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MULTIGRID ANALYSIS FOR
THE TIME DEPENDENT STOKES PROBLEM

MAXIM A. OLSHANSKII

ABSTRACT. Certain implicit time stepping procedures for the incompressible
Stokes or Navier-Stokes equations lead to a singular-perturbed Stokes type
problem at each time step. The paper presents a convergence analysis of a
geometric multigrid solver for the system of linear algebraic equations resulting
from the disretization of the problem using a finite element method. Several
smoothing iterative methods are considered: a smoother based on distribu-
tive iterations, the Braess-Sarazin and inexact Uzawa smoother. Convergence
analysis is based on smoothing and approximation properties in special norms.
A robust (independent of time step and mesh parameter) estimate is proved
for the two-grid and multigrid W-cycle convergence factors.

1. INTRODUCTION

Let Q C R? with d = 2 or d = 3, be a bounded polygonal domain. Consider the
Stokes type problem given by:

—Au+au+Vp=~f in Q
(1.1) divu=g in €,
u=0 on 09.

The mean value condition [, gdx = [, pdx = 0 should be imposed to make the
problem well-posed for all « > 0. The system (1)) often appears as the auxiliary
one for certain implicit time stepping procedures for the incompressible Stokes or
Navier-Stokes equations; see e.g. [31]. The parameter « is typically proportional
to the inverse of the time step scaled with viscosity parameter. This results in
large values of o making the problem singular-perturbed. On the other hand, for
slow flows the value of o can be modest or small. Discretization of (LI with
finite element method or other conventional methods leads to a system of linear
algebraic equations of saddle-point type with symmetric indefinite matrix. Hence
one is interested in solvers for such a system which are robust with respect to the
variation of «.

Among various existing solvers for discrete saddle-point systems, resulting from
discretizations of PDEs, one may distinguish between iterative methods with block
preconditioners and direct multigrid methods; see e.g. [3]. This paper deals with di-
rect (coupled) multigrid methods for (ILI)). The well-known and efficient multigrid
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techniques include the one based on distributive smoothing iterations [26 B3], cou-
pled saddle-point smoothers [0, B7] and block Gauss-Seidel type smoothers (Vanka
multigrid) [32]; see also the overview in [34]. While the analysis of robust block pre-
conditioners for the time-dependent Stokes problem can be found in [7, [18] 22} [24],
we are not aware of any studies proving the efficiency of multigrid methods for
(TI) in the range of o € [0,00). The analysis of various multigrid methods for the
Stokes problem (a = 0) can be found in several papers; see [5, 8 21 26] 29| [33].
The smoothing analysis from [6l 27, [37] can also be merged with the approximation
property from [19] [33] to establish the convergence of the two-grid method for the
case of a = 0.

The major obstacle for extending existing analyses for the case of @ > 0 is the
lack of an appropriate approximation property. Such an approximation property
is established in this paper. To handle the case of & > 0 we introduce special
parameter-dependent norms. Using these norms involves some equivalence results
and representations from [18, [22] [24] for the discrete and continuous pressure Schur
complement operators. In appropriate norms we consider smoothing properties of
distributive iterations and coupled iterations similar to the methods of Braess and
Sarazin [6] and Bank et al. [2]. From these results the convergence of the two-grid
method follows immediately. To establish the multigrid convergence we additionally
prove the stability of the prolongation operator and smoothing iterations in suitable
norms.

The mesh-dependent norms introduced here to prove approximation property
(Theorem [B1]) seem to be a natural extension for a > 0 of the norms used in
[33]. However, to prove some specific norm equivalence results (Lemma 2.2) we
need the assumption on pressure finite element space to be a subspace of H!().
Not all stable discretizations of (LI)) satisfy this assumption, but many popular
discretizations do satisfy, e.g., the family of Taylor-Hood elements or MINI element.
All other assumptions which are used in proving approximation and smoothing
properties are quite standard and collected in the next section. From approximation
and smoothing properties the uniform convergence of the two-grid method follows.
No extra assumptions are needed to pass from two-grid to multigrid convergence
result.

The remainder of the paper is organized as follows. Section [2] introduces neces-
sary spaces and norms. An important technical result is given by Lemma In
Section Bl we prove a priori estimates and error bounds for the solution of (1)
and its finite element counterpart. Section [ provides an algebraic framework for
multigrid analysis. Based on results of Section [3, the approximation property is
proved in Section Bl In Section [0l we deduce smoothing and stability properties for
the distributive, Braess-Sarazin and inexact Uzawa smoothing iterations. Section [7]
contains multigrid convergence estimates. Finally, in Section [§ we include results
of a few numerical experiments.

2. PRELIMINARIES

Throughout the paper we use the notation (+,-) and || - || for the scalar product
and norm in L?(Q) and L?(2)¢. Define the following spaces:

V:={veH Q)| v=0o0n09},
Q= {oe *@) | [ qax=o.
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On V and Q we introduce the norms:

1 (divwv,q)
(2.1) vilv = (IVvI* +alvl®)*,  llalle = sup ~———"
vev ||VHV

By V* we define the dual space to V. Consider the operator S := div(A —al)~!V,
where —(A — o)1 is the solution operator to the following elliptic problem:

—Au+au=f in Q,
u=0 on 99.
Operator S is self-adjoint positive definite on Q and
(2.2) (1+a) > S (Sq.9) =llalg for g € Q.
Indeed, the identities

(Sp,q) = (div(A — ) "'Vp,q) = —((A — ) 'Vp, Vg)vxv-
= _<VP, (A - aI)_lvq>V*><V = (pa le(A - aI)_va) = (pa Sq) v p,q € Q

show that S is self-adjoint on Q; the equality (S¢,q) = ||q||22 is shown, e.g., in [1§],

eq. (3.2); and the lower bound in (22)) follows with the help of the Friedrichs and
(div v,q)
vl

the Necas inequalities: [|v]v < (14 @)2||Vv|| for v e V and |j¢|| < sup for
vev

q € Q.

In order to avoid the repeated use of generic but unspecified constants, here and
further by # < y we mean that there is a constant ¢ such that x < cy, and ¢ does
not depend of the parameters of which z and y may depend on, e.g., @ and mesh
size. Obviously, = 2 y is defined as y < z, and x ~ y when both x <y and y < z.

By || - [|g+ we denote the dual norm to || - || with respect to the L?-duality. On
the product space V x Q we define the product norm and the bilinear form:

1
v, dlll = (VIR + llalld) >,
a(u,p;v,q) = (Vu, Vv) + a(u,v) — (p,divv) + (¢,divu).

The weak formulation of the Stokes type problem (1)) reads: Given f € V* and
g € Q find u €V and p € Q such that

(2.3) a(u,p;v,q) = (£,v) +(g9,q9) VveV, qgeQ

Remark 1. Note that the norms in ([2]) are based on the “velocity part” of the
Stokes problem (1)) and its pressure Schur complement operator S (cf. ([22))). In
this way the a-dependence is taken into account in the norms and the uniform sta-
bility and continuity results for the bilinear form a(-; -) easily follow; see Lemma 211
For the completeness of presentation we shall give a proof. At the same time, the
use of the Schur complement norms in analysis needs some care, especially when
both differential and finite element problems are involved. The second lemma in
this section (Lemmal[Z2]) provides useful results for the further usage of such norms.

Lemma 2.1. Bilinear form a(-,-;-,-) satisfies the uniform stability and continuity
estimates:
alu, p;v,q
(2.0 s swp WEVD gy e v,
vaevxe v, dl

(2.5) a(u,p;v,q) S [[[wplil v, gl ¥V {w,p}, {v,q} € V xQ.
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Proof. Take an arbitrary pair {u,p} € V x Q. Define w € V as a solution to the
problem

(2.6) (Vw,Vz) + a(w,z) = (p,divz) VzeV.

Then it holds that

(2.7 (v, divw) = [[wl% = ],

Indeed, the first equality in (Z7) follows by taking z = w in (Z0). The second
equality follows from dividing both sides of (28] by ||z||v and taking the supremum
over all 0 # z € V. The definition of a(-;-) and identities (21) give

a(u,p;u,p) = ull3,

a(u,p; —w,0) = —(Vu, Vw) — a(u,w) + ||p||€2

1
> =[ulviiwlv +lIplig > 5(21% = [lal%).

If we add these two relations and take v =u — w and ¢ = p we obtain
1 1 )

(2:8) a(w,p;v,q) > S([uly + lIplg) = 5wl

Now the result in ([24) follows from (ZJ]) and the following estimate:

2 2
v, alll” < 2lulR + 2[wlR, + [IplE, = 2llulR, + 3]plIE < 3w, pll".

With the help of the Cauchy inequality the continuity estimate (Z.5]) follows directly
from the definition of a(-;-) and the definition of norms. d

We will also assume the following H?2-reqularity condition: The domain € is such
that the Stokes problem (1) with a = 0 and g = 0 is H>2-regular; i.e., there is
a constant cg such that for any f € L?(Q)? the solution {u,p} is an element of
H2(Q)? x H'(Q) and satisfies

(2.9) Iallz2(@) + VoIl < crllf]-

The condition is satisfied for convex domains [12].

For the discretization of (II]), we introduce a quasi-uniform family of nested
triangulations of ) (triangles in 2D, tetrahedra in 3D) based on global regular
refinement. We use conforming finite elements with piecewise polynomial functions.
This results in a hierarchy of nested finite element spaces for velocity and pressure:

VoCcViC---CV,C---CV,
QcQcCc---cQc---CcQ.

The corresponding mesh size parameter is denoted by hy and satisfies hy /hg ~ 27F.
We assume the discrete LBB condition to be valid:
(div uy, pk)

(2.10)
up€Vy ”vuk”

2 ekl Ve € Qu.

We will also refer to the following inequality known as a weak inf-sup condition for
the case of Qp C H'():

div uy,
(2.11) sup WVURDE) 5 G0y .

weve  [[ukll

The proof of the inequality (ZIT]) for the Taylor-Hood and isoP2-P1 elements can
be found in [4, 24], another example is the MINT element proposed in [I].



MULTIGRID ANALYSIS FOR THE STOKES PROBLEM 61

Assume the following standard approximation properties of the finite element
spaces (H? := L2(Q)9):

(2.12) inf ||V = Vilge S PVl forve H*Y Q)N V, £=0,1,
VEEVyE
(2.13) inf |lg— gkl < hellgllgr for g € Hl(Q) NnQ,
qr €Qx

and for the case Q, C H'(Q):
(2.14) inf |lg — qrllzr < hellgllge for ¢ € HX(Q)NQ.
a1 €Qu

The discrete problem on grid level & is given by: Find ug € Vi, pr € Q such that

(2.15) a(ug, pr; Ve, qr) = (£,vi) + (9,q8) ¥V vi € Vi, g € Qi

Due to ([ZI0) there exists a unique solution to (Z.13]).
Besides the product norm ||[-,-]|| defined above we endow every finite element
subspace pair Vi x Qi with the level-dependent product norm:

1 . div v, pr
Ve, aillly = (Ivellr + laxlld,)® > with [lqllg, == sup (div v, i)
VEEV ||VkHV

Note that the latter relation defines a norm on Qj, due to the LBB condition (210).
Again, || - [|o; denotes the dual norm to [| - ||, with respect to the L?-duality. The
choice of the norm yields the stability estimate on V x Q similar to (2.4):

alug, sV,
(216) el S sup  PEVLG)
Vi, @k EVE XQr ”[Vkaqkmk

The proof of ([216) repeats the proof of Lemma Bl with V, Q replaced by Vi, Q.
In the following lemma we prove an important technical result.

Lemma 2.2. Assume Qi C H'(Q) and @II)). Then it holds that

V {ug,pr} € Vi X Qp.

(2.17) Ipelle SlipkllQr Slipklle ¥V pe € Qi
and
(2.18) Ipelles S lpeller S llpkllex V¥ pr € Qi

Proof. The upper bound in ([2I7) immediately follows from the definition of the
norms and the embedding V; C V.
To prove the lower bound we use the following two inequalities [22] 24]:

2.19 2 < inf —ql]? 4+ a7 Y| Vg|? VpeQ,
(2.19) IIPIIQqugll(Q)(Hp qll* +a " [Vql]) peQ

(220)  |pklld, 2 ot (llpx — a|*+ao" sup Y pr € Qy.
k k

vieevi  Ivel?

In particular, (ZI9)—(Z20) follows from relations (2.25)—(2.26) in [24] and further
application of the upper bound in Theorem 3.2 from [24] (to show ([219])) and the
lower bound in Theorem 4.1 from [24] (to show (2:20)).

Now the lower bound in ZI7) follows from (2TIT)), (Z19)), (Z20), and the em-
bedding Qx C H(9). To prove ([2I8) we use the following results [I8] 24]:

(2.21) P15 ~ IpI* + a((=A)'p,p) Vp € Q,
(2.22) IpillBe = llpell* + a((=A) "prspk) ¥ pr € Qg
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where A~! and A;l are the solution operators for the Poisson-Neumann problem
and the finite element Poisson-Neumann problem, respectively. We remark that
relation (ZZI)) follows from Theorems 2.1 and 3.1 in [I8] and ([222)) follows from
Theorem 4.1 and the analysis of §4.1 in [24]. We note that the existing proofs of
(Z20)-([222) use the H2-regularity assumption. For any p; € Qy, it holds that

_ (Pk,q)? “1 (Pks qr)?
(2.23) —(A 1pk,pk): sup and — (A, "pr,pk) = sup ———.
gemi(@) IVal? F avetr [Vl

Therefore, the upper bound in (2I8)) immediately follows from (Z21)), (222)), (223)
and the embedding Q, C H*(Q).

Furthermore, denote by Prq € Qj the L2-projection of ¢ € H'(Q)NQ on Q. Given
our assumptions on the triangulation one has ||V Pyq| < ||[Vqll; cf. [9]. Therefore,

(pkuq)2 < (pk7qu)2

acr (@) IVal? ™ qermi) IVPrqll?
(pkvq]€)2 —1

sup == = —(AL Pk, Pk)-

aewn IVarl? b

This estimate together with (Z21)) and ([2:22)) yields the lower bound in 220). O

Remark 2. Inequalities (2.I8) do not follow directly from (217, since the inverse
of the L2-projection of the operator S on Q}, is not necessarily equal to the L2-
projection of S~1 on Q.

—(A ' py, i) =

3. A PRIORI AND ERROR ESTIMATES
First we prove two useful a priori estimates for the solution of ([I.1J).

Lemma 3.1. Let f € L2(Q)?. The following estimate holds for the solution of
(C.I:
(3.1) aful® + [Val? + [lpl3 < 1+ ) HIE]? + llgl3--

Furthermore, if the H?-reqularity condition holds and g = 0, then u € H?*(Q)?,
p € HY(Q), and

(3-2) allz + llpllas < NE]-

Proof. The stability estimate (2Z4)), identity (23]), and the Friedrichs inequality
(1 +a)|vll S [[vllv on V imply:

au,p;v,q f’V —|— g7q
o< sup 2pvd_ o EV+6.9
vgevxa [V, dll vaevxo v, dll
3 — 1
< (IR~ + llglld)® S (@ + ) IEI> + 1lgllg-)® -

Thus we prove [B.I)).
Assume now g = 0 and consider f = (f —au), then u, p solves the Stokes problem

—Au+Vp=f, divu=0 in Q,
u=0 on Of).

Since f € L2(Q)% and thanks to (BI) it holds that [|f|| < |If|| + allul < |f].
Now applying the standard regularity result (2] for the Stokes problem proves

B2). 0
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Further in this section we prove several finite element convergence results for the
generalized Stokes problem.

Lemma 3.2. Assume Q, C H'(Q) and @II). Let {u,p} be the solution to ([23)
and {ug, pr} solve (ZIH)), then it holds that

(3-3) [la—ue,p—p]l| S inf in

f |lu—vg,p— .
v EVy pr€Qx ”[ ko P Qk]H

Proof. Let u; be the best possible approximation to u in Vi with respect to the
| - |[v norm and let p; be the best possible approximation to p in Qf with respect
to the || - || norm. The norm equivalence (2.I7), stability (ZI6), continuity (23]
estimates and the orthogonality property of finite element error function give:

lar = wg, pr = pilll < lllwr = ug, pr = prllly

< a(uy — Uk, pr — Pri Vi, qk)
sup
Vi, €V XQp ||[vk7q’f”|lg
< swp a(ur — g, Pr — Pk Vi i)
Vi,qk EVE XQy H[Vkvqkm
_ sup a(ur —u,pr — p; Vi, Gk < lltur = wpr — -

Vi,qr €EVEXQy ||[Vkaq/€”|

With the help of this estimate and the triangle inequality we get

u— ug,p— < |la;y —u,pr — = inf inf ||[lu—vg,p— . |
o= e p = il s —wpr =gl = ing inf Ju=viep — aill

Taking v, = 0 and g, = 0 on the right-hand side of (B3] leads to
(3.4) Iu = we, p = pel| < ll[w, Pl -

With the help of a standard duality argument we prove the lemma below.
Lemma 3.3. Let u,p be the solution to [(Z3) and u,p solves (ZI0)), then
. 1
(3.5) lu —ug || S min{hy, o™=} |[[u —ug, p— pill -

Proof. Denote e, = u — uy, 7% = p — p. Consider w € H2(Q)?%, ¢ € H(Q)NQ
solving the Stokes type problem

—Aw+aw —Vg=¢;, divw=0 in Q,
w=20 on Of).

Using the weak form of the problem and the orthogonality property for e, ry, we
get

lexl* = a(w — Wi, q — qi; ek, )
with arbitrary wy € Vi, g € Qk. Thanks to (Z3]), interpolation properties (212)—
@13), and a priori estimates from Lemma B3], we get

1
lexll® S Mw — Wi, g — ailll llew, rulll S b (Iwl|F2 + ol VW I* 4+ [V]*) 7 [llex, ]l
S hiellexl| llex, rx]l
and
1
ekl < w — wi, g — alll llew, rlll S (VW] + el wl® + [lll3) ? l[ex, 7]l
_1
S a2 el [[lew, rxlll - O

Now we are in position to prove the main result of this section.
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Theorem 3.4. Let £ € L%(Q)?. Assume Q. C HY(Q) and @II). Let {u,p} be
the solution to 23) and {ug,pr} solve ZIT), then the following error estimate
holds:

(3.6) l = g+ minghi, o~ 2} lp — pello
< min{hf, o'} (|1l + max{n; ", a?}gllo- )
Proof. For arbitrary v € V, ¢ € Q we denote by v; and ¢ a unique projection on
Vi, Qg such that
a(v =V, q— Gi; Wk, 1) =0 Y wi € Vi, i € Q.

Below we consequently use (Z4]), orthogonality properties, estimates ([8:4]) and (3.5)
for the differences v — v and q¢ — Gx:

a(u—ug,p—pr;v,q)

llu—up,p—pi]l S sup

v,geV XQ |HV>QH|
_ a(u—ug,p—pr;V = Vi, ¢ — Gk)
= sup
v.qEVXQ v, dlll
_ a(u,p; v — Vi, q — Gr)
= sup
v.qEVxQ v, glll
fv—v -
— sup ( , V Vk) + (gv q qk)
v,geV xQ ||[V7q”|
£l v — ¥ g
< swp £V = Vil + llglle-llg — drlle
v.qEVXQ v, dll
. _1
_ [£]] min{hy, a”2} [|[v, gl + llgllo~ lI[v. 4l
v.qEVXQ v, qlll
. 1
(3.7) = min{hg, a2} ||f[| + ||gllq--

We proceed using (B3] and B1):
la = uy || + min{hy, o= 2 }lp = pllo S minfhr, @™} [[a = up,p = pil
< min{hf, o'} (I +max{h;", a?}gllo-) O
A few remarks are in order.

Remark 3. In the proof of the theorem the extra assumption Q C H'(Q) was
involved only through the usage of the estimate ([B.4). We conjecture, however,
that ([B4) still holds for the more general case of LBB stable elements.

Remark 4. For the illustrative purpose we discuss the implication of the analysis
of Sections 2] and [3] for the limit cases of @« = 0 and @ — oo. The case o = 0
corresponds to the Stokes problem. Substituting in (LI) u — o~ tu, and g — a g
we may consider as the limit case « — oo the Darcy equations (see also the next

remark):
u+Vp=f divu=g in Q,
(3:8) u-n=0 on 9.

Note that the lack of the second derivatives for u results in boundary conditions
only for the normal component of u. For f = 0 the system ([B.8) can be observed as
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the mixed formulation of the Poisson problem —Ap = g with Neumann boundary
conditions [I0]. Thus a proper setting for the limit problem would be either in
Hy(div) x L3 or in L? x (H' N L3) spaces; see also the remark in [20] on p. 1608.
As we shall show below, our analysis is consistent with the latter choice. To see
this we first note the following relations:

_1 1
az|lvllv = [[vll, aZlgllg = |Vql, fora—oo, ¥veEV, ge H NLE.

Thus, in the limit case of & = oo the result of Lemma [2.T]is the infsup stability and
continuity of the bilinear form

a(u,p;v,q) == (u,v) + (u,Vg) — (v,Vp) on H'NL
with respect to ||[v,¢]|| := (HVH2 + HVqHQ)%.

The discrete inf-sup compatibility conditions 2I0) and (2I1]) are the limit cases
of 2I7) from Lemma

Likewise, the uniform estimate in Lemma for &« = 0 becomes a standard
error estimate for the Stokes problem. As for @ — oo, the optimal error estimate
for the finite element solution to the Darcy problem @) in (||v||2+[[V¢||?)2 norm
is recovered from (B.6]). The error estimate of Theorem B4l makes sense in the case
of a = 0 only if g = 0, recovering the O(h?) convergence for velocity and O(h) for
pressure in the L?-norm provided f € L?: |[u—wy| + hillp—pull S A2 || If g # 0,
the second term on the right-hand side of ([B.6) blows up for hy — 0. The latter
can be seen as a consequence of the lack of H? regularity for the Stokes problem
for a generic ¢ in a convex domain [I2], which implies that an extra convergence
order for the L?-norm of the velocity error is not recovered by the standard duality
arguments for g # 0. If o — oo, the estimate of Theorem [3.4] results in the energy
type a priori estimate for the Darcy problem solutions: |[u —up|| + [|[V(p — pp)|| <
If][+]lg]l 1. Thus, Theorem[34interpolates between this two results and provides
an approximation property sufficient for the multigrid analysis below.

Remark 5. The time dependent Stokes problem (1) can also be considered as a
model for porous media flow coupled with viscous fluid flow in a single form of
equation. With such physical background it appears in the literature as the Darcy-
Stokes or Brinkman equations, e.g., [13], 20} [35]. While the analysis of a multigrid
solver convergence is not tied to any particular modeling content, the common
notion of uniformly stable elements for the Darcy-Stokes-Brinkman equations differs
from the estimate given by Lemma For the Darcy-Stokes-Brinkman equations
the uniform stability is typically sought in the (a’lH(l, NHy (div)) x L3 space [20],
while B.3) shows uniform stability in (o 'H{ NL?) x (H' N L3).

4. MULTIGRID METHOD AND ALGEBRAIC FRAMEWORK

For the approximate solution of the discrete problem ([2.I5]) we apply a multigrid
method. The method and its convergence analysis will be presented in a matrix-
vector form as in Hackbush [I6]. To this end consider a space Q; := Qy ®span{1},
i.e., a pressure finite element space without orthogonality condition. Denote by
{¢i}1<i<n, and {¥;}1<i<m, the standard nodal bases in V and QZ‘. Consider the
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isomorphisms:

ng
P Xy :=R™ = Vg, Pou= Zul@v

i=1
Mg

Ri: Yp:=R™ - Qf, Rwp=)_ p'ti.
i=1

Both on X and Yj; we use a Euclidean scalar product scaled with hk7 e.g., on

Xy, we use (u,v) = hf > wuiv’ and corresponding norm denoted by || - ||x. The
following norm equwalences hold on X and Yy:

(4.1) lulle < 1Pl S fulle ¥V ue Xy,

(42) Ielle < IRl S lolle Ve Y

Let the matrices Ay € R™*™ B, € R™*™ and the velocity and pressure
mass matrices M,, € R"*™ and M, € R™+*™k be given by

<Aku V> = (Vuk, Vvk) + Oé(llk,Vk) Vu,veR™, u, = Pu, vip = Pyv,

(4 3) <Bku p> (le uk7pk) v ue Rnk> P € Rmku up = Pku7 Pk = Rk?p7
’ (Myu,v) = (ug,vg) YVu,veR™ u, = P, vi = Pyv,
(Mya,p) = (qk,pk) VYV q,p € R™, g = Riq, pr. = Ryp.

Finite element formulation (ZI5) can be written as a linear system of the form

(1.4 (s %) 6)= (o)

with f and g such that (f,v) = (f, Pyv) for all v.€ R™ and (g,q) = (g, Rxq) for all
q € R™. By A and Si we denote the stiffness and pressure Schur complement
matrices of the finite element problem (Z.I5]) on level k:

A, BT _
(4.5) Ay = (B: ok>’ Sk == BrA, 'Bf.

Remark 6. Note that both S and A are singular matrices and have a one-
dimensional kernel. Define the constant vector e := R,;ll =(1,....,)T e rR™
Then we have ker(S) = span{e}. Note that

(Rkpa 1) =0 < (RkpaRke) =0 < <M[)pae> =0 < <p7MPe> =0.

Thus the orthogonality condition in Qj corresponds to the orthogonality to the
vector Mpe in R™*. This can be written as Qr = { Rxp | p € (M, e)t}. Denote
Y = (Mpe)L. Below we always consider Si on the subspace Y, and Ay on the

subspace X x Yj. Moreover, from the definition of the || - ||, norm and Sy it
follows that
(4.6) (Skp,p) = lIpell5, VP €R™, pp = Ryp.

Furthermore, we define two product norms on Xj, x Yj:

=

[, plls, = (J[ull + min{h3,a~"}(Skp,p))* |

(4.7)
[, pllg-1 = ([lull +max{h;?, a}(S;'p.p))* -

=
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Denote Dy, = diag(Ay). Due to regular mesh refinement and (ZI0) the following
relations hold (cf. [23], [24]):

(48) (1—}—0{)I;€ S A, 5 Dy,
(4.9) Dy =~ (h?+ )y,
(4.10) Spt o~ I+ a(BpM, 'BE)

Here and further I is the identity matrix for a corresponding vector space and
A < B for two square matrices if B — A is non-negative definite.

For the prolongation and restriction in the multigrid algorithm we use the canon-
ical choice:
Pr: Xpo1 X Y1 = Xy x Yy, pp =P 'Peo1 x By "Ri1
rp: X XY = Xpo1 XY g, 1= P,;k_l(P;;)_l X RZ—I(RZ)_l'
Note that both py and rj keep the pressure vector in the right subspace.

In Section [6] we consider several linear smoothing iterations of the form
{uncw, pncw} —_ {uold, pold} _ Wk_l(.Ak{uOld, pold} _ b) for {uold7 pold}7 be X} X §{k
with the corresponding iteration matrix denoted by
(4.12) Ly =T, — W,;lAk.

With the components defined above a standard multigrid algorithm with v pre-
smoothing iterations can be formulated (cf. [16]) with an iteration matrix that
satisfies the recursion

Mo=0, M= (Ik —pk(Ik —Mz_l)A;_llrk.Ak) ﬁz, k=1,2,....
The choices v = 1 and v = 2 correspond to the V- and W-cycle, respectively. For
the analysis of this multigrid method we use the framework of [16] based on the

approximation and smoothing property. Below we derive these properties for the
generalized Stokes problem.

(4.11)

5. APPROXIMATION PROPERTY
The theorem below states the necessary approximation property.

Theorem 5.1 (Approximation property). Let Ay be the stiffness matriz from (£5)
and pg, vk the prolongation and restriction as in [EIIl). Then under the assump-
tions of Theorem B4l the following approximation property holds:

1A = peA wells o g, S min {Af a7}
Proof. Take {f},gr} € Xi X Y. Let {u,p} € V xQ, {uk,pr} € Vi x Q, and
{uk—1,PK-1} € Vi—1 X Qi_1 be such that
a(w,p;v,q) = ((P) "'k, v) + ((Rp) 'er,m) ¥V {v,q} € VxQ,
a(ug, pe; v, q) = (PF) ", v) + (R}) 'er,7) YV {v,q} € Vi x Qg,
a(up—1,pe-1;v,q) = (P5) "', v) + ((Rp) " 'grr) V{v,q} € Vi1 x Qe_1.
Putting f = (P})~f; and g = (R}) 'gx in Theorem B4} we obtain

Ju — |+ min{he, 0”2}~ pillg
. _ S\ — _ 1 Sy —
S min{hf, o} (1)~ fell + max{hi !, a3} () gelo- )
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with [ =k and [ = k — 1. Due to hx_1 < hy this yields

g, = e || + min{hg, o~ % Hpx = proallo
< minfhf, a} (1P el + max{hi ! a3} () eellor)
Now we use the result of Lemma to obtain
[l = g a]| + min{hx, a2 Hipe — prlla
S mindhd, a1} (105 M ull + max (b, a1 (RD) erlo; )

From the definition of Ay, and [@IT)) it follows that {uy, pr} = Pr, Ri) A, {fr, gx}

and {ug_1,pr—1} = (Pk,l,kal)TA,;_llrk{fk,gk}. Thus, using (£1) and (L8], we
get

(A —PrAy ) (e, g s,
[wy, — w1 || + min{h, a” 2 }pr — pr—1llos
< min{hi, o'} (||(P§)71fk|| + max{h ", a%}\|(RZ)71gk||Q2)

~ min{hg, o~ i, grlls1 |

12

which proves the theorem. O

Based on the “inexact” Schur complement gk = Blelez, we define two more
product norms on X X Yg:

) lu,plls, = (Il + min{hZ, 0" }Ssp,p))

1
, o 3
I, pllg, + = (Il +max{h;2 a}Sc'pp)) -
Thanks to ([@38) it holds that Sj < Sj. Therefore, we get from Theorem .1t

Corollary 5.2. Under the assumptions of Theorem 5.1l the following approzimation
property holds:

A" = peAitirallgoi g, S min {hf, o'}

6. SMOOTHING PROPERTY

In this section we prove a smoothing property for several iterative methods
(smoothers) known from the literature. This smoothing property will complement
the approximation property from the previous section, resulting in the uniform esti-
mate of the two-grid convergence. We also analyze stability of smoothing iterations,
since this property is used for proving multigrid W-cycle convergence.

We will need the following result; cf. e.g. [17].

Lemma 6.1. Assume A,/Al, S are symmetric positive definite and S = BA™'BT.
Assume also that the inequalities

(6.1) prA
(6.2) p1S

P2A7

~

S

IN

A
S

IN

IN
IN
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hold with positive constants p1, p2, 1, 2. Then all eigenvalues of the problem

Au + BTp = )\A\u,

6.3 -
(6:3) Bu = \Sp,

belong to

(6.4) [p1, p2] U
U [Pz — /P35 +4pap2 pr— P+ 401#1]

p1+ /Pt +Apipn p2+ /3 + 4P2#2]
2 ’ 2

2 ’ 2

Remark 7. Similar eigenvalue bounds for (63]) can be found in other papers, e.g.,
[28]. We will use the result of the lemma for the case when S and S are symmetric
positive definite on the subspace §(k and the problem ([G3) has a zero eigenvalue
corresponding to the eigenvector {0, e}.

6.1. Distributive iterations. Writing the system (4] in the general form
Axy, = Db the idea behind the distributive smoothing iterations can be expressed as
follows. One chooses matrices B and C and consider, smoothing iterations of the
form:

(6.5) vy =y" = CTHABYY —b), xx = By.

One possibility is to set B=C 1 A. If C =CT > 0, C"'AB is a positive definite
matrix and self-adjoint in a proper scalar product. We consider block Jacobi type
iterations, i.e., C is a block diagonal matrix defined below. Let Nj be a matrix of
the preconditioner for the discrete pressure Neumman problem, such that

(6.6) N ~ BpM,'Bf.

Define a block diagonal matrix Dy, as

1 _ (Dt 0
(6.7) Dy ( 0 Ip+aN;!

and set C = wDy, with a parameter w > 0. The iteration matrix £, in this case can
be written in the form (II2) with W, ! = w?D, ' A Dy .

Theorem 6.2 (Smoothing property). Assume w > 0 is small enough, but inde-
pendent of a and k. It holds that

1

y )
(6.8) [ARLE s, 51 S (P +a)m'

Proof. With the auxiliary matrix
(L 0
(6.9) D, = < 0 min{h},a }Sy ) '

it holds that
||Ak£%”sk—>sgl = || Ax(Zk - WQD;1AkDI;1Ak)V||Sk—>S;1

_1 _1
= ||Ds 2 A (Zy — w?*D;, " ALD; L AR)Ds 2.

Here and further ||C|| denotes the spectral norm of a matric C.
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Denote A = oJDk_%Aka_% and observe the equality
_1 _1 11 . L1
|Ds 2 Ap(Ti — w*Dy ' AxDy P Ag) Dy 2 || = |lw ™' Dy 2 DE A(Z, — A*)"DE D5 2 ||.
We get B B
ALK 5, 51 < w™H IDRDF AL — A%)" |-
Thanks to the eigenvalue estimate of Lemma [6.1] and bounds in (£8]) and (G.0]) one

can choose such w > 1 that sp(A) € [—1,1]. Hence

A= A7) < o Jo(1 = %)) € <.
Finally, we use ([@9)), (£10) and (60) to verify that
IDLDI S (i + @), 0
Theorem 6.3 (Stability of smoother). With the same choice of w as in Theo-
rem it holds that

(6'10) ||£Z||Sk—>sk S L
Proof. From (&9), (@I0) and (6.0) we get max{h, %, a}D; ~ Dj, for the matrices
D; and Dy, defined in ([G7) and (G9]). Therefore,
1 1 1 1 -
(6.11) I£¥Nlses, = IIDZ LiDs * || = |DE LZD, || = II(Zee — A*)”||
with A = wD,;%AkD,;%. In the proof of Theorem [6.2] we have shown that sp(A) €
[—1,1]. Hence it holds
(6.12) I(Z — A" < L.
Inequalities (E1I)-(6I12) yield (610). O

For the Stokes problem (« = 0) similar smoothing iterations were considered
first in [33] and [26]. The smoother from [33] and [26] can be written in the form

of (@.3) with
_ h T, 0
C =w < 0 I > .

Clearly, its analysis fits in the framework given in this paper.

6.2. Braess-Sarazin and inexact Uzawa smoothers. In this section Dy is an
arbitrary symmetric matrix satisfying (L8] and {9). One may still think of Dy
as Dy, = diag(Ay). Other reasonable choices are Dy = (h™2 + )l or Dy =
(h=2+ a)M,, where M,, is the velocity mass matrix or its diagonal approximation.
Let w be some given positive parameter. Consider iterations of the form:

(6.13)

wev \  fud )\ wDg BE - A, BF wld \ /f
pnew - pold Bk 0 Bk 0 pold g :
At each iteration (6I3) one has to solve the auxiliary system:
wDy BF vy rold
(6.14) ( 5 o) = By )
To solve ([GI4]) one can eliminate v from the system (6I4) and obtain a problem

for the ¢ variable (we recall the notation S, =By, D,;lB{):

(615) /S\kq = Bk D;erId - w(BkuOId - g)
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The upper bound in @8] yields Amax(D;, *Ax) < 1. Thus one can choose w satis-
fying

(6.16) w > )\maX(D,;lAk) and w~1.

Remark 8. Smoothing iterations (6.13) were first proposed in [6] with Dy = I, for
the case g = 0; see also [B]. A more general choice of Dy, was analyzed in [37] and
[19]. Considering a general g € Yy, causes no additional difficulties.

The method requires an ezact solution of the problem (G.I5) which can be inter-
preted as a discrete pressure Poisson problem. Note that the distributive smoother
from Section 6.1l requires an approzimate solution of a similar problem; cf. (G.6]).
Below we also consider a smoother closely related to (613]), which avoids the exact
solution of (G.I5). Hence consider the block iterative method from [2], which can
be seen as a variant of inexact Uzawa method. Let Gy be a preconditioner for gk
such that

(6.17) Gr <w 'S, <(1+8)Gr,  B>0.

One step of the method can be divided in the following three substeps:

(6.18) wDp (W™ —u®) = f— Apu®d — B pold,
(619) Gk(pncw _ pold) — Bkuaux —g,
(620) wDy, (unew _ uaux) — _Bg(pnew _ pold).

The iteration matrix of the method (G.I8)-(6.20) is written in the form [@I2) with

- ka Bg
Wi = < By wil/S\k — Gy '

Thus iterations (6I3) can be interpret as (GI8)—([E20) with exact preconditioner
for the “inexact” Schur complement §;€ (for the sake of analysis we need a strict
lower bound in (617, however). The smoothing property of ([6.I8)—(6.20) is based
on the following lemma from [37].

Lemma 6.4. Assume (6.16) and @17). Denote Dy= < WDkO_ A w71§0 a >,
k — Ik

~1 ~

then the matriz Ly, = D2 EkD;% is symmetric and
p(Ly) € -8 — B2+ B,1].
Moreover, the identity AL}, = 25? (Ty, — Ek)ﬁ_zflﬁs_% holds.

Now Lemma [6:4] leads us to the smoothing property for (€.13) and (G.I8)—(G20)
which complements the approximation property from Corollary

Theorem 6.5 (Smoothing property). Let L be the iteration matriz of [EI)-

: 1
©.20). Assume ([6.16) and (617) with 8 < 3, then

, _ 1
(6.21) IMeLillg, 51 < (h.? + a)—, v>1.
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I 0 B
0 min{h?,a " }S; > , then || - ||Sk -
(Ds-,-)7. Thanks to @), [6I6) and [G.17) we obtain ||D; D, || < hj % +a. There-
fore, Lemma and assumption 8 < % yield

Proof. Define the auxiliary matrix ﬁs = <

~_ 1 ~_ 1 ~_1 ~1 — — ~_1 ~_ 1
AR LY Ilg, 51 = IIDs * ArLEDs *|| = | Ds * D2 (T — L)Ly "Dy 2D, 7|
<D Dllll(Zr — Li) L7

S (2 +a) max (1 — x)z” ™
z€[—B—/B2+B,1]
-2
< M. O
~orv-1

Theorem together with Theorem [E.1] guarantee the uniform convergence es-
timates for the two-grid method with Braess-Sarazin or inexact Uzawa smoothings.
To analyze multigrid convergence we need stability property from the theorem be-
low.

Theorem 6.6 (Stability of smoother). Assume G16) and @I7) with B < %, then
(6.22) I1£klls, 5, S 1

Proof. Define the following product norms on Xy, x Yy

1

I, pl = (e, ) + w7 Sepp))
Due to w ~ 1 and (6.I6) we have min{h},a~'}|[|u, p||| == [[u, p|g, . This implies
(6.23) 1£%ll5, 5, = M£EI
The assumption w > )\max(DlzlAk) implies the eigenvalue bound

IMNIx —w DA < 1.

Now we apply Theorem 2.1 from [30] with A = wDy, G = Bkg_le, B=1c=1
to conclude that the right-hand side of ([€23]) is less than 1. g

Remark 9. Both distributive iterations and inexact Uzawa are not parameter-free
smoothers. For distributive iterations parameter w should be sufficiently small,
but still of O(1) order and independent of h and «. Let Apax = max )\(DglAk)
and pimax = max A((Ix + N;l)Sk). Both Apax and pimax can be bounded by O(1)
constants independent of A and «. Lemma and the proof of Theorem
yield the sufficient bound on the relaxation parameter of the distributive iterations:

w < 2()\max+ \/ A2+ 4umax)\max) _1. For the inexact Uzawa iterations parameter
w should be sufficiently large, but also of O(1) order and independent of h and «.
In this case the restriction is w > Apax. Numerical experiments show that optimal
w is largely insensitive to the mesh level k. Hence running a few coarse-grid tests
may provide an appropriate choice of w.

We also note that for a fixed mesh level k the eigenvalue bounds given by
Lemma [6.1] with A = Ay, A= Dy, S = S, and S = (Ix + N,;l)_1 are robust
with respect to «; thus the same arguments as in the proofs of Theorems and
show that both smoothing iterations converge robust with respect to o (but not
h).
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7. MULTIGRID CONVERGENCE

In this section we prove the convergence result for the multigrid method. The
result is based on the approximation, smoothing and stability properties from the
previous sections. First, however, we prove the following technical lemma.

Lemma 7.1. Let py and ry be the prolongation and restriction operators defined
in @II)). For all {u,p} € Xy—1 x Yy, it holds that

(7.1) ||pk?{u7 p}HSk = ||u7p||sk—l and ||pk{u7p}‘|§k = ||u7pH§k71'
For the case of distributive smoothings it holds that
(72) ||A1;11rk“4k£ﬂ|sk—>5kfl 5 1,

and for smoothings ([613) or (6.18)—([6.20)
(7.3) AR Ly ALy

I3, 55., <

Proof. For arbitrary u € Xi_q1, p € Yy_1 consider up_; = Py_iu € Vj_; and
Pr—1 = Rip—1p € Qk—1, then from the definition of py and thanks to ([@Tl), () we
conclude that

. _1

[0, pllsiy = g1 ]| + minfhg 1, @2 Hpr-1llQp .
. _1

[Prfu, pHls, = lug—1ll + min{hy, a2 }Hipr-1llQy-

With the help of ([ZI7) we obtain

(7.5) IPE—1llQu_y = IPk—1llQy-

Since hy ~ hy_1 relations (4] and (T3] prove the first relation in (Z.I]).
Now consider the relations

lim o 'S, = ByM; 'BY ~ min{h2,a '}S;.
a—r 00

Thus we prove the second equivalence in (1)) passing to the limit (o« — c0) in the
first relation from (1)) and applying the scaling argument.

Now we are going to prove (2). Thanks to () we have with distributive
smoother:

A2k ALy 550 S IPRAL 0 ARLL 5,55, -

Now observe the following identity:
PrA L TR ARLY = (AL — Ayt i) (AeLy) — L.
Hence using the approximation, smoothing and stability properties we get
[ iy A 1 [
< ||(A1;1 - pkAlZer)Hs;l—wkH(Akﬁpusk—w;l +IL¢ | s5—s, S 1-
The estimate (3] is proved similarly. O

The iteration matrix of the multigrid W-cycle with v pre-smoothings satisfies
the recursion

(76) MO = Oa Mk = 77€ + pk(Mk—l)QAI;—llrkAk[’Z )
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where Ty, = (Z, — pk.A,;EIrk.Ak) ¥ is the iteration matrix of the two-grid method.
Approximation and smoothing properties yield the estimates

1
T LS
H kHSk‘}Sk m

if distributive smoothings are used and

(7.7)

1
(7.8) 1Tkllg, -5, S p—
if smoothings (6I3) or (6IX)—([@20) are used.

Theorem 7.2. Assume that the number of smoothing steps on every grid level is
sufficiently large, but independent of all relevant parameters. Then for the contrac-
tion number of the multigrid W-cycle with distributive smoothings the inequality

[Mgllsy—ss, <&, k>0,
holds with a constant £* < 1 independent of k and «. For the contraction number
of the multigrid W-cycle with smoothings [©I13) or (6IX)—-@20) the inequality
[Mkllg, .5, <€, k>0
holds with a constant £* < 1 independent of k and a.

v>1,

Proof. Consider the W-cycle with distributive smoothings. Define & := || M|l s, — s,
Using the recursion relation (Z6) for My, and (T1I)), (T2) it follows that

& <1 Tkllsiose + 1Pkl s s [ ARTe AL LY (|55 5, MEET I3, s,
< ||77f||Sk—>Sk + Cfi%—l

with a positive constant C' > 0 independent of all parameters. Now use the two-grid
bound given in ([77) with sufficiently large v and a fixed-point argument. It is clear
that the proof of the theorem for the case of smoothings (613) or (GI8)—(@20) is
literally the same with the only difference being that instead of (Z2) and (7)) one

should use (7.3) and (Z.8). O

Remark 10. We briefly remark on the implications of Theorem[7.2]in two limit cases:
a=0and a = oco. For a = 0 ([@I0) yields that both S; and S, are spectrally
equivalent to the identity matrix; therefore, we recover the standard h-independent
convergence bound for the multigrid W-cycle in the weighted ¢2-norm similar to
the one in [33]. In the other limit case, @ = oo, the result of the theorem can
be interpret as the spectral equivalence of ByM;, 1B£ (the mixed approximation of
the pressure Poisson problem) and the conforming approximation of the Laplacian
operator for finite elements satisfying weak infsup condition (Z1T).

8. NUMERICAL EXAMPLE

Numerical results demonstrating the efficiency and robustness with respect to h
and « of the multigrid method can be found in [6] for smoothing iterations (G.13)
and [I9] for an inexact variant of these smoothings. Below we include some numeri-
cal results which illustrate the robustness of the multigrid method with distributive
and inexact Uzawa smoothings. It is not the intention of this paper to compare
systematically the performance of different solvers for ([£4) including multigrids
and preconditioned Krylov subspace methods. Such comparative studies can be
found, e.g., in [I4} [19].
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TABLE 8.1. The number of iterations for V-cycle/W-cycle with
distributive and inexact Uzawa smoother

mesh size h parameter «
0 10? 10* 106 10® 100
distributive smoother
1/32 46/43 42/41 43/35 TT7/72 79/74 79/74
1/64 47 /42 45/42 29/27 67/63 74/68 7T4/68
1/128 47/42 45/43 34/34 60/54 73/68 73/68
inexact Uzawa smoother
1/32 19/19 19/19 13/13 13/13 13/12 13/12
1/64 18/18 18/18 16/16 13/12 13/12 13/12
1/128 17/17 17/17 16/16 12/12 12/11 12/11

We consider the generalized Stokes problem as in (I.T)) on the domain Q = (0,1)2.
The right-hand side f and g are such that the continuous solution is

_ 42y - 1)1 —2)x (3.3
(8.1) u_<_4(2x_1)(1_y)y>7 p=(z"+y’)+C
with a constant C' such that fQ pdx = 0. For the discretization we used isoPs-P;
finite elements on a uniform west-north triangulation.

To define the distributive smoother we set in ([7) Dy = 2diag(Ax) and N, * is
defined through the one V(2,2)-cycle of the inner MG method with damped Jacobi
smoothings applied to the conforming P; discretization of the pressure Poisson
equation: for a given ry € Qp, find py € Qp from

(8.2) (Vor,Var) = (ri,qx) YV ar € Qp.

Note that for any p; € Qi and corresponding coefficients vector p € R™ it holds
that

(8.3)

di 2
(BxM,'B{p,p) = sup (div ue, pi)”

cv Huk||2 and <Nkp7p> 5 vak||2 < <Nkpap>'
ug k

Therefore, the necessary condition (G.6) follows from the weak infsup inequality
I and (B3). The damping parameter is set as w? = 0.8.

For the inexact Uzawa smoothings (GI8)—([@20) we set Dy = diag(Ax) and
w = 1.25. This choice of w is recommended in [19] as close to an optimal one. Let
Ni be the same matrix as defined above through the one multigrid V(2,2)-cycle for
solving (B2). We set Gy, from (617) to be Gy = pNj with p = 0.8w ™| M,|||| Dk 1.
For the uniform triangulation it holds that

1Dk ||(BkDy, "B p, p) = (BrLiBip, p) < |IMull|(BxM; ' By p, p)

: 2
= M sup (VD)

up€Vy HukH
We get w‘lBlele;f < %Gk. Thus the upper estimate in (617) holds with § = i,
which is the admissible value for the smoothing property from theorem[6.5l Numer-
ical experiments show that violating the upper bound of % for 5 in (GI7) leads to
the divergence of the multigrid method, while satisfying the lower bound in (6.17)

< Ml VPel? < [IMull(Nep, ).
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TABLE 8.2. Dependence of the number of iterations for V(n,n)-
cycle on the number of pre- and post-smoothings for distribu-
tive / inexact Uzawa smoothings

«@ number of pre- and post-smoothings
1 2 4 8 16

0 |181/div 91/18 47/8 25/6 17/5
102 | 173 /div 87/18 45/8 24/6 16/4
10* | 169 /div 62/15 29/7 15/4 8/2

TABLE 8.3. The number of iterations for BiCGstab method with
multigrid V-cycle as a preconditioner: distributive / inexact Uzawa

smoothings
mesh size h parameter «
0 102 10 10° 10® 10"
1/32 10/7 10/7 7/4 11/4 11/4 11/4
1/64 11/7 10/7 8/5 11/4 13/4 13/4
1/128 11/7 11/7 9/6 10/4 12/4 12/4

is less crucial. This is consistent with observations in [37], where the phenomena
is explained heuristically (cf. [37], Remark 5). However, the strong violation of
the lower bound may require more smoothing steps to make the iterations con-
verge. Note that computational complexity of both distributive and inexact Uzawa
smoothers defined above scales linearly with the number of unknowns.

In all numerical tests we stop the iteration once the £5-norm of the initial residual
has been reduced by at least nine orders of magnitude, and we always use a vector
with equally distributed on [0, 1] random entries as the initial guess. In Table Rl
we show the number of iterations for various values of mesh size and «. Here
we use a multigrid V(4,4) and W(4,4) cycles in the case of distributive smoothing
iterations and V(2,2) and W(2,2) cycles in the case of inexact Uzawa smoothing
iterations. Both methods are robust with respect to the variation of parameters.
The method with inexact Uzawa smoothings shows significantly better results in
terms of iteration numbers (each iteration is also computationally cheaper in this
case). Although our analysis proves the convergence only for the W-cycle, numerical
experiments show similar convergence results for V-cycles.

The dependence of iteration number on the number of pre- and post-smoothing
steps is shown in Table Similar to [6] we note that making only 1 post- and
1 pre-smoothing steps is not enough for convergence. Finally, Table demon-
strates that using the multigrid methods as preconditioners in a Krylov subspace
method may reduce the number of iterations significantly compared to the case
when multigrid methods are used as stand-alone solvers. To produce these results
we use one V(4,4)-cycle with distributive smoothings or one V(2,2)-cycle with in-
exact Uzawa smoothings to define a preconditioner for the BiCGstab method to
solve ([@4)). One iteration of the BiCGstab method from Table B3lis approximately
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TABLE 8.4. The number of iterations for V-cycle with distributive
and inexact Uzawa smoother for isoP2-P0 elements

mesh parameter o parameter o
size h | 0 102 10* 10° 10® 10| 0 10 10* 10° 10% 10%
distributive smoother inexact Uzawa smoother

1/32 82 67 13 28 29 29 |11 10 5 7 7
1/64 8 83 29 28 29 29 |11 10 6 7 7
1/128 |8 92 71 21 29 29 |11 11 8 6 7
1/256 |87 94 163 34 28 29 |13 14 10 5 7

ENIEN IS RN

twice as expensive as one iteration of the multigrid method as a stand-alone solver
as in Table Bl

Finally, we check numerically if the uniform convergence of the multigrid meth-
ods is still observed if the assumptions @, C H'(Q) and ([Z.II) are violated. To this
end, we repeat the same experiments with isoP2-P0 finite elements. We note that
this stable Stokes element is not stable in the Darcy limit (o« — oo) with respect
to the H}(div) x LZ-norm [20]. This poses the challenge of building a precondi-
tioner for the Schur complement matrices of the limit problem: S, = ByM,, 1B£ or
Sy = BiD; 'BY; see (6.0) and (6I7). A standard multigrid approach may fail to
provide an h-scalable preconditioner and more elaborated methods should be used;
see [25] and [36] for such developments. In our experiments we used the precondi-
tioner built as one W(4,4) cycle applied to solve a system with gk, which is a sparse
matrix. The multigrid uses SOR iteration as smoother with a tuned relaxation
parameter (k = 1.8) and the Galerkin coarse grid matrices: Si_1 := riSgpkr. In
general, the latter definition leads to the increase of the fill-in pattern on coarser
grid levels. However, the construction of Si_1 directly from the coarse grid finite
element matrices Bg_1 and Dy_; resulted in our experiments in a non-convergent
multigrid method. Such an expensive preconditioner can be seen as a price paid
for the lack of the element stability in the Darcy limit. In Table 4] we show the
number of iterations for various values of mesh size and . Here we use a multi-
grid V(4,4) cycle both in the case of distributive smoothing iterations and inexact
Uzawa smoothing iterations (less smoothing iterations with inexact Uzawa was not
enough for multigrid convergence). Results with W-cycle showed the same trends
with respect to h and «. The parameter w in both cases was set equal to 1. The
results indicate that in spite of h-independent convergence results in the limit cases
of @« = 0 and a = oo the multigrid method with distributive smoother seems not to
ensure robust convergence for the whole range of parameters. This and the higher
cost of the method itself may result from the fact that isoP2-P0 is not a stable
Stokes-Darcy element.
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