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In this paper, a finite-difference scheme for incompressible flow problems is treated. The scheme uses
non-staggered grid for velocity approximation. A special stabilization is introduced to ensure the well-
posedness and optimal approximation properties of the scheme. The stability estimate is proved in the
form of a mesh-independent bound for the norm of discrete operator inverse. The finite-difference
method is particularly suitable for problems in which velocity vector is involved in additional quantities
that enter the system of flow equations as, for example, in the Bingham problem. We describe this appli-
cation in the paper in some detail. Results of numerical experiments are included that confirm the appli-
cability and optimality of the method.
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1. Introduction

Non-staggered grid finite-difference and finite-volume methods
are attractive alternatives to staggered grid discretizations of
incompressible flow problems when numerical simulations in-
volve complex domains, curvilinear coordinates and immersed
interfaces [27,33,37]. For this reason non-staggered approxima-
tions have been considered by different authors, see, e.g. [2,36]
and the references therein. The non-staggered (or semi-staggered)
methods become even more appealing for problems in which
velocity vector or its gradient tensor are involved in additional
quantities that enter the system of flow equations. This is the case
for non-Newtonian flow problems where such grid approximations
were found to be particularly convenient from the point of view of
data structure and algorithmic simplicity [32,23]. At the same time,
non-staggered grid approximations have a well-known stability is-
sue for incompressible flow problems, which has to be addressed
(see Section 2). A finite-difference scheme for the Stokes problem
ll rights reserved.
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which uses one grid for all velocity components and another grid
in elements centers for pressure can be found in the earlier paper
[17] (such schemes are also referred in the literature as half-stag-
gered or semi-staggered). However, a rigorous convergence analy-
sis of non-staggered grid approximations is still somewhat lacking.
The present paper introduces a stabilization procedure and pro-
vides rigorous analysis of the resulting scheme for the particular
case of the Stokes problem. We also apply the method for the Bing-
ham flow problem. This model is briefly described below.

A variety of materials exhibits a visco-plastic medium behavior:
they combine the behavior of solids in the so-called ‘‘rigid” regions,
where a certain value of yield stress is not exceeded, and of non-
Newtonian fluids in the ‘‘flow” regions. For numerical modeling
of visco-plastic materials the Bingham model is extensively used
in last years, see, e.g. the review article [13]. Naturally emerged
from the computational elasticity most of the existing numerical
approaches for the Bingham problem use the finite element dis-
cretization method. However the integration of this model as a part
of existing CFD tools often calls for finite volume or finite differ-
ence approximations. This paper is concerned with finite difference
solutions for slow steady Bingham flows.

Let X 2 Rd; d ¼ 2;3 be a bounded connected domain. Consider
the following system of equations
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Fig. 1. A grid element.
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� divsþrp ¼ f on X; ð1Þ
divu ¼ 0 on X; ð2Þ
u ¼ ub on oX; ð3Þ

and constitutive relation

s ¼ 2lDuþ ss
Du
jDuj ; if jDuj–0;

jsj 6 ss; if jDuj ¼ 0;
ð4Þ

where u;p; s are unknown velocity, pressure and stress tensor, l is a
constant plastic viscosity, ss is the yield stress, ub is a velocity pre-
scribed on the boundary of X, such that

R
oX ub � n ¼ 0;

Du ¼ 1
2 ½ruþ ðruÞT � is the rate of deformation tensor and

jDuj ¼
X

16i;j6d

jDijuj2
 !1

2

:

We note that constitutive relation (4) can be written in the equiva-
lent form:

Du ¼ 1� ss
jsj

� �
s

2l ; if jsj > ss;

0; if jsj 6 ss:

(

For ss ¼ 0 the system (1)–(4) reduces to the Stokes problem. If
ss > 0 the relations (1)–(3) hold only in the flow regions,
where Du > 0, and make no sense in the rigid region Xr ¼
fx 2 XjDuðxÞ ¼ 0g.

Applying a finite-difference method to (1)–(4) encounters sev-
eral difficulties. Thus a grid domain, where the discrete analog of
(1)–(3) should be imposed, is not known a priori and finding it is
a part of the problem. One way to avoid this difficulty is to regular-
ize (4) introducing a function g�ðxÞ : Rd�d ! Rd�d such that
g�ðxÞ ! 2lxþ ss

x
jxj for �! 0 and setting s ¼ g�ðDuÞ for some small

� instead of (4), see [5,28]. This enables one to consider a discrete
system of equation approximating a non-Newtonian fluid model in
the whole computational domain, thus conventional (iterative)
solvers can be applied, e.g. [15,25]. The regularization, however,
can introduce additional modeling errors [13], and has the issue
of (non)linear solvers efficiency for �! 0. In this paper, we con-
sider a finite-difference approximation of the non-regularized
model (1)–(4). We build an iterative method on the variational
inequality and augmented Lagrangian approach of Lions, Glowinski
et al. [14,18] previously used for finite element approximations,
see Section 4. In finite difference setting this approach requires
additional consistency terms to be introduced in the algorithm.

The remainder of the paper is organized as follows: Section 2
presents the finite-difference scheme. The scheme was first consid-
ered in [17] for the Stokes problem and in [23] for the Bingham
problem. It uses one grid for all velocity components and one grid
for pressure and all stress and the rate of deformation tensors com-
ponents. We discuss the stability issue and propose the stabiliza-
tion techniques. In Section 3, we show that the scheme is stable
for the particular case of the Stokes problem. The stability estimate
is proved in the form of a mesh-independent bound for a norm of
the discrete operator inverse. From the stability estimate a conver-
gence result easily follows. In Section 4, we describe an iterative
method and show that the fix-point of the method is a solution
to the non-regularized finite-difference Bingham problem. Results
of numerical experiments illustrating the performance of the
scheme are given in Section 5.

2. Finite-difference scheme

For simplicity we assume X ¼ [t2Th
t, where Th is the partition-

ing consisting of cubic (in 3D) or rectangular (in 2D) elements. All
vertices of elements t form the grid domain X1 and all element
centers form the grid domain X2, denote X1 ¼ X1 \X,
oX1 ¼ X1 \ oX. For the 2D case the grid element is shown in
Fig. 1. By Uh we denote the space of grid vector functions uh de-
fined on X1 and Ph is the space of scalar grid functions defined
on X2, such that

P
x2X2

phðxÞ ¼ 0. Both spaces are equipped with
the Euclidian scalar products: huh;vhi :¼

P
x2X1

uhðxÞ � vhðxÞ for
uh;vh 2 Uh and hph; qhi :¼

P
x2X2

phðxÞqhðxÞ for ph; qh 2 Ph, k � k de-
notes the corresponding norms for both spaces. By Q h we denote
the space of grid d� d tensor functions sh (discrete stress and the
rate of deformation tensors) defined on X2. Additionally we denote
by Uint

h the space of grid vector functions uh defined on X1 (only
internal nodes).

Using index notation as shown in Fig. 1 we define finite-differ-
ence scalar and vector divergence operators divh : Uh ! Ph and
divh : Q h ! Uint

h through (we give formulas only for the 2D case,
when the extension to the 3D case is obvious):

ðdivhuhÞi;j ¼
uiþ1;jþ1 � ui;jþ1 þ uiþ1;j � ui;j

2hx

þ v iþ1;jþ1 � v iþ1;j þ v i;jþ1 � v i;j

2hy
;

ðdivhshÞi;j ¼
s11

i;j � s11
i�1;j þ s11

i;j�1 � s11
i�1;j�1

2hx

 

þ
s12

i;j � s12
i;j�1 þ s12

i�1;j � s12
i�1;j�1

2hy
;
s21

i;j � s21
i�1;j þ s21

i;j�1 � s21
i�1;j�1

2hx

þ
s22

i;j � s22
i;j�1 þ s22

i�1;j � s22
i�1;j�1

2hy

!T

:

Components of the finite-difference rate of deformation tensor
Dh : Uh ! Q h are defined as

ðD11
h uhÞi;j ¼

uiþ1;jþ1 � ui;jþ1 þ uiþ1;j � ui;j

2hx
;

ðD12
h uhÞi;j ¼

uiþ1;jþ1 � uiþ1;j þ ui;jþ1 � ui;j

4hy
þ v iþ1;jþ1 � v i;jþ1 þ v iþ1;j � v i;

4hx

ðD21
h uhÞi;j ¼ ðD

12
h uhÞi;j, the component ðD22

h uhÞ is defined by the anal-
ogy with ðD11

h uhÞ.
The finite-difference gradient rh : Ph ! Uint

h is defined as trans-
pose to �divh. Given these discrete operators we can formally con-
sider the finite-difference Bingham problem:

� divh � sh þrhph ¼ fh; ð5Þ
divhuh ¼ 0; ð6Þ
uhjoX1

¼ ub
h;

where

sh ¼ 2lDhuh þ ss
Dhuh

jDhuhj
; if jDhuhj–0;

jshj 6 ss; if jDhuhj ¼ 0:
ð7Þ

The direct application of the scheme (5)–(7) encounters the follow-
ing two major problems. The Eq. (5) should be imposed only in
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those (a priori unknown!) nodes of X1, where jshj > ss for the neigh-
boring X2-nodes. This problem is overcome by defining the finite-
difference solution fuh;ph; shg as the limit of the sequence
fun

h;p
n
h; s

n
hgn¼1;2;... generated by a special iterative procedure. On each

iteration a discrete Stokes problem is solved in the whole domain,
see details in Section 4. The second problem is the well-known
instability of the semi-staggered grid approximation for the Stokes
problem. This instability can be characterized as follows: Besides
the trivial constant vector in the kernel of the discrete gradient
rh one has additional ‘‘checkerboard” mode in kerðrhÞ for the 2D
Stokes problem [29]. Moreover, in the 3D case the dimension of
kerðrhÞ is Oðh�1Þ ([10], p. 244). Furthermore, restricted on the
orthogonal complement of kerðrhÞ in Ph the inverse of the Stokes
operator is not uniformly bounded with respect to h in a natural
norm, cf. Remark 7. In practice, the instability leads to non-physical
pressure solutions and the poor convergence of commonly used
iterative methods for solving the discrete Stokes problem. Since
the Stokes problem is the particular case (ss ¼ 0) of (5)–(7) and it
appears as an auxiliary problem in the iterative procedure, see Sec-
tion 4, we have to stabilize the discretization. In this paper, the sta-
bilization is done in the spirit of the techniques well-established for
finite element discretizations, see, e.g. [9,11,3,24] (below we remark
on alternative approaches, see Remark 1): The discrete divergence
constraint (6) is penalized

divhuh þ Ghph ¼ 0; ð8Þ

with a stabilization term Gh : Ph ! Ph. The operator Gh should sat-
isfy conditions (11)–(13) and can be defined in several ways. For
example, similar to the finite element method from [11] one may
define Gh through

Gh ¼ �ah2Dp
h; ð9Þ

where Dp
h is the usual 5-point (7-point in 3D) approximation of the

Laplace operator with the Neumann boundary conditions imposed
in fictitious points. One has to chose a parameter a and a ‘‘charac-
teristic” mesh parameter h.

Another choice for Gh was suggested in [23]. Denote by Rh the
space of grid scalar functions defined on X1. Let x 2 X1, and

xðxÞ ¼ fy 2 X2j jy � xj ¼ j�hj=2g;

where �h ¼ ðhx; hy; hzÞT . Define the operator Ph : Ph ! Rh by

ðPhphÞij ¼ jxðxijÞj�1
X

xkl2xðxijÞ
pkl:

The operator Ph can be considered as an interpolation from X2 onto
X1. Similar we define the interpolation operator ePh from X1 onto
X2. Other interpolation operators can be considered as well, in par-
ticular for non-uniform grids. We set

Gh :¼ aðIh � ePhPhÞ; ð10Þ

a is some mesh-independent parameter, Ih is the identity operator.
For uniform cubic grids (hx ¼ hy ¼ hz ¼ h) we verify, see Lemma 3,
that both choices in (9) and (10) satisfy conditions (11)–(13) below.

Accuracy condition: for any sufficiently smooth p 2 L2ðXÞ de-
note by ðpÞh 2 Ph the trace of p on X2, then

kGhðpÞhk
kðpÞhk

¼ OðhÞ: ð11Þ

For x 2 X2 denote by ~xðxÞ the set of neighboring nodes from X2:

~xðxÞ ¼ fy 2 X2j jy � xj 6 j�hjg;

Stability condition: for any ph 2 Ph

cG

X
x2X2

X
y2 ~xðxÞ

ðphðxÞ � phðyÞÞ
2
6 hGhph; phi; ð12Þ
with some mesh-independent constant cG > 0. Moreover, the oper-
ator Gh is symmetric and the estimate

kGhk 6 CG; ð13Þ

holds with another mesh-independent constant CG. The latter
assumption is less critical for the performance of the finite-differ-
ence scheme than (11) and (12), but it is helpful for building effi-
cient linear algebraic solvers, cf. Remark 10.

Remark 1. A common approach of curing parasitic pressure
modes problem for non-staggered approximation is to apply
dissipation to the pressure field, e.g. [2,12]. This dissipation is
typically introduced (sometimes implicitly) by modifying projec-
tion or velocity correction step of time-stepping splitting algo-
rithms. The resulting pressure dissipation term can be interpret as
a discretization of a forth order differential operator and usually
depends on the time step and an additional relaxation parameter.
The element-wise divergence-free condition is unavoidably
altered.

The present approach also introduces the pressure dissipation
term. One difference is that the second-order pressure term
(instead of a forth order term) was introduced. Furthermore, we
avoid any time-splitting procedure, so the new term does not
depend on any time-step parameter (the choice (10) avoids mesh
parameter as well) making the method more attractive for steady
and slowly changing in time flows. Moreover, for the new
stabilized scheme we prove a rigorous stability estimate and
convergence result for the case of the Stokes problem, see the next
section. We are not aware of similar stability results for other non-
staggered (or semi-staggered) schemes which can be found in the
literature.

For the stability analysis of the next section and the solution
algorithm from Section 4 we need the following ‘‘consistent”
approximation of the vector Laplace operator eDh : Uh ! Uh:eDh ¼ 2divhDh �rhdivh: ð14Þ

We note that the relation (14) leads to a different grid stencil than
the common 5-point (or 7-point in 3D) approximation of D. For
example, with hx ¼ hy ¼ hz ¼ h one gets the following skew-cross
5-point (or an oblique 27-point in 3D) stencil for each velocity
component:

2D : ðeDhuhÞi;j ¼
ui�1;j�1 þ uiþ1;j�1 þ uiþ1;jþ1 þ ui�1;jþ1 � 4ui;j

2h2 ; ð15Þ

3D : ðeDhuhÞi;j;k

¼ 1

16h2 ½2ðui�1;j�1;k þ ui�1;j;k�1 þ ui;j�1;k�1Þ þ 3ui�1;j�1;k�1

� 4ðui�1;j;k þ ui;j�1;k þ ui;j;k�1Þ � 24ui;j;k�: ð16Þ
3. Stability and error analysis for the Stokes problem

In this section, we analyze the stability of the finite-difference
scheme (5),(7),(8) for the particular case of ss ¼ 0. In this case,
the problem becomes linear and one can eliminate sh ending up
with the system of difference equations:

� 2divhDhuh þrhph ¼ fh;

divhuh þ Ghph ¼ 0;
uhjoX1

¼ 0:
ð17Þ

For the sake of analysis the assume X ¼ ð0;1Þd and
hx ¼ hy ¼ hz ¼ h ¼ 1=ðN þ 1Þ. For convenience we assume that func-
tions from Uh vanish on oX1 and introduce the discrete ‘‘energy”
norm on Uh:



978 M.A. Olshanskii / Comput. Methods Appl. Mech. Engrg. 198 (2009) 975–985
krhuhk :¼ �hDhuh;uhi
1
2;

where Dh is the common 5-point (or 7-point in 3D) approximation
of the vector Laplace operator supplemented with the homoge-
neous Dirichlet conditions in boundary grid nodes. First we prove
several technical lemmas.

We need several results for the discrete rate of deformation ten-
sor given in the following lemma.

Lemma 2. The following estimates are valid:

cDkuhk 6 kDhuhk 6 CDkrhuhk 8uh 2 Uh; ð18Þ
jhph;divhuhij 6

ffiffiffi
2
p
kphkkDhuhk 8p 2 Ph;uh 2 Uh; ð19Þ

with some mesh-independent positive constants cD;CD.

Proof. The upper bound (18) is proved by the straightforward
application of the triangle inequality. Further, using the sum-
mation by parts and the relation (14) for the discrete opera-
tors Dh, eDh and divh from the previous section one verifies
the identity:

2kDhuhk2 ¼ h�eDhuh;uhi þ kdivhuhk2 8uh 2 Uh: ð20Þ

This identity immediately implies the estimate (19) and the discrete
Korn’s type inequality:

h�eDhuh;uhi 6 2kDhuhk2 8uh 2 Uh; ð21Þ

It remains to show the low bound in (18). This bound follows from
(21) and

2c2
Dkuhk2

6 h�eDhuh;uhi 8uh 2 Uh; ð22Þ

In the rest of the proof we verify (22).
First we treat the case d ¼ 2. The summation by parts gives for

each velocity component

h�eDhuh;uhi ¼
X
t2Th

ðuiþ1;jþ1 � ui;jÞ2 þ ðuiþ1;j � ui;jþ1Þ2

2h2 : ð23Þ

Now the bound in (22) (the discrete Friedreichs type inequality) fol-
lows by a standard argument from the following representation:

uðxi;jÞ ¼ ui;j ¼ ui0 ;j0 þ
Xn

k¼0

ðui0þkþ1;j0þkþ1 � ui0þk;j0þkÞ 8xi;j 2 X1;

with some n 6 ch�1 and xi0 ;j0 2 oX1 depending on xi;j; we call xi0 ;j0 to
be the basis node for xi;j. Using ui0 ;j0 ¼ 0 and the Cauchy inequality
one obtains

kuhk2 ¼
X

xi;j2X1

Xn

k¼0

ðui0þkþ1;j0þkþ1 � ui0þk;j0þkÞ

6

X
xi;j2X1

ch
Xn

k¼0

ðui0þkþ1;j0þkþ1 � ui0þk;j0þkÞ2

2h2 :

Further to show the bound in (22) one gets use of (23) and the
observation that any xi0 ;j0 2 oX1 can be a basis node for at most
Oðh�1Þ inner points xi;j.

For the 3D case one computes

h�eDhuh;uhi ¼
X
t2Th

1

16h2 ½ðaþ bÞ2 þ ðaþ dÞ2 þ ðaþ cÞ2 þ ðb

� cÞ2 þ ðb� dÞ2 þ ðc � dÞ2�; ð24Þ

where

a ¼ uiþ1;jþ1;kþ1 � ui;j;k; b ¼ uiþ1;jþ1;k � ui;j;kþ1;

c ¼ uiþ1;j;kþ1 � ui;jþ1;k; d ¼ ui;jþ1;kþ1 � uiþ1;j;k:
Denote

e1
i;j;k ¼ ui;j;k þ uiþ1;j;k; e2

i;j;k ¼ ui;j;k þ ui;jþ1;k; e3
i;j;k ¼ ui;j;k þ ui;j;kþ1;

d1
i;j;k ¼ ui;j;k þ ui;jþ1;kþ1; d2

i;j;k ¼ ui;j;k þ uiþ1;j;kþ1;

d3
i;j;k ¼ ui;j;k þ uiþ1;jþ1;k;

then (24) yields

h�eDhuh;uhiP c
X
t2Th

1

h2 ½ðe
1
i;jþ1;kþ1 � e1

i;j;kÞ
2 þ ðe2

iþ1;j;kþ1 � e2
i;j;kÞ

2

þ ðe3
iþ1;jþ1;k � e3

i;j;kÞ
2 þ ðd1

iþ1;j;k � d1
i;j;kÞ

2 þ ðd2
i;jþ1;k

� d2
i;j;kÞ

2 þ ðd3
i;j;kþ1 � d3

i;j;kÞ
2�: ð25Þ

By the triangle inequality for any xi;j;k 2 X1 it holds

jui;j;kj 6
1
2
ðje1

i;j;kj þ je3
iþ1;j;kj þ jd

2
i;j;kjÞ: ð26Þ

Noting that e and d quantities vanish on the appropriate parts of
boundary and using (25) and (26) we apply similar arguments as
for the 2D case to prove the bound in (22) for d ¼ 3. h

For two matrices (or discrete operators) A and B we write A P B
iff A� B is semi-positive definite.

Lemma 3. Stabilization operators defined in (9) and (10) both satisfy
conditions (11)–(13).

Proof. For the case (9) we get applying summation by part:

hGhph; qhi ¼ a
X
x2X2

X
y2 ~xðxÞ

ðphðxÞ � phðyÞÞðqhðxÞ � qhðyÞÞ:

Thus, conditions (11) and (13) are trivial. To show (11) we use the
smoothness assumption for p 2 L2ðXÞ and Cauchy inequality:

kGhðpÞhk ¼ sup
0–qh2Qh

hGhðpÞh; qhi
kqhk

¼ a
P

x2X2

P
y2 ~xðxÞðpðxÞ � pðyÞÞðqhðxÞ � qhðyÞÞ

kqhk

6 cah

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x2X2

X
y2 ~xðxÞ

pðxÞ � pðyÞ
h

� �2
vuut 6 c1ahkðpÞhk:

Consider the case (10). Let us enumerate X2-nodes in the lexico-
graphical order. Then one checks that the matrix G 2 RNd�Nd

of the
operator Gh can be decomposed as

d ¼ 2 : G ¼ a
h2

32
ðM � Ln þ Ln �MÞ;

d ¼ 3 : G ¼ a
h2

192
ððM �M þ 9I � IÞ � Ln þ Ln � ðM �M þ 9I � IÞ

þM � Ln �M þ 9I � Ln � IÞ;

where Ln 2 RN�N is the matrix of the one-dimensional discrete
Laplacian with Neumann conditions:

Ln ¼ h�2

1 �1
�1 2 �1

. .
. . .

. . .
.

�1 2 �1
�1 1

0BBBBBB@

1CCCCCCA;

and M 2 RN�N is the mass type matrix. For d ¼ 2 it holds
M ¼ tridiagð1;6;1Þ and for d ¼ 3 it holds M ¼ tridiagð1;4;1Þ, I is
the identity matrix. In either case the eigenvalues of M satisfy
0 < c 6 kðMÞ < C, where c ¼ 4;C ¼ 8 for d ¼ 2 and c ¼ 2;C ¼ 6 for
d ¼ 3. This yields the following relation
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cgh2Ap 6 G 6 cGh2Ap; ð27Þ

with some positive constants cg and Cg independent of h and

d ¼ 2 : Ap ¼ I � Ln þ Ln � I;

d ¼ 3 : Ap ¼ I � I � Ln þ I � Ln � I þ Ln � I � I:

Note that Ap is the usual 5-point (7-point in 3D) approximation of
the minus Laplace operator with Neumann boundary conditions
on X2. Therefore, (27) yields

�cgh2Dp
h 6 Gh 6 �cGh2Dp

h:

Now the same arguments as in the case (9) prove conditions (11)–
(13). h

Further we need two auxiliary finite element spaces:
Uh � ðH1

0ðXÞÞ
d denotes the space of continuous vector functions

uh bilinear on each grid element of t 2Th an vanishing on oX,
Ph � L2

0ðXÞ denotes the space of piecewise constant with respect
to Th scalar functions ph. We introduce two natural bijections:
wu : Uh ! Uh and wp : Ph ! Ph setting

ðwu 	 uhÞðxÞ ¼ uhðxÞ for x 2 X1 and ðwp 	 phÞðxÞ ¼ phðxÞ
for x 2 X2:

For both spaces Uh and Ph we use ð�; �Þ and k � k for the L2 scalar prod-
uct and norm. These two spaces form the well known Q1 � Q0 finite
element pair for the Stokes problem, which satisfy the following
‘weak’ LBB condition [20,34,9]:

sup
uh2Uh

ðph;r � uhÞ
kruhk P C0kphk � C1 h

X
c

Z
c
½ph�2 ds

 !1
2

8ph 2 Ph;

ð28Þ

with some positive constants C0; C1 independent of h. In the last
term one takes the sum over all internal faces (or edges if d ¼ 2)
of mesh elements, ½ph� denotes the jump of ph over c.

Lemma 4. The following relations hold for any ph 2 Ph, uh 2 Uh and
ph ¼ wp 	 ph, uh ¼ wu 	 uh :

h
d
2kphk ¼ kphk; ð29Þ

hdhph;divhuhi ¼ ðph;divuhÞ; ð30Þ

h
d
2krhuhk 6 Ckruhk; ð31Þ

hdhGhph;phiP ch
X

c

Z
c
½ph�2ds; ð32Þ

with some constants C; c > 0 independent of h.

Proof. Equalities (29) and (30) are easy to check by the straightfor-
ward computation. Let us check (31) for the 2D case first. To this
end, consider a reference square grid element T :¼ ð0;1Þ2 and a
scalar grid function uh with values uhð0;0Þ ¼ a, uhð0;1Þ ¼ b,
uhð1;1Þ ¼ c, and uhð1;0Þ ¼ d. The corresponding bilinear function
uh on T has the form

uhðx; yÞ ¼ að1� xÞð1� yÞ þ bð1� xÞyþ cxyþ dxð1� yÞ:

We may assume a ¼ 0 and ðih; jhÞ ¼ ð0; 0Þ. One computes

kruhk2
T ¼

1
3
½ðc � bÞ2 þ ðc � dÞ2 þ ðc � bÞbþ ðc � dÞdþ b2 þ d2�

P
1
6
½ðc � bÞ2 þ ðc � dÞ2 þ b2 þ d2�

¼ 1
6
½ðuiþ1;jþ1 � ui;jþ1Þ2 þ ðuiþ1;jþ1 � uiþ1;jÞ2 þ ðuiþ1;j � ui;jÞ2

þ ðui;jþ1 � ui;jÞ2�:
After appropriate scaling we take the sum over all grid elements to
obtain (31) with C ¼

ffiffiffi
3
p

. Similar arguments with the reference cube
prove the estimate (31) in the 3D case with C ¼ 3ffiffi

2
p .

We verify (32) using (12): Let d ¼ 2, then

h
X

t

Z
c
½ph�2 ds ¼ h

XN�1

i;j¼1

hððpiþ1;j � pi;jÞ
2 þ ðpi;jþ1 � pi;jÞ

2Þ

¼ �h4hDp
hph;phi 6 Ch2hGhph;phi:

Exactly the same argument proves (32) for d ¼ 3. h

The homogeneous boundary conditions for functions in Uh al-
low us to consider divhDh as a symmetric non-singular (due to
(18)) operator on Uh.

Lemma 5. The following inequality holds on Ph

cSIh 6
1
2

divh½divhDh��1rh þ Gh 6 CSIh; ð33Þ

with some positive constants CS; cS independent of h, Ih denotes the
identity operator on Ph.

Proof. For arbitrary ph 2 Ph we have

1
2

divh½divhDh��1rh þ Gh

� �
ph; ph

� �
¼ sup

0–uh2Uh

hph;divhuhi2

h�2½divhDh�uh;uhi
þ hGhph;phi

¼ sup
0–uh2Uh

hph;divhuhi2

2kDhuhk2 þ hGhph;phi: ð34Þ

The upper bound in (33) now follows from (13) and (19). To
prove the low bound we proceed with (34) using (18), (30), (31)
and (32):

1
2

divh½divhDh��1rh þ Gh

� �
ph; ph

� �
P

1
2CD

sup
0–uh2Uh

hph;divhuhi2

krhuhk2 þ hGhph; phi

P chd sup
0–uh2Uh

ðph;divuhÞ2

kruhk2 þ h
X

c

Z
c
½ph�2 ds

 !
;

with some mesh-independent c > 0. Now (28) and (29) give

hðdivh½divhDh��1rh þ GhÞph; phiP ckphk
2
;

with some mesh-independent c > 0. h

On the product space Uh � Ph we introduce the norm

jjjuh;phjjj ¼ h
d
2ðkuhk2

Uh
þ kphk

2
Ph
Þ

1
2 :¼ h

d
2ðkDhuhk2 þ kphk

2Þ
1
2:

The h
d
2 scaling factor is introduced to make the norm consistent with

a continuous norm.
Consider the finite difference Stokes operator on Uh � Ph:

Ah :¼
�2divhDh rh

�divh �Gh

� �
:

The following stability estimate is the main result for the Stokes
problem (42).

Theorem 6. The discrete Stokes operator satisfies

jjjA�1
h jjj 6 C; ð35Þ

with the constant C ¼ 1þ 1ffiffi
2
p

� �2
maxfð2cDÞ�1

; c�1
S g independent of h.

Proof. Denote Lh ¼ 2divhDh, Sh :¼ divhL�1
h rh þ Gh and consider the

following factorization
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Ah :¼
Ih 0

L�1
h divh Ih

� � �Lh 0
0 �Sh

� �
Ih �L�1

h rh

0 Ih

 !
:

Thus, for the inverse operator we have

A�1
h :¼ Ih L�1

h rh

0 Ih

 !
�L�1

h 0

0 �S�1
h

 !
Ih 0

�L�1
h divh Ih

� �
: ð36Þ

Let us estimate each factor on the right-hand side of (36) separately.
For the first term we have

Ih L�1
h rh

0 Ih

 !					
					

					
					

					
					 6 1þ kL�1

h rhkPh!Uh
: ð37Þ

For arbitrary ph 2 Ph consider uh ¼ L�1
h rhph, then we get

kuhk2
Uh
¼ �1

2
hLhuh;uhi ¼ �

1
2
hrhph;uhi ¼

1
2
hph;divhuhi

6
1ffiffiffi
2
p kphkkDhuhk:

Therefore

kL�1
h rhkPh!Uh

6
1ffiffiffi
2
p : ð38Þ

The third term on the right-hand side of (36) is adjoint to the first
one and hence enjoys the same estimate. For the second factor we
have

�L�1
h 0

0 �S�1
h

 !					
					

					
					

					
					 6 maxfkL�1

h kUh!Uh
; kS�1

h kPh!Ph
g: ð39Þ

For arbitrary vh 2 Uh and uh ¼ �L�1
h vh we get

kuhk2
Uh
¼ �1

2
hLhuh;uhi ¼

1
2
hvh;uhi 6

1
2
kuhkkvhk

6
1

2cD
kDhuhkkDhvhk:

This yields

kL�1
h kUh!Uh

6 ð2cDÞ�1
: ð40Þ

Finally, since Sh is symmetric the low bound in (33) implies

kS�1
h kPh!Ph

¼ k�1
minðShÞ 6 c�1

S : ð41Þ

Now (36) and estimates (36)–(41) give

jjjA�1
h jjj 6 1þ 1ffiffiffi

2
p

� �2

maxfð2cDÞ�1
; c�1

S g: �

The convergence result follows immediately from the theorem and
approximation properties of the discrete operators:

Corollary 1. Assume that the solution fu; pg of the Stokes problem:

� Duþrp ¼ f on X;

divu ¼ 0 on X;

u ¼ 0 on oX

is sufficiently smooth and fuh;phg is the solution of the discrete Stokes
problem (17) with fh ¼ ðfÞh, then

jjjðuÞh � uh; ðpÞh � phjjj ¼ OðhÞ:

Note that we proved the first order convergence for velocity
in the ‘gradient’ norm. Numerical experiments show the (ex-
pected) second order of convergence for the velocity in the L2

norm. It is also straightforward to conclude from (7) for ss ¼ 0
that one has the first order convergence in the L2-norm for the
stress tensor.
Remark 7. Assume that the stabilization term Gh is not added to
the discrete divergence constraint, then the non-trivial kernel of
rh makes the matrix Sh singular and thus A�1

h is not well-defined.
Moreover, in this case the minimal nonzero eigenvalue of Sh tends
to zero as h! 0. Indeed, in [7] such an h-dependence was shown
for the case of Q1 � Q0 finite element discretization. Due to the
close relation between this discretization and the finite-difference
method, see Lemma 4, the same h-dependence of kðShÞ should be
expected. Therefore, factorization (36) shows that in the case of
Gh 
 0 the norm of A�1

h cannot be uniformly bounded for h! 0
even on Uh � ðkerrhÞ?.

Remark 8. Finally, we remark on the following discrete Stokes
problem:

� Dhuh þrhph ¼ fh;

divhuh þ Ghph ¼ 0;
uhjoX1

¼ 0:
ð42Þ

Unlike the continuous case, the discrete Stokes problem (42) is not
equivalent to (17). We briefly discuss (42) for the following reasons.
The algorithm for the Bingham problem from the next section re-
quires the solution of the discrete Stokes problem on every itera-
tion. Commonly used block iterative methods for the Stokes
problem need an approximation to the velocity sub-matrix inverse,
cf. remark (10). For the approximation of D�1

h many efficient meth-
ods such as the multigrid algorithm are available. At the same time
we found that the performance of a standard multigrid for solving
½divhDh�uh ¼ gh may be not satisfactory. That is why we prefer solv-
ing (42) instead of (17) and introduce appropriate correction terms
to the right-hand side. Furthermore, if one uses the semi-staggered
scheme for Newtonian flows, then (42) may be considered as a more
natural way to discretize the Stokes problem. The stability and con-
vergence results similar to the Theorem 6 and Corollary 1 hold also
for the system (42) with a slightly different product norm on
Uh � Ph:

k½uh; ph�k ¼ h
d
2ðkuhk2

Uh
þ kphk

2
Ph
Þ

1
2 :¼ h

d
2ðkrhuhk2 þ kphk

2Þ
1
2;

instead of the jjj�; �jjj norm. The proof can be adjusted in an obvious
way.
4. Iterative method

The iterative method we use is motivated by the variational
inequality and augmented Lagrangian approach by Lions, Glowin-
ski and others, see [14,18,19]. First we recall the idea of the ap-
proach for the continuous problem. Further we adapt it for the
particular discretization suggested in Section 2. To this end, con-
sider the following functional on V ¼ fv 2 ðH1

0ðXÞÞ
djdivv ¼ 0g

JðvÞ ¼ l
Z

X
jDðvÞj2 dxþ ss

Z
X
jDðvÞjdx� 2

Z
X

f � v dx:

The velocity solution u of the Bingham problem (1)–(4) minimizes J
on V [14]:

u ¼ arg min
v2V

JðvÞ:

To overcome the problem of non-differentiability of
R

X jDðvÞjdx it
was suggested in [18] to introduce the new variable c ¼ DðvÞ 2 Q ,
where Q ¼ fqjq 2 ðL2ðXÞÞn�n; qT ¼ qg and consider the following
Lagrangian

Lðv; c; sÞ ¼ l
Z

X
jcj2 dxþ ss

Z
X
jcjdx

þ
Z

X
ðDðvÞ � cÞ : sdx� 2

Z
X

f � v dx:
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Thus one looks for the solution of the Bingham problem fu; c; sg as
the saddle point of L:

fu; c; sg ¼ arg min
l2Qv2V

max
n2Q

Lðv; l; nÞ:

For a given n and l the Lagrangian L is not coercive with respect to
v. To make it coercive one may consider the augmented Lagrangian
Lr : V � Q � Q ! R

Lrðv; c; sÞ ¼Lðv; c; sÞ þ r
Z

X
jDðvÞ � cj2 dx; r P 0:

with some penalty parameter r > 0. For finding the saddle point of
Lr one may use the Uzawa type algorithm suggested in [19]: For
given initial guess c0; s0 and n ¼ 0;1;2; . . .

1. Find unþ1 2 V such that

Lrðunþ1; cn; snÞ 6Lrðv; cn; snÞ 8v 2 U:

2. Find cnþ1 such that

Lrðunþ1; cnþ1; snÞ 6Lrðunþ1; l; snÞ 8l 2 Q :

3. Set snþ1 :¼ sn þ 2rðDðunþ1Þ � cnþ1Þ. It was proved in [19] that the
algorithm converges for all r > 0.

Based on the above Uzawa type algorithm for the continuous
Bingham problem we deduce below iterative method for solving
the following discrete Bingham problem:

� divhsh þrhph ¼ fh; ð43Þ
divhuh þ Ghph ¼ 0; ð44Þ
uhjoX1

¼ ub
h; ð45Þ

where

sh ¼ 2lDhuh þ ss
Dhuh

jDhuhj
; if jDhuhj–0;

jshj 6 ss; if jDhuhj ¼ 0:
ð46Þ

The iterative method for solving problem (43)–(46) reads:

Step 1: Given cn
h 2 Q h and sn

h 2 Q h find the solution unþ1
h ; pnþ1

h of
the discrete Stokes problem:

� rDhunþ1
h þrhpnþ1

h

¼ divhðsn
h � 2rcn

hÞ � rðDh � eDhÞun
h þ rrhGhpn

h þ fh; ð47Þ
divhunþ1

h þ Ghpnþ1
h ¼ 0; ð48Þ

uhjoX1
¼ ub

h:

Step 2: Compute cnþ1
h 2 Q h via

cnþ1
h :¼

0; if jsn
h þ 2rDhunþ1

h j < ss;

1� ss
jsn

h
þ2rDhunþ1

h
j

� �
sn

h
þ2rDhunþ1

h
2ðrþlÞ ; otherwise:

8><>: ð49Þ

Step 3: Set

snþ1
h :¼ sn

h þ 2rðDhunþ1
h � cnþ1

h Þ: ð50Þ

If ksnþ1 � snk > � for some � > 0 proceed with step 1.

Note that steps 2 and 3 of the algorithm amount to explicit
node-by-node calculations. On the step 1 one needs to solve the
discrete Stokes problem. Nowadays many iterative methods are
available to solve this problem efficiently, see, e.g. [4,30]. Proving
the convergence of the method (47)–(50) is beyond the scope of
this paper. The lemma below demonstrates that the fix point of
(47)–(50) is the solution to the finite-difference Bingham problem
(43)–(46)
Lemma 9. Assume ksn�1
h � sn

hk ¼ 0 for all n P N. Then the triple vnþ1
h ,

pnþ1
h , snþ1

h solves (43)–(46). Moreover, if (43)–(46) has a unique
solution then vnþ1

h , pnþ1
h , and snþ1

h do not depend on the choice of the
penalty parameter r > 0.

Proof. The equality ksn�1
h � sn

hk ¼ 0 and (50) imply

Dhvn
h ¼ cn

h: ð51Þ

Thanks to the condition (14) and relations (51) we can rewrite the
Eqs. (47) and (48) in the following way:

� divhs
n
h þrhpnþ1

h ¼ fh � rDhðvn
h � vnþ1

h Þ þ rrhGhðpn
h � pnþ1

h Þ; ð52Þ
divhvnþ1

h þ Ghpnþ1
h ¼ 0: ð53Þ

Introduce the notation

Th ¼ sn
h þ 2rDhvnþ1

h : ð54Þ

Taking (51) into account (for nþ 1 instead of n) we get from (49)

Dhðvnþ1
h Þ :¼

0; if jThj < ss;

1� ss
jTh j

� �
Th

2ðrþlÞ ; otherwise:

(

This relation is equivalent to

Th ¼ 2ðlþ rÞDhvnþ1
h þ ss

Dhvnþ1
h

jDhvnþ1
h j

; if jDhvnþ1
h j–0;

jThj 6 ss; if jDhvnþ1
h j ¼ 0:

Due to (54) we obtain

sn
h ¼ 2lDhvnþ1

h þ ss
Dhvnþ1

h

jDhvnþ1
h j

; if jDhvnþ1
h j–0;

jsn
hj 6 ss; if jDhvnþ1

h j ¼ 0:

ð55Þ

Since sn�1
h ¼ sn

h the relation (55) yields Dhvn
h ¼ Dhvnþ1

h . Hence the
discrete Korn’s inequality (21) and (22) imply vn

h ¼ vnþ1
h . Thus, we

get from (52) and (53)

� divhs
n
h þrhpnþ1

h ¼ fh; ð56Þ
divhvnþ1

h þ Ghpnþ1
h ¼ 0; ð57Þ

Therefore, the triple vnþ1
h ; pnþ1

h ; sn
h satisfies the system of finite-differ-

ence Eqs. (56) and (57), and constitutive relation (55), which is equiv-
alent to (43)–(46). Since the system (43)–(46) does not depend on the
parameter r, the uniqueness assumption ensures that the fix point of
the iterative method (47)–(50) is independent of r. h

Remark 10. The most computationally expensive part of the algo-
rithm is solving the discrete Stokes problem on step 1. The stability
results of the previous section allows a variety of iterative methods
to be used for this purpose. In our numerical experiments we use
preconditioned BiCGstab algorithm with the following block-trian-
gle preconditioner from [16]:

fAh :¼
eD�1

h 0

�divh
eSh

 !
;

where eDh is a preconditioner for the discrete Laplace operator andeSh is a preconditioner for the pressure Schur complement matrix
Sh ¼ divhD

�1
h rh þ Gh. In our experiments we define eDh as one

V(3,3) cycle of the standard multigrid method, providing a spectral
equivalent preconditioner of the optimal complexity [21]. Due to
estimates (33), which also holds with 2divhDh replaced by Dh, the
simple choice eSh :¼ Ih gives an effective preconditioner for Sh. Final-
ly we note that including inertia terms to the Bingham problem
would lead to the Oseen type problem on step 1, which can be trea-
ted within the same framework [16,26].



Table 1
Convergence of the FD solution and iteration number for the Stokes equations.

h kðuÞh � vhk log2
kðuÞh�vhk
kðuÞ2h�v2hk kðpÞh � phk log2

kðpÞh�phk
kðpÞ2h�p2hk

#Iter

2D test
1

32 6.21e–3 2.03 1.14e–1 1.95 15
1

64 1.52e–3 2.00 2.96e–2 1.81 17
1

128 3.79e–4 2.01 8.46e–3 1.72 17
1

256 9.44e–5 2.57e–3 17

3D test
1

16 2.544e–4 1.95 8.141e–3 1.77 30
1

32 6.537e–5 1.99 2.393e–3 1.82 30
1

64 1.654e–5 6.776e–4 31
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5. Numerical results

5.1. The Stokes problem

We start with verifying convergence results for the finite-differ-
ence scheme applied to the Stokes problem. In this case it is easy to
prescribe an analytical solution. The following example from [6]
was used in 2D:

u ¼
r2
2p

er2y

ðer2�1Þ sin 2pðer2y�1Þ
er2�1

� �
1� cos 2pðer1x�1Þ

er1�1

� �� �
;

� r1
2p

er1x

ðer1�1Þ sin 2pðer1x�1Þ
er1�1

� �
1� cos 2pðer2y�1Þ

er2�1

� �� �
;

8><>: ð58Þ

p ¼ r1r2 sin
2pðer1x � 1Þ

er1 � 1

� �
sin

2pðer2y � 1Þ
er2 � 1

� �
� er1xer2y

ðer1 � 1Þðer2 � 1Þ ; ð59Þ

with r1 ¼ 4; r2 ¼ 0:1. The solution (58) and (59) is illustrated in
Fig. 2, it simulates a rotating cavity vortex, whose center has coor-
dinates (x0; y0), x0 ¼ 1=r1 logððexpðr1Þ þ 1Þ=2Þu0:842, y0 ¼
1=r2 logððexpðr2Þ þ 1Þ=2Þu0:512 and maxXjuju1. Hence a boundary
layer occurs near the right part of the boundary.

For the 3D problem we use the example from [9]:

u ¼
xþ x2 þ xyþ x3y;

yþ xyþ y2 þ x2y2;

�2z� 3xz� 3yz� 5x2yz;

8><>:
p ¼ xyzþ x3y3z� 5:=32:

ð60Þ

Table 1 shows the discrete L2 norms of the errors in the velocity and
pressure with the analytical solutions (58)–(60). The right column
shows the maximum number of iteration of the preconditioned
BiCGstab method, cf. Remark 10, which is needed to reduce the
residual of the Stokes problem (47) and (48) by the factor 10�9.
The second order of convergence is observed for the velocity and al-
most the second order for the pressure, although only the OðhÞ the-
oretical bound was proved in the latter case. The performance of the
iterative method for the discrete Stokes problem was predicted to
be independent of the mesh size. This is confirmed by the numerical
results. In this numerical experiment and further on we use the sta-
bilization matrix Gh from (10) with a ¼ 0:25.

5.2. The Bingham problem

Observing the optimal convergence results for the Stokes prob-
lem we perform numerical experiments for the Bingham problem,
both in 2D and 3D cases. For all tests we use the algorithm (47)–
(50) with r ¼ 4 and the stopping criteria kDhunþ1

h � cnþ1
h k 6 10�5
1
−4

−2

0

2

4

Fig. 2. Velocity and pressu
or a maximum of 1000 iterations. The Stokes problem (47) and
(48) is solved iteratively with un

h; p
n as an initial guess, these itera-

tions are performed until the residual decreases at least by the fac-
tor 10�3. In all experiments we set l ¼ 1 and vary ss. We note that
the convergence of the algorithm (47)–(50) appears to be rather
slow and getting worse with the increase of ss in all tests consid-
ered below, see, e.g. Table 2.

5.2.1. Analytical test
Unlike the Stoke case, not a lot of reasonable analytical solu-

tions are known for the Bingham problem. One is the flow between
two planes:

u ¼

1
8 ð1� 2ssÞ2; if 1

2� ss 6 y 6 1
2þ ss;

1
8 ð1� 2ssÞ2 � ð1� 2ss � 2yÞ2
h i

; if 0 6 y < 1
2� ss;

1
8 ð1� 2ssÞ2 � ð2y� 2ss � 1Þ2
h i

; if 1 > y > 1
2þ ss;

8>>><>>>:
v ¼ w ¼ 0;
p ¼ �x:

ð61Þ

The rigid region consists of a constantly moving kernel for
1
2� ss 6 y 6 1

2þ ss. The yield stress ss ¼ 0:5 is the critical value,
when the flow region disappears. The solution can be considered
in the 3D as well as in the 2D case.

For the computation domain we consider the unit cube ð0;1Þd,
d ¼ 2;3. The boundary conditions in (47) are prescribed based on
(61). In this setting Table 2 shows the convergence of the differ-
ence solution for the several values of ss: erru, errp, and errs denote
the L2-norms for velocity, pressure and stress tensor, respectively.
The norm of the error in pressure and the stress tensor was mea-
sured only in the flow region. Although some convergence deteri-
oration can be noted compared to the Stokes case, the order of
convergence is largely the same. In 2D the performance of the
scheme was found to be similar.
0
0.2

0.4
0.6

0.8
1

0

0.5

re from (58) and (59).



Fig. 3. Stream-function isolines, isobars and rigid zones, 2D problem. Upper pictures: ss ¼ 1 and ss ¼ 2; bottom: ss ¼ 5 and ss ¼ 10.

Table 2
Convergence of the FD solution and iteration number for the 3D Bingham flow (61).

h erru errp errs #Iter erru errp errs #Iter

ss ¼ 0 ss ¼ 0:1
1

16 2.63e–4 5.19e–3 3.37e–3 7 2.98e–4 1.37e–2 5.79e–3 44
1

32 6.69e–5 1.50e–3 1.103e–3 7 7.37e–5 4.56e–3 2.57e–3 33
1

64 1.65e–5 3.84e–4 3.726e–4 7 2.01e–5 2.19e–4 1.63e–3 53

ss ¼ 0:2 ss ¼ 0:3
1

16 2.91e–4 2.19e–2 9.56e–3 56 2.85e–4 3.86e–2 1.07e–3 153
1

32 7.72e–5 8.46e–3 4.88e–3 77 8.02e–5 1.22e–2 4.10e–3 156
1

64 1.99e–5 2.46e–3 1.55e–3 78 1.97e–5 4.01e–3 2.37e–3 138
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5.2.2. Driven cavity test
The next test is the two-dimensional and three-dimensional

driven-cavity problem: X ¼ ð0;1Þd, f ¼ 0, with uðxÞjz¼1 ¼ ð1;0;0Þ
and homogeneous Dirichlet boundary conditions on the rest part
of the boundary. The solution has a non-physical singular behavior
in the upper corners, however, the problem serves as a standard
benchmark for incompressible CFD codes.

In Figs. 3 and 5 we show the stream-function isolines, isobars
and rigid zones for different values of ss h ¼ 1

256


 �
. For finding rigid

zones we use the following criteria: jshj 6 ð1þ eÞss, with an ad hoc
e ¼ 10�3 which is introduced to remove some oscillations of the
modula of the discrete stress tensor near the critical value ss. For
a better resolution of rigid zones one likely needs to refine adap-
tively the mesh near the interface between solid and fluid regions.
Not so many quantitative results for the Bingham driven cavity
flow can be found in the literature, so a somewhat limited compar-
ison with results form other papers can be made. Moreover, we
have not found any other results for the 3D Bingham driven cavity
flow except the paper [15], where the problem with periodic con-
ditions in y-direction was studied, thus the solution computed in
[15] is essentially two-dimensional. With these reservations we re-
mark that the shape and the position of the rigid zones in the 2D
case are in a good agreement with the results from [15,22,31] com-
puted with finite element approximations. The rigid regions are
growing when the stress yield increases. The results with stabilized
semi-staggered grid for a regularized cavity problem (not shown
here) are also close to those obtain with the MAC-type scheme in
[23]. We note some overlap of the center rigid zone and the
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Fig. 4. Horizontal velocity profiles. Left: uð0:5; yÞ (2D cavity); Right: uð0:5; 0;5; zÞ (3D cavity).

Table 3
Position of the center and the vortex intensity for the 2D driven cavity.

ss 0 1 2 5 10

/min �0.09980 �0.08978 �0.08233 �0.07881 �0.05697
xm 0.50 0.50 0.50 0.50 0.50
ym 0.7646 0.7881 0.8057 0.8350 0.8623

Fig. 5. Rigid zones for the 3D cavity with ss ¼ 1;2;5;10. Left: xz-plane for y ¼ 0:5; Right: yz-plane for x ¼ 0:5.
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stream-function isolines. This phenomena can be also noted in the
result shown in other papers: [13,15,22,35].

Fig. 4 shows the velocity x-component profiles for x ¼ 0:5. These
profiles are in a very good agreement with those found in [35] with
P1/P1 stabilized elements. Other quantities of interest are the min-
imum value of the stream function (vortex intensity) and the coor-
dinates of the vortex center. The computed values of these
quantities for various ss are given in Table 3. For the Newtonian
flow (ss ¼ 0) the present values are very close to the reference val-
ues /min ¼ �0:10007627, ym ¼ 0;7644162 computed in [1,8] with
higher order methods. As the stress yield increases the vortex cen-
ter travels to the upper lid and its intensity decreases. The same
trend with similar values of the vortex intensity and position were
achieved in [22] using a finite element method. The computed rigid
regions for the 3D cavity problem are shown in Fig. 5 h ¼ 1
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. The
regions are growing when the stress yield increases. The shape of
the center region is somewhat different from the 2D case.
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