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Abstract We consider a stationary Stokes problem with a piecewise constant vis-
cosity coefficient. For the variational formulation of this problem we prove a well-
posedness result in which the constants are uniform with respect to the jump in the
viscosity coefficient. We apply a standard discretization with a pair of LBB stable
finite element spaces. The main result of the paper is an infsup result for the discrete
problem that is uniform with respect to the jump in the viscosity coefficient. From
this we derive a robust estimate for the discretization error. We prove that the mass
matrix with respect to some suitable scalar product yields a robust preconditioner
for the Schur complement. Results of numerical experiments are presented that
illustrate this robustness property.

Mathematics Subject Classifications: 65N15 · 65N22 · 65N30 · 65F10

1 Introduction

In this paper we treat the following Stokes problem on a bounded connected Lip-
schitz domain � in d-dimensional Euclidean space (d = 2, 3): Find a velocity u
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and a pressure p such that

−div (ν(x)∇u) + ∇ p = f̃ in �k, (1)

div u = 0 in �k, k = 1, 2 (2)

[u] = 0, [σ(u, p) n] = g on � (3)

u = 0 on ∂�, (4)

with a piecewise constant viscosity:

ν =
{

1 in �1
ε > 0 in �2.

(5)

The subdomains�1, �2 are assumed to be Lipschitz domains such that�1∩�2 =∅
and � = �1 ∪ �2. By � we denote the interface between the subdomains: � =
∂�1 ∩ ∂�2. Other notations are standard: σ(u, p) = −p I + ν ∇u; n is a unit
normal vector to �; [a]|� = (a|�1 − a|�2)|� .

An important motivation for considering this type of Stokes equations comes
from two-phase incompressible flows. Often such problems are modeled by Navier-
Stokes equations with discontinuous density and viscosity coefficients. The effect
of interface tension can be taken into account by using a special localized force
term at the interface. The latter approach is known as the continuum surface force
(CSF) model, cf. [5]. A well-known technique for capturing the unknown interface
is based on the level set method, cf. [26,20,14] and the references therein. If in such
a setting one has highly viscous flows then the Stokes equations with discontinuous
viscosity are a reasonable model problem. We note that from a modeling point of
view it would be better to take the full velocity tensor D(u) := 1

2

(∇u + (∇u)T
)

instead of ∇u in (1). To make the presentation more transparent we decided to
present the analysis for the case with ∇u. The analysis can be extended to the case
with the full velocity tensor. We comment on this in Section 6.

For pure diffusion problems (Poisson equation) with a discontinuous diffusion
coefficient one can find analyses of discretization methods [1,2,6,15,22], error
estimators [21,4] and iterative solvers [8,9,23,28] in the literature. For the Stokes
problem with discontinuous viscosity, however, we did not find any theoretical
analysis focusing on ν-dependence of results. This paper presents an analysis of a
finite element method and of a solver for the discretized Stokes interface problem
together with some results for the weak formulation of (1)–(4).

We introduce a variational formulation of the equations (1)–(4). We use the
notation V := H1

0 (�)d for the velocity space. For the pressure space some fac-
torization of L2(�) is used. It appears that for this problem it is convenient to
use:

M :=
{

p ∈ L2(�) |
∫

�

ν−1 p(x) dx = 0

}
. (6)

The variational problem reads as follows: given f ∈ V′ find {u, p} ∈ V × M such
that {

(ν∇u, ∇v) − (div v, p) = 〈f, v〉 for v ∈ V,
(div u, q) = 0 for q ∈ M .

(7)
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Here and in the remainder the L2 scalar product and associated norm are denoted
by (·, ·), ‖ · ‖, respectively. The functional f in (7) takes into account body forces f̃
as well as interface forces g from the strong formulation (1)–(4). The bilinear form
(ν∇·, ∇·) defines a scalar product on V. We use the norm induced by this scalar
product:

‖u‖V := (ν∇u, ∇u)
1
2 for u ∈ V. (8)

On M , apart from the L2 scalar product we will also use a weighted L2 scalar
product:

(p, q)M :=
∫

�

ν−1 p q dx = (ν−1 p, q) for p, q ∈ M, (9)

and ‖p‖M := (p, p)
1
2
M . In the analysis we use the ν-dependent norm

(‖ · ‖2
V +

‖ · ‖2
M

) 1
2 on the product space V × M . In Section 2 we prove a continuity and an

infsup result that are uniform with respect to the parameter ε. Using standard argu-
ments this then yields uniform well-posedness of the continuous Stokes problem.

In Section 3 we consider the discrete variational problem in a pair of finite
element spaces (Mh ⊂ M , Vh ⊂ V) that are assumed to be LBB stable. As a main
result of this paper we present a discrete infsup result that is uniform with respect to
the parameters h (mesh size) and ε. This result is used to derive a (sharp) uniform
bound for the discretization error.

In Section 4 we prove that the mass-matrix with respect to the scalar product
(9) in the pressure subspace Mh is spectrally equivalent to the Schur complement
uniform in the parameters h and ε. In combination with known results on block-
preconditioning and on multigrid this then implies optimality results for certain
iterative methods. For the Uzawa method and a preconditioned MINRES method
we present results of numerical experiments in Section 5. In Section 6 we comment
on closely related Stokes interface problems. We consider the case with the full
velocity tensor D(u) instead of ∇u in (1) and the problem where instead of M we
use the more standard space L2

0(�) for the pressure.

2 The continuous problem

In this section we analyze the variational problem (7). By definition we have ellip-
ticity and continuity of the bilinear form (ν∇·, ∇·) in the space (V, ‖ · ‖V) :
(ν∇u, ∇u) = ‖u‖2

V. Continuity of the bilinear form (div ·, ·) is shown in the
following lemma.

Lemma 1 The inequality

|(div u, p)| ≤ √
d‖u‖V‖p‖M

holds for all u ∈ V, p ∈ M.

Proof This result immediately follows from the Cauchy inequality and the estimate

‖ν 1
2 div u‖ ≤ √

d‖u‖V for u ∈ V. ��
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We now derive a uniform (w.r.t. ν) infsup property corresponding to the problem
(7). It generalizes the well-known Nečas inequality:

c(�)‖p‖ ≤ ‖∇ p‖−1 := sup
u∈V

(div u, p)

‖∇u‖ ∀ p ∈ L2(�) : (p, 1) = 0, (10)

with c(�) > 0. We will need an equivalent form of (10): for any p ∈ L2(�) such
that (p, 1) = 0 their exists u ∈ V such that

‖p‖2 = (div u, p) and c(�)‖∇u‖ ≤ ‖p‖. (11)

We introduce the piecewise constant function

p̄ =
{ |�1|−1 on �1

−ε|�2|−1 on �2.
(12)

and the one-dimensional subspace M0 := span{ p̄} of M . The proof of theorem 1
relies on the (·, ·)M -orthogonal decomposition M = M0 ⊕ M⊥

0 . For p ∈ M we use
the notation

p = p0 + p⊥
0 , p0 ∈ M0, p⊥

0 ∈ M⊥
0 (13)

One easily verifies that

M⊥
0 =

{
p ∈ M |

∫
�1

p dx =
∫

�2

p dx = 0

}

Theorem 1 There exists a constant C > 0 independent of ν such that

sup
u∈V

(div u, p)

‖u‖V
≥ C‖p‖M for all p ∈ M

Proof Fix an arbitrary p ∈ M . We first consider the component p⊥
0 from the

decomposition p = p0 + p⊥
0 in (13). Since p⊥

0 |�k ∈ L2(�k) and (p⊥
0 , 1)�k = 0

for k = 1, 2, we can apply the Nečas inequality in the form (11) in each subdomain.
Thus there exists a function u1 ∈ H1

0 (�1)
d such that the following relations hold

with a constant c(�1) > 0:

‖p⊥
0 ‖2

�1
= (div u1, p⊥

0 )�1 and c(�1)‖∇u1‖�1 ≤ ‖p⊥
0 ‖�1 . (14)

Similarly, using a scaling argument, it follows that there exists u2 ∈ H1
0 (�2)

d such
that

‖ε− 1
2 p⊥

0 ‖2
�2

= (div u2, p⊥
0 )�2 , c(�2)‖ε 1

2 ∇u2‖�1 ≤ ‖ε− 1
2 p⊥

0 ‖�2 , (15)

with c(�2) > 0. Extending u1 and u2 by zero on the whole domain � and taking
a sum of (14) and (15) we get

‖p⊥
0 ‖2

M = (div ũ, p⊥
0 ) and c1‖ũ‖V ≤ ‖p⊥

0 ‖M , ũ := u1 + u2 (16)

with c1 = min{c(�1), c(�2)}.
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For the component p0 we define p̃0 := ν−1 p0. Note that ( p̃0, 1)=(p0, 1)M =0
and thus we can use the Nečas inequality in �. Hence there exists ū ∈ H1

0 (�)d

such that

‖ p̃0‖2 = (div ū, p̃0) and c(�)‖∇ū‖ ≤ ‖ p̃0‖. (17)

Due to the definition of M0 we obtain

‖p0‖2
M = C(ε, �)‖ p̃0‖2 and (div ū, p0) = C(ε, �)(div ū, p̃0)

with C(ε, �) = ε|�1|+|�2||�1|+|�2| . Note that

C(ε, �) ≥ c̃(�) max{1, ε}, c̃(�) := min

{ |�1|
|�| ,

|�2|
|�|

}
(18)

From this and (17) we deduce

‖p0‖2
M = (div ū, p0) and c3 max{1,

√
ε}‖∇ū‖ ≤ ‖p0‖M , (19)

with c3 = c(�) c̃(�)
1
2 a constant independent of ν. We also have:

(div ũ, p0) = 0, ‖ν 1
2 div ū‖ ≤ √

d‖ū‖V,

‖ū‖V ≤ max{1,
√

ε}‖∇ū‖ ≤ c−1
3 ‖p0‖M .

Using this and the results in (16) and (19) we get for arbitrary α > 0

(div (αũ + ū), p) = α‖p⊥
0 ‖2

M + ‖p0‖2
M +

(
div ū, p⊥

0

)

≥ α‖p⊥
0 ‖2

M + ‖p0‖2
M − c−1

3

√
d‖p0‖M‖p⊥

0 ‖M

≥ 1

2
‖p‖2

M if α ≥ 1

2

(
1 + d

c2
3

)
=: α0.

Thus if we take u = α0ũ + ū we get

‖p‖2
M ≤ 2(div u, p) and ‖u‖2

V ≤ 2
(
α2

0‖ũ‖2
V + ‖ū‖2

V
) ≤ c‖p‖2

M ,

with a constant c independent of ν. ��
It follows that we have ellipticity of the bilinear form (ν∇·, ∇·), continuity of

the bilinear forms (ν∇·, ∇·) and (div ·, ·), and the infsup property in the norms
‖ · ‖V and ‖ · ‖M with constants that are independent of ν. Thus we have uniform
(w.r.t. ν) well-posedness of the continuous variational Stokes problem (7) in these
norms. Using standard arguments (cf. [17,10]) it can be shown that the problem
(7) has a unique solution and that the a priori estimate

(‖u‖2
V + ‖p‖2

M

) 1
2 ≤ c‖f‖V′ (20)

holds with a constant c independent of f and of ν.
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Remark 1 We comment on the dependence of the dual norm ‖f‖V′ in (20) on the
viscosity parameter ν. For this we need the Poincare type inequality

∥∥ν
1
2 v

∥∥ ≤ CP‖v‖V, for all v ∈ V. (21)

The optimal constant CP in (21) is uniformly bounded w.r.t. ν if one of the following
conditions is satisfied:

meas(∂�k ∩ ∂�) > 0 for k = 1, 2, (22)

meas(∂�1 ∩ ∂�) > 0 and ε ≤ C. (23)

The fact that the condition (22) is sufficient for uniform boundedness of CP follows
from lemma 1 and (the proof of) lemma 7 in [22]. The fact that the condition (23) is
sufficient for uniform boundedness of CP is proved with the following argument.
Due to (23) u vanishes on a part of ∂�1 with nonzero measure, hence

‖u‖�1 ≤ c ‖∇u‖�1 . (24)

holds. Therefore

‖u|�‖ = ‖u|∂�1‖ ≤ c ‖∇u‖�1 . (25)

In the subdomain �2 we have

ε‖u‖2
�2

≤ c ε
(‖∇u‖2

�2
+ ‖u|∂�2‖2) = c ε

(‖∇u‖2
�2

+ ‖u|�‖2) . (26)

Inequalities (24), (25), and (26) give the inequality (21) with a constant C inde-
pendent of ε and hence independent of ν.

Assume now that f ∈ L2(�)d and that one of conditions (22),(23) holds. Then
the Cauchy inequality and (21) immediately yield the a-priori estimate

(‖u‖2
V + ‖p‖2

M

) 1
2 ≤ c CP

∥∥ν− 1
2 f

∥∥, (27)

with cCP independent of f and of ν.

3 Finite element discretization

In this section we consider the discretization of the variational Stokes problem
using a family of pairs of conforming finite element spaces. For this we assume a
family of triangulations {Th} in the sense of [11,12]. An important assumption for
our analysis is that each triangulation Th is conforming w.r.t. the two subdomains
�1, �2 in the following sense:

∃ T (i)
h ⊂ Th : ∪

{
T | T ∈ T (i)

h

}
= �i , i = 1, 2 (28)

This assumption is easily fulfilled if �1 and �2 are polyhedral subdomains.
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Remark 2 In computational fluid dynamics for two-phase flow problems it is
(more) realistic to assume that � = ∂�1 ∩ ∂�2 is smooth. Then the assump-
tion (28) in general does not hold. However, in such applications it is common
practice to approximate � by a polyhedral discrete interface �h . In such a setting
the assumption (28) may still make sense. As far as we know no rigorous analysis
is available which for the (Navier)-Stokes equations shows the effect of approxi-
mating the smooth interface � by a piecewise smooth interface �h . A theoretical
analysis of this effect for a Poisson interface problem can be found in [15]. The
results in [15], however, are not robust with respect to the jump in the diffusion
coefficient.

We assume a pair of finite element spaces Vh ⊂ V and Qh ⊂ L2
0(�) = { p ∈

L2(�) | (p, 1) = 0 } that is LBB stable with a constant β̂ independent of h:

inf
qh∈Qh

sup
vh∈Vh

(div vh, qh)

‖∇vh‖‖qh‖ ≥ β̂ > 0 . (29)

Note that due to the different normalization in the space M (namely (p, 1)M = 0)
we in general have Qh � M . To maintain conformity we use the space

Mh = { ph = p̃h + α1 | p̃h ∈ Qh, α ∈ R such that (ph, 1)M = 0 }.
Note that Mh ⊂ M and that functions in Mh and in Qh only differ by a constant.

For the analysis in this section it is convenient (but not necessary) to introduce
the bilinear form a : (V × M) × (V × M) → R

a(u, p; v, q) := (ν∇u, ∇v) − (div v, p) + (div u, q) (30)

and formulate the discrete problem as follows: find {uh, ph} ∈ Vh × Mh such that

a(uh, ph; vh, qh) = 〈f, vh〉 for all {vh, qh} ∈ Vh × Mh . (31)

In this section we will analyze continuity (theorem 3) and discrete stability (the-
orem 4) of the bilinear form a(·, ·). The estimates are uniform with respect to the
mesh size parameter h and the diffusion coefficient ν. As a corollary we then obtain
a uniform discretization error bound.

In the proof of the discrete infsup condition below we will use a decomposi-
tion which is similar, but not identical to the one from the previous section. Let
p̄h ∈ Mh be the M-orthogonal projection of p̄ on Mh ,

( p̄ − p̄h, qh)M = 0 for all qh ∈ Mh

and define the one-dimensional subspace M0,h := span( p̄h) of Mh . This induces
an (·, ·)M -orthogonal decomposition of M (and also of Mh): M = M0,h ⊕ M⊥

0,h,
and for p ∈ M we use the notation

p = p0,h + p⊥
0,h, p0,h ∈ M0,h, p⊥

0,h ∈ M⊥
0,h . (32)

We will need the following elementary result
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Lemma 2 For all ph = p0,h + p⊥
0,h ∈ Mh we have

(
p⊥

0,h, 1
)

�k
= 0 for k = 1, 2.

Proof First note that by definition
(

p⊥
0,h, p̄h

)
M

= 0. Using
(

p⊥
0,h, p̄h

)
M

=(
p⊥

0,h, p̄
)

M
we then get

0 = 1

|�1|
(

p⊥
0,h, 1

)
�1

− 1

|�2|
(

p⊥
0,h, 1

)
�2

. (33)

Since p⊥
0,h ∈ M we have

(
p⊥

0,h, 1
)

M
= 0 and thus

(
p⊥

0,h, 1
)

�1
+ ε−1

(
p⊥

0,h, 1
)

�2
= 0. (34)

Combination of (33) and (34) proves the lemma. ��
In the analysis below we use the quantity

µh := ‖ p̄ − p̄h‖M

‖ p̄‖M
= inf

qh∈Mh

‖ p̄ − qh‖M

‖ p̄‖M
(35)

which measures the error made by approximating p̄ in the finite element pressure
space. We will need that this quantity tends to zero (with a rate independent of ν)
if h tends to zero. This issue is discussed in the following remark.

Remark 3 We always have µh ≤ 1. Furthermore, µh = 0 if Mh contains piecewise
constant finite elements. We now consider the case where Mh consists of continu-
ous functions which are piecewise polynomial on the triangulation Th . Let �h be
the subdomain of elements from Th which have at least one vertex lying on the
interface �. We assume |�h | ≤ cT h with a constant cT independent of h. Let I ( p̄)
be the continuous piecewise linear function which has value p̄|�1 at all vertices in
�1 \�, value p̄|�2 at all vertices in �2 \� and I ( p̄) = 0 on �. Note that I ( p̄) �= p̄
only in �h . A simple computation yields

‖ p̄‖2
M = |�1|−1 + ε |�2|−1

‖ p̄ − I ( p̄)‖2
M =

∫
�h

ν−1( p̄ − I ( p̄))2 dx ≤ |�h |(|�1|−2 + ε |�2|−2).
Thus we obtain

‖ p̄ − I ( p̄)‖M

‖ p̄‖M
≤ c

1
2
T

(|�1|−1 + |�2|−1) 1
2 h

1
2 . (36)

Note that I ( p̄) does not necessarily satisfy the orthogonality condition
(I ( p̄), 1)M = 0. Therefore we introduce the continuous piecewise linear func-
tion qh := I ( p̄) − α1 with α = (I ( p̄),1)M

‖1‖2
M

, i.e., (qh, 1)M = 0 and thus qh ∈ Mh .

Note that

|α| = |(I ( p̄) − p̄, 1)M |
‖1‖2

M

≤ ‖I ( p̄) − p̄‖M

‖1‖M
.
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We then finally get

µh ≤ ‖ p̄ − qh‖M

‖ p̄‖M
≤ ‖ p̄ − I ( p̄)‖M

‖ p̄‖M
+ |α|‖1‖M

‖ p̄‖M

≤ 2
‖ p̄ − I ( p̄)‖M

‖ p̄‖M
≤ 2c

1
2
T

(|�1|−1 + |�2|−1) 1
2 h

1
2

and thus we conclude that µh ≤ ch
1
2 holds with a constant c independent of ν.

For the analysis of the discrete infsup property we need the following result:

Lemma 3 For every p0,h ∈ M0,h there exists p0 ∈ M0 such that

‖p0,h − p0‖M = µh‖p0‖M (37)

‖p0,h‖M =
√

1 − µ2
h ‖p0‖M . (38)

Proof For p0,h ∈ M0,h we have p0,h = α p̄h with α ∈ R. We set p0 = α p̄.
Since p̄h is the M-orthogonal projection of p̄ on M0,h , p0,h is the M-orthogonal
projection of p0 on M0,h . This choice of p0 implies (37) by definition of µh . The
result in (38) follows from

‖p0‖2
M = ‖p0,h − p0‖2

M + ‖p0,h‖2
M = µ2

h‖p0‖2
M + ‖p0,h‖2

M

��
We need an additional assumption on Vh . Consider p̃ = ν−1 p̄ with p̄ defined
in (12). p̃ has zero mean: ( p̃, 1) = 0. We assume that Vh is such that there is a
constant β̂c > 0 independent of h such that

sup
vh∈Vh

(div vh, p̃)

‖∇vh‖ ≥ β̂c‖ p̃‖ . (39)

Remark 4 Assumption (39) is rather weak. We briefly discuss two cases in which
this assumption is satisfied. Let h0 be the mesh size parameter corresponding
to the coarsest triangulation. Then (39) trivially holds for Vh0 with a constant
β̂c = β̂c(h0). If the family of spaces {Vh}h≤h0 is nested then (39) with β̂c = β̂c(h0)
holds for any Vh . The second case is when Qh contains piecewise constant ele-
ments. Then (39) immediately follows from (29).

We now prove a discrete infsup stability result, which is a main result of this paper:

Theorem 2 There exist constants C1 > 0, C2 > 0 independent of ν and h such
that

if µh ≤ C1 then (40)

sup
uh∈Vh

(div uh, ph)

‖uh‖V
≥ C2‖ph‖M for all ph ∈ Mh . (41)
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Proof The proof is based on similar arguments as used in the proof of theorem 1.
All the constants that appear in the proof are independent of ν and of h.

Take an arbitrary ph ∈ Mh . We first consider the component p⊥
0,h from the

decomposition ph = p0,h+p⊥
0,h in (32). From lemma 2 it follows that (p⊥

0,h, 1)�k =
0 for k = 1, 2 and thus we can use the LBB property (29) in each subdomain. Hence
there exists a function u1 ∈ Vh with u1 = 0 on �2 such that the following relations
hold with a constant c1 > 0:

‖p⊥
0,h‖2

�1
= (div u1, p⊥

0,h)�1 and c1‖∇u1‖�1 ≤ ‖p⊥
0 ‖�1 . (42)

Similarly, using a scaling argument, it follows that there exists u2 ∈Vh with u2 =0
on �1 such that

‖ε− 1
2 p⊥

0,h‖2
�2

= (div u2, p⊥
0,h)�2 and c2‖ε 1

2 ∇u2‖�2 ≤ ‖ε− 1
2 p⊥

0,h‖�2 (43)

with a constant c2 > 0. Taking a sum of (42) and (43) we get for ũh := u1 + u2:

‖p⊥
0,h‖2

M = (div ũh, p⊥
0,h) and ĉ ‖ũh‖V ≤ ‖p⊥

0,h‖M , (44)

with ĉ := min{ c1, c2 }. We now consider the component p0,h . Take p0 ∈ M0 as in
lemma 3. Then we have

‖p0,h − p0‖M = µh‖p0‖M , ‖p0,h‖M =
√

1 − µ2
h ‖p0‖M . (45)

For p̃0 := ν−1 p0 we get ( p̃0, 1) = (p0, 1)M = 0. From assumption (39) it follows
that there exists ūh ∈ Vh such that

‖ p̃0‖2 = (div ūh, p̃0) and β̂c ‖∇ūh‖ ≤ ‖ p̃0‖.
Using the same arguments as in the proof of theorem 1 one can show that

‖p0‖2
M = (div ūh, p0) and ‖ūh‖V ≤ c−1

3 ‖p0‖M (46)

with c3 = β̂c c̃(�)
1
2 and c̃(�) the constant from (18). Also note that (div ũh,p0)=0.

Using this and the results in (44), (46) we obtain for arbitrary α > 0:

(div (αũh + ūh), ph) = α
(
div ũh, p0 + (p0,h − p0) + p⊥

0,h

)
+(

div ūh, p0 + (p0,h − p0) + p⊥
0,h

)
= α ‖p⊥

0,h‖2
M + α (div ũh, p0,h − p0)

+‖p0‖2
M + (

div ūh, (p0,h − p0) + p⊥
0,h

)
.

We assume that µ2
h ≤ 1

2 . From (45) we then get

‖p0,h‖2
M ≤ ‖p0‖2

M ≤ 2 ‖p0,h‖2
M
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and using ‖ν 1
2 div vh‖ ≤ √

d ‖vh‖V for vh ∈ Vh we obtain

(div (αũh + ūh), ph) ≥ α ‖p⊥
0,h‖2

M + ‖p0,h‖2
M − α

√
d‖ũh‖V‖p0,h − p0‖M

−√
d‖ūh‖V

(
‖p0,h − p0‖M + ‖p⊥

0,h‖M

)

≥ α ‖p⊥
0,h‖2

M + ‖p0,h‖2
M − α

√
2d ĉ−1µh‖p⊥

0,h‖M‖p0,h‖M

−c−1
3

√
2d‖p0,h‖M

(√
2µh‖p0,h‖M + ‖p⊥

0,h‖M

)

= α ‖p⊥
0,h‖2

M +
(

1 − 2c−1
3

√
d µh

)
‖p0,h‖2

M

−√
2d

(
αĉ−1µh + c−1

3

)
‖p0,h‖M‖p⊥

0,h‖M .

We take µh ≤ c3

4
√

d
. Then 1 − 2c−1

3

√
dµh ≥ 1

2 holds and we obtain, using the
Cauchy inequality,

(div (αũh + ūh) , ph) ≥
(

α − 2d
(
αĉ−1µh + c−1

3

)2
)

‖p⊥
0,h‖2

M + 1

4
‖p0,h‖2

M .

We now take

µh ≤ 1

α0
, α0 := 1

4
+ 2d

(
ĉ−1 + c−1

3

)2

and then for uh := α0ũh + ūh we obtain

(div uh, ph) ≥ 1

4
‖ph‖2

M

‖uh‖2
V ≤ 2

(
α2

0‖ũh‖2
V + ‖ūh‖2

V
) ≤ C ‖ph‖2

M

with a constant C independent of h and ν.
Hence for C1 = min

{ 1√
2
, c3

4
√

d
, 1

α0

}
we have the desired result. ��

Note that for h sufficiently small (independent of ν) the condition µh ≤ C1 in
(40) is fulfilled, cf. remark 3.

We now use standard arguments to derive continuity and stability results for the
bilinear form a(·, ·). For completeness we also present the proofs. We introduce
the product norm

‖|u, p‖| = (‖u‖2
V + ‖p‖2

M

) 1
2 {u, p} ∈ V × M

From (ν∇u, ∇u) = ‖u‖2
V and the result in lemma 1 we immediately obtain the

following continuity result:

Theorem 3 There exists a constant C independent of ν such that

a(u, p; v, q) ≤ C‖|u, p‖| ‖|v, q‖|
for all {u, p}, {v, q} ∈ V × M.
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A discrete infsup result is presented in the next theorem:

Theorem 4 Assume that the condition (40) is satisfied. There exists a constant
c > 0 independent of h and of ν such that

sup
{vh ,qh}∈Vh×Mh

a(uh, ph; vh, qh)

‖|vh, qh‖| ≥ c ‖|uh, ph‖| ∀ {uh, ph} ∈ Vh × Mh

Proof Take {uh, ph} ∈ Vh × Mh . From the infsup result in theorem 2 it follows
that there exists zh ∈ Vh such that ‖zh‖V = ‖ph‖M and −(div zh, ph) ≥ c‖ph‖2

M
with c > 0. Now take vh := uh + czh, qh := ph . We then get

a(uh, ph; uh, ph) = ‖uh‖2
V,

a(uh, ph; zh, 0) ≥ c

2
‖ph‖2

M − 1

2c
‖uh‖2

V.

We multiply the second inequality by c and add it to the first one. This gives

a(uh, ph; uh + czh, ph) ≥ 1

2
‖uh‖2

V + c2

2
‖ph‖2

M ≥ c1 ‖|uh, ph‖|2 , (47)

with c1 = 1
2 min{ 1, c2 }. Now note

‖|vh, ph‖|2 ≤ 2
(‖uh‖2

V + c2‖zh‖2
V
) + ‖ph‖2

M

= 2‖uh‖2
V + (

2c2 + 1
) ‖ph‖2

M ≤ 2
(
c2 + 1

) ‖|uh, ph‖|2. (48)

Combination of (47) and (48) completes the proof. ��
As for the continuous problem we get as a direct corollary that the discrete

problem (31) has a unique solution {uh, ph} and the inequality

‖|uh, ph‖| ≤ c−1‖f‖V′
h

holds, with the constant c from theorem 4. Moreover, if f ∈ L2(�)d , then using the
Cauchy inequality and the Poincare inequality (21) we obtain the a-priori estimate:

‖|uh, ph‖| ≤ c−1 CP
∥∥ν− 1

2 f
∥∥. (49)

We refer to remark 1 for a discussion of the dependence of the Poincare “constant”
on ν.

Using the continuity result in theorem 3 and the infsup result in theorem 4 we
can prove a discretization error bound using standard arguments.

Theorem 5 Let {u, p} be the solution of the continuous problem (7) and {uh, ph}
be the solution of the discrete problem (31). Assume that the condition (40) is sat-
isfied. There exists a constant C independent of h and of ν such that the following
holds:

‖|u − uh, p − ph‖| ≤ C min
vh∈Vh

min
qh∈Mh

‖|u − vh, p − qh‖|. (50)
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Proof For arbitrary vh ∈ Vh, qh ∈ Mh define e := u − vh, eh = uh − vh, g :=
p − qh, gh := ph − qh . The Galerkin orthogonality property yields

a(eh, gh; zh, rh) = a(e, g; zh, rh) for all {zh, rh} ∈ Vh × Mh .

Using this in combination with the continuity and infsup results we obtain, for
suitable {zh, rh} ∈ Vh × Mh :

‖|eh, gh‖| ≤ c−1 a(eh, gh; zh, rh)

‖|zh, rh‖| = c−1 a(e, g; zh, rh)

‖|zh, rh‖|
≤ c−1C‖|e, g‖|.

Now combine this with the triangle inequality ‖|u − uh, p − ph‖| ≤ ‖|eh, gh‖| +
‖|e, g‖|. ��

Based on the result in theorem 5 and using approximation properties of the
finite element spaces one can derive further bounds for the discretization error. For
such an analysis one needs regularity results for the continuous Stokes interface
problem. As far as we know, this regularity issue is largely unsolved.

4 Preconditioner for the Schur complement

In this section we analyze convergence properties of iterative solvers for the dis-
cretized problem. For this we first introduce the matrix-vector formulation of the
discrete problem.
In practice the discrete space Mh for the pressure is constructed by taking a standard
finite element space, which we denote by M+

h (for example, continuous piecewise
linear functions), and then adding an orthogonality condition:

Mh = { ph ∈ M+
h | (ph, 1)M = 0 }

Note that dim(Mh) = dim(M+
h ) − 1. Let n := dim(Vh), m := dim(M+

h ). We
assume standard (nodal) bases in Vh and M+

h and corresponding isomorphisms

JV : Rn → Vh, , JM : Rm → M+
h .

Let the stiffness matrices A ∈ Rn×n, B ∈ Rm×n and the mass matrix M̂ν ∈ Rm×m

be given by

〈Ax, y〉 = (ν∇ JV x, ∇ JV y) for all x, y ∈ Rn ,

〈Bx, y〉 = (div JV x, JM y) for all x ∈ Rn, y ∈ Rm , (51)

〈M̂νx, y〉 = (JM x, JM y)M for all x, y ∈ Rm .

Here 〈·, ·〉 denotes the standard Euclidean scalar product. We emphasize that the
matrix M̂ν is the mass matrix with respect to the (weighted L2) scalar product
(·, ·)M and thus may differ very much from the usual mass matrix with respect
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to the L2 scalar product (·, ·). After finite element discretization we have a linear
system of the form

(
A BT

B 0

)(
x
y

)
=

(
f
0

)
(52)

with f such that 〈f, y〉 = (f, JV y) for all y ∈ Rn . The Schur complement is denoted
by S := BA−1BT . Note that both S and the matrix in (52) are singular and have
a one-dimensional kernel. Define the constant vector e := J−1

M 1 = (1, . . . , 1)T ∈
Rm . Then we have ker(S) = span{e}. Note that

(JM y, 1)M = 0 ⇔ (JM y, JM e)M = 0 ⇔ 〈M̂νy, e〉 = 0

⇔ 〈y, M̂νe〉 = 0. (53)

Hence, with

(M̂νe)⊥ := { y ∈ Rm | 〈y, M̂νe〉 = 0 } (54)

we have Mh = { JM y | y ∈ (M̂νe)⊥ } and we get the following matrix-vector
representation of the discrete problem (31):

Find x ∈ Rn, y ∈ (M̂νe)⊥ such that (52) holds (55)

In preconditioned MINRES or (inexact) Uzawa type of iterative solvers for solving
this problem one needs preconditioners QA of A and QS of S. It is known that if
for QA we take a symmetric multigrid V -cycle then we have (cf. [8,9,28])

(1 − σA)QA ≤ A ≤ QA,

with a constant σA < 1 independent of h and of ν.
Below we show that the mass matrix M̂ν is an appropriate preconditioner for S.
From lemma 1 and theorem 2 we obtain

C2‖ph‖M ≤ sup
uh∈Vh

(div uh, ph)

‖uh‖V
≤ √

d ‖ph‖M for ph ∈ Mh (56)

with C2 > 0 independent of h and of ν, provided the condition µh ≤ C1 in (40) is
fulfilled. From the definition of the Schur complement it follows that for arbitrary
y ∈ Rm we have

〈Sy, y〉 = sup
uh∈Vh

(div uh, JM y)2

‖uh‖2
V

. (57)

As a direct consequence of (57) and (56) we get:

Theorem 6 Assume that µh ≤ C1 in (40) holds. For all y ∈ (M̂νe)⊥ we have

C2
2 〈M̂νy, y〉 ≤ 〈Sy, y〉 ≤ d 〈M̂νy, y〉

with constant C2 from (56).
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This theorem shows that the matrix M̂−1
ν S has a uniformly bounded spectral con-

dition number on the subspace (M̂νe)⊥.
One further relevant issue is how to compute of M̂−1

ν y efficiently. The next
lemma shows that either the matrix M̂ν can be replaced by a cheap diagonal precon-
ditioner or a good approximation of M̂−1

ν y can be obtained efficiently by applying
a preconditioned CG method with a diagonal matrix as preconditioner.

Lemma 4 Define the diagonal matrix M̄ν by (M̄ν)i i = ∑m
j=1(M̂ν)i j (diagonal

lumping). Then for all y ∈ Rm we have

C3〈M̄νy, y〉 ≤ 〈M̂νy, y〉 ≤ C4〈M̄νy, y〉
with constants C3 > 0 and C4 independent of ν and h.

Proof To show the result it is sufficient to estimate the eigenvalues of (M̄ν |τ )−1M̂ν |τ
with the local mass matrices M̄ν |τ and M̂ν |τ on each element τ of triangulation.
On every element ν is constant and thus we can use the result from [27], which
yields ν and h - independent bounds on each element. ��
A further elementary observation is

M̄νe = M̂νe. (58)

We briefly discuss two known iterative methods for solving the linear system in
(52). For these methods we will present numerical results in Section 5.

A basic method for saddle point problems is the Uzawa method. Applying a
block Gaussian elimination step to the system (52) yields the equivalent system(

I A−1BT

0 S

)(
x
y

)
=

(
A−1f

BA−1f

)

This system can be solved by block backward substitution, which yields the Uzawa
method:

1. Solve Az = f (59)

2. Solve Sy = Bz , y ∈ (M̂νe)⊥ (60)

3. Solve Ax = z − BT y (61)

For the systems in steps 1. and 3. we apply a standard multigrid solver. For the
system Sy = Bz we apply a preconditioned CG method (PCG). In each matrix-
vector multiplication with S we solve the linear system with A using the multigrid
method. For the iterands y1, y2, . . ., that are computed using the PCG method with
preconditioner denoted by M and with startvector y0, we have

yk − y0 ∈ span
{
M−1Se0, . . . , (M−1S)ke0}, e0 := y − y0 .

And thus 〈yk − y0, Me〉 = 0 for k ≥ 1, i.e., yk − y0 ∈ (Me)⊥ for k ≥ 1. If for the
preconditioner we take M ∈ {M̂ν, M̄ν} then it follows, using (58), that

yk ∈ (M̂νe)⊥ for k ≥ 1, if y0 ∈ (M̂νe)⊥. (62)
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This means that for both preconditioners the iterands remain in the subspace
(M̂νe)⊥, if the starting vector y0 is in this subspace. Since the solution y is also
sought in this subspace (cf. 60)) this implies that the errors ek := y − yk remain
in this subspace if y0 ∈ (M̂νe)⊥. Hence, only the spectral condition number of the
preconditioned matrix on this subspace is relevant. The results in theorem 6 and
lemma 4 yield that both M̂−1

ν S and M̄−1
ν S have optimal (i.e., independent of h and

ν) spectral condition numbers on this subspace.
In practice the Uzawa method is not very attractive because one has to solve

the A-systems accurately. In this paper we consider the Uzawa method to illus-
trate the robustness of the multigrid solver and of the preconditioners for the Schur
complement (cf. Section 5). In practical applications variants of the Uzawa method
that are much more efficient are used (cf., for example, [3,7,16,25,29]). Here we
consider a preconditioned MINRES method. For this we consider a symmetric
positive definite preconditioner

K̃ =
(

QA 0
0 QS

)
for K :=

(
A BT

B 0

)
.

Define the norm‖w‖K̃ := 〈K̃w, w〉 1
2 for w ∈ Rn+m . Given a starting vector w0 with

corresponding error e0 := w∗ − w0, then in the preconditioned MINRES method
one computes the vector wk ∈ w0 + span

{
K̃−1Ke0, . . . , (K̃−1K)ke0

}
which min-

imizes the preconditioned residual ‖K̃−1K(w∗ − w)‖K̃ over this subspace. For an
efficient implementation of this method we refer to the literature.

If we take QS ∈ {M̂ν, M̄ν}, then again we have that the approximations (and
errors) of the pressure remain in the subspace (M̂νe)⊥ if the starting approximation
y0 is in this subspace. From the literature (cf. [24,25]) it is known that the conver-
gence of the preconditioned MINRES method is fast if we have good precondition-
ers QA of A and QS of S (on the subspace (M̂νe)⊥). In the numerical experiments
in Section 5 we take a standard multigrid method for QA and QS = M̄ν .

5 Numerical experiments

In this section we present results of a few numerical experiments to illustrate the
behaviour of the Uzawa and preconditioned MINRES method applied to the Stokes
interface problem. We consider a problem as in (1)–(4) with

� = (0, 1)3, �2 =
(

0,
1

2

)3

.

For the discretization we start with a uniform tetrahedral grid with h = 1
2 and we

apply regular refinements to this starting triangulation. The resulting triangulations
satisfy the conformity condition (28). For the finite element discretization we used
the LBB stable pair of Hood-Taylor P2 − P1, i.e. continuous piecewise quadratics
for the velocity and continuous piecewise linears for the pressure. We performed
computations for the cases h = 1/16, h = 1/32 and with varying ε ∈ (0, 1]. Note
that for h = 1/32 we have approximately 7.5·105 velocity unknowns and 3.3·104
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pressure unknowns (n ≈ 7.5·105, m ≈ 3.3·104). We consider the linear system as
in (52) with solution (x, y) = 0. We take a fixed arbitrary starting vector (x0, y0),
with y0 ∈ (M̂ν)

⊥.
To test the robustness of the Schur complement preconditioning and of the multi-
grid solver we first consider the Uzawa method (59)–(61). The linear systems of
the form Ax = r that occur in the steps 1,2 and 3 are all solved using a standard
multigrid V-cycle with one pre- and one post-smoothing iteration with a symmetric
Gauss-Seidel method. The starting vector is x0 and the iteration is stopped when
for the result after k iterations, xk , the scaled residual satisfies

‖D−1(Axk − r)‖
‖D−1(Ax0 − r)‖ ≤ 10−10 , D := diag(A). (63)

Here ‖·‖ denotes the standard Euclidean norm. The system with the Schur comple-
ment in (60) is solved using a PCG method with preconditioner M̂ν . The systems
M̂νy = w are solved approximately using a PCG method with preconditioner M̄ν

and starting vector y0 and accuracy

‖M̄−1
ν (M̂νyk − w)‖

‖M̄−1
ν (M̂νy0 − w)‖ ≤ 10−10. (64)

The PCG method for the Schur complement system Sy = c has starting vector y0

and is stopped when

‖M̄−1
ν (Syk − c)‖

‖M̄−1
ν (Sy0 − c)‖ ≤ 10−6. (65)

In table 1 we present results for different h and ε values. Here #-MG denotes
the average number of multigrid iterations needed to satisfy (63), #-PCG-M the
average number of PCG iterations needed to satisfy (64) and #-PCG-S the average
number of PCG iterations needed to satisfy (65).

These results clearly show the robustness of the multigrid solver for the velocity
systems, of the preconditioner M̂ν for S and of the preconditioner M̄ν for M̂ν with
respect to variation of h and of ε. We now consider the effect of using the lumped
mass matrix M̄ν instead of M̂ν as a preconditioner for the Schur complement. In
the PCG method we use a stopping criterion as in (65). Note that in this PCG
method the preconditioner is now a diagonal matrix. In table 2 we present results
for different h and ε values. As expected, the lumped mass matrix M̄ν is a robust
preconditioner for the Schur complement S. In the final experiment we consider the
preconditioned MINRES method. For the preconditioner QA we take one iteration

Table 1 Uzawa method, preconditioner M̂ν

h 1/16 1/32

ε 1 10−2 10−4 10−6 1 10−2 10−4 10−6

#-MG 13 13 14 14 14 14 14 14
#-PCG-M 24 25 25 26 24 25 25 25
#-PCG-S 22 29 31 34 21 29 30 34
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Table 2 Uzawa method, preconditioner M̄ν

h 1/16 1/32

ε 1 10−2 10−4 10−6 1 10−2 10−4 10−6

#-PCG-S 40 48 48 58 39 50 52 59

Table 3 MINRES with preconditioner M̄ν

h 1/16 1/32

ε 1 10−2 10−4 10−6 1 10−2 10−4 10−6

#-PMINRES 62 68 98 157 50 58 85 116

of the multigrid method described above and we take the lumped mass matrix M̄ν

as preconditioner for the Schur complement. In table 3 we show the number of
iterations k (denoted by #-PMINRES), such that

∥∥∥K̃−1K

(
xk

yk

) ∥∥∥
K̃

≤ 10−6
∥∥∥K̃−1K

(
x0

y0

)∥∥∥
K̃

(recall that the right handside is 0). Note that for h = 1/32 one needs less iterations
than for h = 1/16.

6 Comments on closely related problems

We comment on extensions of the analysis to two other Stokes interface problems
that are very similar to problem (7).

Firstly, we consider the case with the full velocity tensor D(u) = 1
2

(∇u +
(∇u)T

)
instead of ∇u in (1). The corresponding weak formulation is as follows

(cf. (7)): given f ∈ V′ find {u, p} ∈ V × M such that
{∫

�
νD(u) : D(v) dx − (div v, p) = 〈f, v〉 for v ∈ V,

(div u, q) = 0 for q ∈ M .
(66)

Note that

D(u) : D(v) =
d∑

i, j=1

D(u)i, j D(v)i, j = tr
(
D(u)D(v)

)
.

For u ∈ V we introduce the notation ‖u‖2
VD

:= ∫
�

ν tr
(
D(u)2

)
dx . In the follow-

ing lemma we show that this functional defines a norm on V that is uniformly w.r.t.
ν equivalent to ‖ · ‖V.

Lemma 5 Assume that (22) or (23) holds. Then there exists a constant c > 0
independent of ν such that

c‖v‖V ≤ ‖v‖VD ≤ ‖v‖V for all v ∈ V. (67)



Analysis of a Stokes interface problem 147

Proof First note that

tr
(
D(v)2) = 1

4

d∑
i, j=1

(
∂ui

∂x j
+ ∂u j

∂xi

)2

≤
d∑

i, j=1

(
∂ui

∂x j

)2

.

This yields

‖v‖2
VD

=
∫

�

ν tr
(
D(v)2) dx ≤ (ν∇v, ∇v) = ‖v‖2

V

and thus the second inequality in (67) holds. To prove the first inequality in (67)
we use Korn’s inequality, cf. [13,18]. Let γ be a part of ∂� with nonzero measure,
then there exists a constant C such that

‖∇v‖2
� := ‖∇v‖2

L2(�)
≤ C

∫
�

tr
(
D(v)2) dx

for all v ∈ H1(�)d with v|γ = 0. Assume that (22) holds. Korn’s inequality holds
in each of the two subdomains and thus we get

‖∇v‖2
�i

≤ Ci

∫
�i

tr
(
D(v)2) dx for i = 1, 2. (68)

Hence

‖v‖2
V = ‖∇v‖2

�1
+ ε‖∇v‖2

�2

≤ max{C1, C2}
∫

�

ν tr
(
D(v)2) dx = max{C1, C2}‖v‖2

VD

which yields the first inequality in (67). Now assume that (23) holds. We then have
the result in (68) for i = 1. Using a trace theorem we get

‖∇v‖2
�2

≤ c ‖v|�‖2

H
1
2 (�)

≤ c ‖∇v‖2
�1

≤ c
∫

�1

tr
(
D(v)2) dx

Using the assumption that ε is bounded we obtain

‖v‖2
V = ‖∇v‖2

�1
+ ε‖∇v‖2

�2
≤ C

∫
�1

tr
(
D(v)2) dx ≤ C ‖v‖2

VD

and thus the first inequality in (67) holds. ��
Thus our analysis also applies to the variational problem (66).
We note that the assumptions (22), (23) are not essential. The upper bound in

(67) holds without these assumptions, and thus the infsup properties in the norm
‖ · ‖VD , too. A continuity result as lemma 1 with ‖ · ‖VD instead of ‖ · ‖V can be

proved without assuming (22), (23), using the inequality, ‖v
1
2 div v‖2 � 2‖v‖2

VD
.

The second comment is related to the choice of the pressure space. Instead of
the pressure space M introduced in (6) one may want to use the standard space

L2
0(�) = {

p ∈ L2(�) | (p, 1) = 0
}

.
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and consider the variational formulation of the interface problem (1)–(4) in the
space V × L2

0(�). It turns out that the analysis then requires different norms to
obtain optimal estimates. These optimal estimates are ν-independent for the contin-
uous problem. For the corresponding Galerkin discrete problem, however, opposite
to the results in section 3 we now observe a ν-dependence in the estimates. These
results are presented in [19]. The main ideas of the analysis in [19] are the same as
in the sections 2 and 3. However, some further technicalities, like a mesh-dependent
norm in the pressure space, are needed.
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