̃n+1,k

i = sign(ϕn+1,k−1
k ) |xz − xk|.
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Usually, the correction of the level-set function is needed just in a band of a few cells
away from the surface. The width of the band may increase with larger time steps.

3.4 Remeshing and re-interpolation

Remeshing step 4 is needed for a better resolution of the moving free surface. The grid
adaptation accounts for the new position of the zero level set of ϕn+1. In principle, the
adaptation can be based on the information given by the nodal values of ϕn+1 and discrete
derivatives of ϕn+1. In numerical experiments in this paper we use the same indication for
grid refinement: the cell is split if its nodal values have both negative and positive signs.
This means that the zero isosurface of ϕn+1 passes through the cell. Such indicator produces
a thin layer of highly refined cells near the free surface.

After the remeshing step all discrete variables (level set function, velocity, pressure) have
to be re-interpolated to the new grid. The re-interpolation for the pressure is based on the
limited second order least squares reconstruction. For each component of the velocity the
re-interpolation is linear along the direction of the component and second-order least squares
in transversal direction. For the level-set function, we use the third-order interpolation.

We note that the time stepping scheme involves two stages of remeshing. At step 1 the
mesh is refined prior the advection of the level set function. Large time steps may result in
large shifts of the zero level set and so some geometrical information about ∂Ωn may be lost
due to the shift of the free surface to the region with coarser cells. To prevent this, we refine
all cells having at least one node where the advected level set function (predicted by the first
order characteristic) changes its sign.

3.5 Convection-diffusion step

Next we handle viscous and inertia terms. We denote Γ1 = ΓW ∪ Γin, Γ2 = Γ(tn+1) ∪ Γout.
The step consists in finding a discrete solution of the following boundary value problem. Find

ũn+1 in Ωn+1 such that
αũn+1 + βun + γun−1

4tn
+ (un + ξ(un − un−1)) · ∇ũn+1 − ν∆ũn+1 = −∇pn,

ũn+1|Γin = uin, Bũn+1|ΓW
= 0, (∇ũn+1 +∇ũn+1

T
)n

∣∣∣∣
Γ2

= 0.

(17)

Here ξ = 4tn/4tn−1, α = 1 + ξ/(ξ + 1), β = −(ξ + 1), γ = ξ2/(ξ + 1). We consider two
options for the solution of (17). The first option is discretization of (17) by the hybrid finite
volume / finite difference method from [15]. The discretization is hybrid since a finite volume
method is applied to handle the inertia terms, whereas a finite difference method is used for
the diffusion terms and the pressure gradient. The method approximates both differential
operator and boundary conditions with the second order of accuracy. The second option is to
use the operator splitting framework: first we treat the inertia term by the semi-Lagrangian
MacCormack method described in section 3.1, then we apply the finite difference method to
the diffusion term. The second option has the second order accuracy as well but may provide
slightly smoother velocity fields.
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3.6 Projection step

On this step we project the solution of (17) ũn+1 onto the subspace of discretely divergence-
free functions: 

α(un+1 − ũn+1)/4tn −∇q = 0,

div un+1 = 0,

n · un+1|Γ1 = 0, q|Γ2 = 0.

(18)

This equation recovers both divergence-free velocity un+1 and pressure pn+1 since

pn+1 = pn − q + νdiv ũn+1. (19)

The ‘extra’ divergence term in the pressure correction step (19) minimizes numerical boundary
layers in the pressure [8,21]. The solution of the problem (18) reduces to the solution of the
Poisson equation, 

−∆q = α/4tn div ũn+1,

q|Γ2 = 0,
∂q

∂n

∣∣∣∣
Γ1

= 0.
(20)

4 Numerical experiments

In this section we consider two benchmark problems, the sloshing tank and the wave run-
up on the inclined bottom with partially submerged barrier. We also apply the method to
simulate fluid sloshing in a container with baffles.

In sloshing simulations, we use the semi-Lagrangian MacCormack method both for the
level set function and for the inertia terms in the momentum equations. In these experiments,
the free surface is smooth enough and hence we use the volume correction method in its
simplest form (constant shift ϕN ≡ 1). In wave run-up simulations, however, we need the
advanced volume correction presented in section 3.2 in order to handle properly the complex
dynamics of the free surface. Both options for the numerical solution of (17) can be considered
for these simulations.

4.1 Sloshing tank: grid alignment

First we consider a benchmark problem [3, 10, 15] with a fluid sloshing in a rectangular
tank. The setup of the experiment is illustrated in Figure 1, left. The tank dimensions are
W = 0.8m, H = 0.1m and D = 0.3m. On the bottom and side boundaries the free-slip
no-penetration conditions (6) are imposed.

The fluid is driven into motion by two forces. In addition to a constant gravity force
g = 9.81m2s−2, we apply a horizontal shift with sinusoidal acceleration Ag sin ωt with
A = 0.01 and ω = 2πf , f = 0.89Hz. The horizontal shift is applied for ten periods and
terminated after that. The frequency of the shift is chosen to excite the first mode of wave
motion, i.e., the motion with a wave length is equal approximately to the double width of
the tank. The statistic of interest in this experiment is the evolution of free surface contact
line along the middle line of the tank’s side walls. We shall call it the wave heights.
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Figure 1: Left: problem setup for sloshing tank test. Right: example of the computational
grid for the rotated domain with stepwise boundary.

The time evolution of the wave heights is shown in Figure 2. These data were computed
for the 2D setting of the problem in [10]. These results are supposed to correspond well to
physical observations [17].

Figure 2: Time histories of the wave height at two opposite tank walls from [10].

It was shown in [15] that the hybrid FV/FD method on octree meshes recovers correctly
the time dependence of the water level at the tank walls. To study the accuracy of this
method for complex boundaries, we compare the results of the simulation on grids aligned
and non-aligned to the tank walls. In the second case we rotate the tank by 15◦ in the
horizontal plane and obtain a stepwise computational domain shown in Figure 1, right. A
grid non-aligned to the boundary requires accurate treatment of boundary conditions [15]
and may produce undesirable grid orientation impact to fluid flow.

The comparison of the wave height histories on the left tank wall of the original and rotated
tank is shown in Figure 3. On the coarse grid (hmax = hmin = 1/64), deviation in the wave
heights is clearly observed in Figure 3, left. However, on the fine grid (hmax = hmin = 1/128),
the wave heights curves are indistinguishable, see Figure 3, right.

The experiment demonstrates that grids non-aligned to the boundary and the axis of
excitation, do not cause any significant deterioration of accuracy to the numerical solution
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Figure 3: Time histories of the wave height at the left tank wall for uniform grids hmax =
hmin = 1/64 (left) and hmax = hmin = 1/128 (right).

provided that the grid is fine enough. Therefore, the present method appears to be reliable
tool for the numerical study of sloshing in tanks with complex boundaries.

4.2 Sloshing in tank with baffles

Internal baffles are widely used in the design of ocean tankers and liquid carrying trucks.
Baffling is known to damp sloshing and thus it makes the container more stable during
transportation (see Figure 4).

Figure 4: Container of a tanker.

In order to assess the damping effect of internal baffles, we consider the sloshing experi-
ment from the previous section with three types of containers: a tank without baffle (Figure 5,
a), a tank with a bottom baffle (Figure 5, b), a tank with a surface baffle (Figure 5, c).

The computational meshes are dynamically refined to the free surface up to the meshsize
hmin, while the coarsest cell size is fixed to hmax. We use the following combinations of
the mesh refinements: 1) hmax = hmin = 1/64, 2) hmax = hmin = 1/128, 3) hmax = 1/32,
hmin = 1/128, and 4) hmax = 1/32, hmin = 1/256. In this simulation we use adaptive time
step, ∆tk = min{0.0187,CFL · hmin/max

x
|u(x, tk)|}, with CFL = 1.0.

In Figure 6 we present the numerical sloshing in containers of the above three types on
the dynamic adaptive grids with hmax = 1/32, hmin = 1/256. Waves in the container without
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a)

b) c)

Figure 5: Cutaway of the computational grid hmax = 1/32, hmin = 1/128: a) no baffle, b) a
bottom baffle, c) a surface baffle. Cell types are marked by colors: walls and baffles (blue),
water (green), surface (red), air (light green).
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no baffle, hmax = 1/32, hmin = 256
bottom baffle, hmax = 1/32, hmin = 256
surface baffle, hmax = 1/32, hmin = 256

Figure 6: Wave heights on the left wall of the sloshing tank for the experiment without
a baffle, with a bottom baffle and with a surface baffle. All computed on the grid with
hmax = 1/32, hmin = 1/256.

baffle preserve their amplitude for many periods since the induced wave length is equal to the
double width W of the tank and the computational method has low numerical dissipation [15].
In the container with the bottom baffle, the wave height is damped by a factor of 2.5. In
the container with the surface baffle, the wave heights are 10 times smaller compared to the
original experiment. The simulation demonstrates that the correct positioning of the internal
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baffle may reduce the sloshing effect significantly.

a)
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Figure 7: Grid convergence of the wave heights on the left wall of the sloshing tank for the
experiment a) without baffle, b) with a bottom baffle, c) with a surface baffle.

The grid convergence of the wave heights on the left wall is demonstrated in Figure 7. In
the container without baffle and in the container with the bottom baffle we observe the grid
convergence, the frequencies of sloshing are being equal to the excitation frequencies. In the
container with the surface baffle finer grids produce a large number of additional modes.

4.3 Propagation of waves behind a semi-submerged barrier

For the final experiment we consider the interaction of run-up waves with a protective barrier.
Protective barriers serve to reduce the wave load on floating objects, power units, piers,
and platforms behind them. The physical experiment is described and compared with the
numerical simulation results in [11]. The simulation in [11] was based on the nonlinear planar
potential flows model [12] discretized by finite differences on adaptive moving grids.

The experiment setup is presented in Figure 8. The fluid waves are excited by the wave
generator: a vertical column of height hw filled with water generates the waves upon its
release. The wave generator is separated from the main tank by the vertical wall with a gap
ze at the bottom. The first part of tank floor is horizontal and the second one is inclined at
angle α, tan(α) = 0.02. We put the vertical barrier above the inclined part with the same
gap ze and study how it affects the wave propagation.

For verification of our numerical model we collect data from three height recorders located
at the horizontal part (B1), 0.16m before the barrier (B3), and 3.1m after the barrier (B4).
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Figure 8: Scheme of the experiment with propagating wave.
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Figure 9: Wave heights in cross-section B1: a) physical experiment, b) present numerical
model.

The wave generator provides physically meaningful wave front with the main wave and
secondary waves. Implementation of the wave generation technique similar to the physical
experiment allowed us to reproduce measurements of the wave recorders with good accuracy.
Measured and numerical wave heights at cross-section B1 corresponding to the largest (in
time) height 17cm are shown in Figure 9. The numerical wave was produced by the wave
generator with hw = 75cm and ze = 10cm. The wave profile in time is shown in Figure 10.
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To produce higher waves in the physical experiment, one pumps more water in the tank of
the wave generator. This reduces the initial water level in the basin by 2cm. The numerical
model reproduces this situation as well.
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Figure 10: Wave profile.

The wave generator with hw = 65cm and ze = 8cm produces the maximum wave height
≈ 11cm at cross-section B1. We compare it to a bit smaller physical wave with height 10.2cm.
Figure 11 presents the comparison of the wave heights before (cross-section B3) and after
(cross-section B4) the barrier. We observe good matching of the wave arrival time and the
number of registered waves. The computed splash before the barrier is slightly lower than the
one observed in the experiment, while the wave height after the barrier is somewhat larger
than measured.

5 Conclusions

We introduced a time-splitting method for the numerical simulation of free-surface viscous
flows. For accurate and stable numerical results, several components of the method needed
careful considerations. The critical components include higher order numerical schemes for
the discrete level-set function transport and re-initialization. Furthermore, a volume cor-
rection method based on local updates and higher order volume error estimators was found
important for the overall accuracy of the approach. The numerical method was tested for
several benchmark problems, where direct comparison with physical experiment or other nu-
merical results is possible. Such comparison demonstrated that the present method is able
to predict statistics of practical interest. Application of the method to the simulation of fluid
sloshing in baffled tanks revealed the expected damping properties of various baffling and
confirmed the functionality of our numerical approach.
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Figure 11: Wave heights. Top level: experimental data (dashed) and numerical results
from [11] (solid). Bottom level: present numerical model. Left: before the barrier (section
B3), right: after the barrier (section B4).
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