
Sbornik: Mathematics 188:4 603–620 c©1997 RAS(DoM) and LMS
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On the Stokes problem with model boundary conditions

M. A. Ol’shanskǐı

Abstract. For a wide class of two- and three-dimensional domains, boundary con-
ditions on the velocity vector field for the Stokes problem are indicated ensuring
that the corresponding Schur complement is the identity operator. These boundary
conditions make it possible to ‘decouple’ the Stokes problem into two separate prob-
lems, for pressure and for velocity. The solubility of the problem and the regularity
of its solutions are studied and the connections between the results obtained and
certain aspects of numerical methods in hydrodynamics (such as the LBB condition
and the numerical solution of the generalized Stokes problem) are considered.

Bibliography: 23 titles.

Introduction

We consider the following system of partial differential equations with respect
to the vector-valued function u = (u1, . . . , un) and the function p in a bounded
domain Ω ⊂ Rn, n = 2, 3:

−∆u +∇p = f ,

div u = g.
(1)

The system (1) is called the Stokes system, and its numerical solution is one of
the central problems in computational hydrodynamics. To obtain a closed system,
equations (1) must be supplemented with certain boundary conditions. Most com-
mon in theoretical and applied studies is the Dirichlet boundary condition for the
velocity function u, which we assume to be homogeneous:

u
∣∣
∂Ω

= 0. (2)

A detailed analysis of the problems concerning the solubility of the system (1), (2)
and the regularity of its solutions can be found, for instance, in [1].

By the Schur complement (Schur operator) of the system (1), (2) we mean the
operator

A0 ≡ div ∆−1
0 ∇.

(Here we denote by ∆−1
0 f the function u such that ∆u = f , u|∂Ω = 0.) Under

fairly general assumptions on Ω it is a linear bounded positive self-adjoint operator
in L2(Ω)/R.
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The pressure function p in (1) is defined up to a constant and satisfies the
equation

A0p = g + div ∆−1
0 f . (3)

It is remarkable that equation (3) does not require additional boundary conditions
or smoothness assumptions on the pressure function, unlike the Poisson equation
for p, which can be obtained by a formal application of the div operator to the first
equation in (1) (see, for instance, [2] and [3]). Equation (3) can be used as a basis
in the development of numerical methods for the solution of (1), (2); a knowledge of
the spectral (and other) properties of A0 and (or) its discrete analogues is crucial for
the analysis of various finite-difference schemes for the Stokes problem and certain
iterative methods of their numerical solution [4]–[6].

It is known from the properties of the Cossera spectrum of the operator of
elasticity theory [7] and Lemma 1 in [5] that the spectrum of A0 lies in a certain
interval [c, 1], 0 < c 6 1

2 , and 1 is an isolated eigenvalue of infinite multiplicity.
The closeness of A0 to the identity operator in the finite-difference case has been
investigated in [8]. In a certain sense, the reasons for the fact that A0 is not equal
to the identity ‘lie at the boundary’, as suggested by the following example. We
consider a rectangular domain Ω = (0, l1) × (0, l2) and boundary conditions of the
third kind for u:

u · ν
∣∣
∂Ω

=
∂u · τ
∂ν

∣∣∣∣
∂Ω

= 0, (4)

where ν and τ are the normal and the tangent vectors to ∂Ω. The Schur complement
of the system (1), (4) is the identity operator on L2(Ω)/R. In fact, this can be
verified in a straightforward way for an arbitrary (finite) trigonometric polynomial

M∑
k,j=0
k+j>0

ak,j cos kπl−1
1 x cos jπl−1

2 y

in L2(Ω)/R. For the entire space L2(Ω)/R this follows from the density of trigono-
metric polynomials in L2(Ω)/R, since the Schur complement of the system (1), (4)
is linear and bounded.

It is well known that the Schur complement of system (1) with boundary con-
ditions (4) in a rectangular domain is equal to the identity operator in the finite-
difference case, provided that the finite difference scheme is suitably chosen (see [8]).
Because of this and since the problem can be explicitly solved in terms of Fourier
series, the boundary conditions (4) have important applications in the analysis
of finite-difference schemes and the construction of efficient iterative methods for
problems with Dirichlet boundary conditions [8]–[14].

The following problem has long remained unsolved: is it possible to generalize
boundary conditions (4) to a wider class of domains so that the Schur comple-
ment remains equal to the identity? In this paper we give an affirmative answer
to this question for arbitrary bounded simply connected Lipschitz domains. The
corresponding boundary conditions are as follows:

u · ν
∣∣
∂Ω

= 0, curl u
∣∣
∂Ω

= 0 for n = 2;

u · ν
∣∣
∂Ω

= 0, curl u× ν
∣∣
∂Ω

= 0 for n = 3.
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Here and in what follows, curl u = ∂u2/∂x1−∂u1/∂x2 for n = 2; we denote by a · b
and a× b the scalar and the vector products of vectors a and b, respectively.

The boundary conditions under consideration are discussed in greater detail
in § 2. Meanwhile, we note that vanishing of the normal component of the velocity
is an essential boundary condition, which we build into the definition of the function
space that must contain the generalized solution. By contrast, the conditions on
the curl of the velocity are natural conditions in the generalized formulation of the
problem considered in § 2. However, under additional assumptions on the regularity
of the data the generalized solution turns out to be more regular and the conditions
on curl u are satisfied in the usual sense.

In our work we impose fairly weak conditions on the smoothness of the boundary
of the domain ∂Ω and we pay for it by seeking the generalized solution u in a wider
space than W 1

2 (Ω)n, namely, in the space of vector-valued functions in L2(Ω)n with
divergence and curl in L2(Ω)r, r = r(n). Such functions belong to W 1

2 (Ω)n only
locally. However, certain additional conditions on the smoothness of the boundary
enable us to consider a generalized formulation of the problem in the space of vector-
valued functions in W 1

2 (Ω)n with zero normal component on ∂Ω and ensure that
the generalized solution belongs to this space. In the present paper these conditions
are as follows: either ∂Ω ∈ C2, or Ω is a convex polygon (n = 2), or it is a convex
polytope (n = 3).

We present the relevant definitions and auxiliary statements in § 1. In § 2 we
introduce certain model boundary conditions and prove the solubility in the gener-
alized sense of the corresponding system with vector Laplace operator and of the
Stokes system; we also prove the main theorem on the Schur complement. In § 3 we
prove certain regularity results for the solution of the Stokes problem with model
boundary conditions. Several consequences of the theorem on the Schur comple-
ment are presented in § 4. Generalizations for the Stokes problem with a parameter
are given in § 5.

§ 1. Main definitions and auxiliary results

We consider a bounded simply connected domain Ω ⊂ Rn, n = 2, 3, with
Lipschitz boundary. In certain cases we shall assume that Ω satisfies the following
condition:

(I) either the boundary ∂Ω belongs to the class C2, or the domain is a convex
polygon (n = 2), or it is a convex polytope (n = 3).

The outward unit normal ν = (ν1, . . . , νn) can be defined almost everywhere
on ∂Ω. If n = 2, then we denote by τ = (−ν2, ν1) the tangent vector to ∂Ω. If n = 3,
then at those points P ∈ ∂Ω where ν is defined we consider the tangent hyperplane
with linearly independent system {τi(P )}, i = 1, 2, of vectors tangent to ∂Ω. We
denote by τi, i = 1, 2, the vector field on ∂Ω such that τi = τi(P ) for all points
P ∈ ∂Ω at which ν is defined.
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We shall use the following function spaces:

L2/R ≡
{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0

}
,

H0 ≡W 1
2,0(Ω)n,

Hν ≡
{
u = (u1, . . . , un) ∈W 1

2 (Ω)n : u · ν = 0 ∂Ω
}
,

Rν ≡
{
u ∈Hν : curl u = 0

}
.

We set

(u,v)1 = (∇u,∇v)L2 , ‖u‖1 = (u,u)
1/2
1 , u,v ∈ H0 ∪Hν ∪Rν ,

and also use the space

H(div) ≡
{
u ∈ L2(Ω)n, div u ∈ L2(Ω)

}
with norm

‖u‖H(div) =
(
‖u‖20 + ‖ div u‖20

)1/2
.

(Here and in what follows ‖ · ‖0 denotes the L2-norm.) Finally, we shall consider
the space

H(curl) ≡
{
u ∈ L2(Ω)n, curl u ∈ L2(Ω)r

}
(where r = 1 for n = 2 and r = 3 for n = 3) with norm

‖u‖H(curl) =
(
‖u‖20 + ‖ curl u‖20

)1/2
,

and the space H0(div) ≡ (C∞0 (Ω)n)
H(div)

, which is the closure with respect to the
norm in H(div) of the space C∞0 (Ω)n of smooth vector-valued functions in Ω with
compact support.

We denote by H1/2(∂Ω) the space of traces on ∂Ω of functions in W 1
2 (Ω)n with

norm
‖µ‖1/2 = inf

v∈W1
2 (Ω)n

v=µ on ∂Ω

‖v‖W1
2
, µ ∈ H1/2(∂Ω);

H−1/2(∂Ω) is the space dual to H1/2(∂Ω).
We use the following statements concerning the spaces defined above.

Lemma 1 [15]. Let γν be the map u 7→ u · ν
∣∣
∂Ω

in C∞(Ω)n and let γτ be the

map u 7→ u · τ
∣∣
∂Ω

for n = 2 and u 7→ u × ν
∣∣
∂Ω

for n = 3. Then these maps

can be extended to linear continuous maps from H(div) into H−1/2(∂Ω) and from
H(curl) into H−1/2(∂Ω)r, respectively, where r = 1 for n = 2 and r = 3 for n = 3.
Moreover,

H0(div) = Ker(γν) =
{
u ∈H(div) : u · ν

∣∣
∂Ω

= 0
}
.

Next, we define the spaces

U ≡H0(div) ∩H(curl) and V ≡
{
u ∈ U : curl u = 0

}
with scalar product

(u,v)U = (u,v)L2 + (div u,div v)L2 + (curl u, curl v)L2 , u,v ∈ U,

and the corresponding norm ‖u‖U = (u,v)
1/2
U . We have the following result.
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Lemma 2. The space U is a Hilbert space and

‖u‖U ∼= ‖ div u‖0 + ‖ curl u‖0, u ∈ U. (5)

Proof. Both H0(div) and H(curl) are Hilbert spaces [15], therefore U is a Hilbert
space. The equivalence of the two norms (5) follows from the estimate ‖u‖0 6
c(Ω)(‖ div u‖0 + ‖ curl u‖0), which is valid for u ∈ U ([15], Lemma 3.6).

Here and below we denote by c(Ω) or c, c0, c1 constants that depend only on Ω.

Lemma 3. The map div : V→ L2/R is an isomorphism.

Proof. Since V is a subspace of U, it follows by (5) that Ker(div) = {0}. For an
arbitrary ϕ ∈ L2/R we now consider the Neumann problem

∆ψ = ϕ in Ω,

∂ψ

∂ν
= 0 on ∂Ω.

There exists a unique solution of this problem in W 1
2 (Ω)/R, which satisfies the

estimate ‖ψ‖W1
2
6 c‖ϕ‖0. We now set u = ∇ψ; then u ∈ V, div u = ϕ, and

‖u‖U 6 c1‖ϕ‖0, which proves the lemma.

We now denote by U−1 the space of linear bounded functionals on U with norm

‖f‖−1 ≡ sup
06=v∈U

〈f ,v〉
‖v‖U

, f ∈ U−1,

where 〈 · , · 〉 : U−1 ×U→ R and 〈f ,v〉 = (f ,v)L2 for f ∈ L2 and v ∈ U.

For p ∈ L2/R we can treat ∇p as an element of U−1. In fact, setting by
definition 〈∇p,u〉 = −(p,div u) for arbitrary p ∈ L2/R and u ∈ U, we obtain
〈∇p,u〉 6 ‖p‖0‖ div u‖0 6 ‖p‖0‖u‖U, which gives ‖∇p‖−1 6 ‖p‖0.

Under our assumptions about Ω we can assert that U ⊂ W 1
2,loc(Ω)n (see [15]),

that is, each u ∈ U belongs to the space W 1
2 in any subdomain lying strictly

inside Ω. Suppose now that the boundary of Ω has a greater regularity, namely,
condition (I) holds. Then U is continuously embedded in W 1

2 (Ω)n (see [15]) and

‖u‖W1
2

∼= ‖ div u‖0 + ‖ curl u‖0, u ∈ U.

Hence U is embedded in Hν ; the embedding Hν ⊂ U is trivial, therefore the
equalities

Hν = U, Rν = V (6)

hold both algebraically and topologically.
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§ 2. Problem with model boundary conditions

We return to the minimal assumptions on the domain: let Ω be a bounded simply
connected domain with Lipschitz boundary. We say that a function u ∈W 2

2 (Ω)n∩U
satisfies the model boundary conditions on ∂Ω and write Ru

∣∣
∂Ω

= 0 if

curl u = 0 on ∂Ω for n = 2,

or

curl u · τi = 0 on ∂Ω, i = 1, 2, for n = 3.

(7)

Since for n = 3 the vectors τi, i = 1, 2, make up a basis in the tangent space
to ∂Ω at each boundary point of the domain (except for a set of measure zero), the
boundary conditions Ru

∣∣
∂Ω

= 0 mean for n = 3 the orthogonality of curl u to ∂Ω
at each point of ∂Ω. They can also be written as

curl u× ν = 0 on ∂Ω for n = 3.

Hence, in particular, the conditions Ru
∣∣
∂Ω

= 0, n = 3, are invariant with respect to
the choice of a particular basis τi(P ), i = 1, 2, of tangent vectors at points P ∈ ∂Ω.
It is easily seen that relations (7) give us one boundary condition on u for n = 2
and two boundary conditions on u for n = 3.

If u is an arbitrary function in W 2
2 (Ω)n ∩U and Ru = 0, then the equality

−(∆u,v) = (div u,div v) + (curl u, curl v) (8)

holds for each v ∈ U. The converse is also true: if for some u ∈ W 2
2 (Ω)n ∩ U

relation (8) holds for each v ∈ U, then Ru = 0. These two statements are easy to
verify if we take into account the following equalities:

(∇p,v) + (p,div v) = 0 for all v ∈ U, p ∈W 1
2 (Ω),

(curl u,v) + (u, curl v) = 〈u, γτv〉 for all v ∈ U,
u ∈W 1

2 (Ω), n = 2,

u ∈W 1
2 (Ω)3, n = 3,

where γτv = v ·τ ∈H−1/2(∂Ω) for n = 2 and γτv = v×ν ∈ H−1/2(∂Ω)3 for n = 3
(see Lemma 1).

For f ∈ U−1 we consider the problem of finding a function u such that

−∆u = f ,

u · ν
∣∣
∂Ω

= Ru
∣∣
∂Ω

= 0.
(9)

Thanks to (8), the problem (9) has the following generalization: find u ∈ U such
that

(div u,div v) + (curl u, curl v) = 〈f ,v〉 for all v ∈ U. (10)

We have the following result.
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Lemma 4. If f ∈ U−1, then the problem (9) has a unique solution u in U, which
satisfies the estimate

‖u‖U 6 c(Ω)‖f‖−1.

Proof. We consider the bilinear form

a(u,v) = (div u,div v) + (curl u, curl v), u,v ∈ U,

from the statement of the generalized problem (10).
The estimate a(u,v) 6 ‖u‖U‖v‖U and Lemma 2 show that the form a(u,v)

is continuous and coercive on U. The existence and uniqueness of the generalized
solution now follows from the Lax–Milgram theorem, and the a priori estimate
follows from Lemma 2 and the formulae

a(u,u) = 〈f ,u〉 6 ‖f‖−1‖u‖U.

This proves the lemma.

For an arbitrary f ∈ U−1 we shall denote by ∆−1
ν f the generalized solution of

problem (9), the existence and uniqueness of which is guaranteed by Lemma 4.
We now consider the Stokes problem: given f ∈ U−1 and g ∈ L2/R, find u and p

such that
−∆u +∇p = f ,

div u = g,

u · ν
∣∣
∂Ω

= Ru
∣∣
∂Ω

= 0.

(11)

The generalized statement of the problem (11) consists in finding a pair {u, p}
from U× L2/R such that

(div u,div v) + (curl u, curl v) − (p,div v) = 〈f ,v〉 for all v ∈ U,

(div u, q) = (g, q) for all q ∈ L2/R .
(12)

The solubility of problem (11) is established by the following lemma.

Lemma 5. If f ∈ U−1 and g ∈ L2/R, then the problem (11) has a unique gener-
alized solution in the class U× L2/R.

Proof. The coercivity of the bilinear form

(div u,div v) + (curl u, curl v)

on the space of solenoidal vector-valued functions from U follows from its coercivity
on U established in the proof of Lemma 4. For the form b( · , · ) : U × L2/R → R
defined by the formula b(u, p) = (div u, p) the inf-sup-condition is equivalent to the
inequality

‖p‖0 6 c(Ω)‖∇p‖−1, p ∈ L2/R .
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To prove this inequality we observe that for an arbitrary p ∈ L2/R we have the
following chain of inequalities:

‖p‖0 6 c0 sup
v∈H0

(p,div v)

‖v‖1
6
√

2 c0 sup
v∈H0

(p,div v)

‖ div v‖0 + ‖ curl v‖0

6
√

2 c0 sup
v∈U

(p,div v)

‖ div v‖0 + ‖ curl v‖0
6 c1 sup

v∈U

(p,div v)

‖v‖U
≡ c(Ω)‖∇p‖−1.

The first inequality in this chain is well known (see, for instance, [16] or [17]).
Next we use the obvious inequality ‖v‖21 = ‖ div v‖20 + ‖ curl v‖20 for v ∈ H0, the
embedding H0 ⊂ U, and Lemma 2. The assertion of the lemma now follows from
Corollary 4.1 in [15].

A priori estimates for the solution of (11) will be obtained later. We now consider
the Schur operator Aν : L2/R→ L2/R,

Aνp = div ∆−1
ν ∇p

for the system (11). By Lemma 4, the operator Aν is defined for each p ∈ L2/R,
and Aνp ∈ L2/R. We have the following result.

Theorem 1. If Ω ⊂ Rn, n = 2, 3, is a bounded simply connected domain with
Lipschitz boundary, then Aν is the identity operator on L2/R, that is,

Aνp = p for all p ∈ L2/R.

Proof. For an arbitrary p ∈ L2/R we set q = Aνp ∈ L2/R and denote by u the
vector-valued function ∆−1

ν ∇p from U. Then, by definition (10) of the generalized
solution of (6) and the definition of the operator Aν , we obtain

(p,div v) = (div u,div v) + (curl u, curl v) for each v ∈ U,

q = div u.
(13)

We take the scalar product of the second equality in (13) and div v and consider
functions v such that curl v = 0 (in other words, v ∈ V). Subtracting the second
equality in (13) from the first we obtain

(p,div v) − (q,div v) = 0 for each v ∈ V.

By Lemma 3 we obtain (p, r) = (q, r) for all r ∈ L2/R. Since L2/R is a Hilbert
space, it follows from the last equality that p = q, which proves the theorem.

Corollary 1. The generalized solution of problem (11) in U×L2/R can be written
in the following form:

u = ∆−1
ν (∇p− f), p = g + div ∆−1

ν f . (14)

This solution satisfies the following a priori estimates :

‖u‖U 6 (Ω)(‖g‖0 + ‖f‖−1), ‖p‖0 6 (Ω)(‖g‖0 + ‖f‖−1).



On the Stokes problem with model boundary conditions 611

Proof. Equalities (14) follow from the statement of the theorem and the generalized
formulations (10) and (12) of the corresponding problems. A priori estimates of the
solution follow from equalities (14), the estimates in Lemma 4, and the inequality
‖∇p‖−1 6 ‖p‖0, which completes the proof.

Remark. We now present a simple example explaining why the above argument
cannot be carried out in the framework of the space W 1

2 (Ω)n for arbitrary domains
with Lipschitz boundaries.

We consider the domain Ω = {x = ρeiθ, 0 < ρ < 1, 0 < θ < π + ε}, ε > 0.
It is clear that Ω is a bounded simply connected subdomain of R2 with Lipschitz
boundary that does not satisfy condition (I). Consider a function q in L2/R such
that the generalized solution ψ ∈W 1

2 (Ω)/R of the problem ∆ψ = q, ∂ψ/∂ν
∣∣
∂Ω

= 0

does not belong to W 2
2 (Ω) (see, for instance, [18]). We consider the vector-valued

function u = ∇ψ. It is clear that u ∈ U, but u /∈W 1
2 (Ω), while

(div u,div v) + (curl u, curl v) = (q,div v) for all v ∈ U,

that is, u = ∆−1
ν ∇q for some function q ∈ L2/R.

§ 3. Regularity of solutions

At the present time, there exists a well-developed Wm
p (Ω)-theory of the Stokes

problem in a bounded domain with Dirichlet boundary conditions, which estab-
lishes, in particular, that if f ∈ Wm−2

2 (Ω)n, g ∈ Wm−1
2 (Ω) ∩ L2/R, m > 1, and

∂Ω ∈ Cm, then the generalized solution {u, p} satisfies the following relations:
u ∈Wm

2 (Ω)n, p ∈Wm−1
2 (Ω) ∩ L2/R, and

‖u‖m + ‖p‖m−1 6 c(m,Ω)(‖f‖m−2 + ‖g‖m−1)

(see, for instance, [1] and [19]). In this section we obtain a priori estimates for the
smoothness class and the norm of the generalized solution of the problem (11) with
model boundary conditions.

We suppose at first that a bounded simply connected domain Ω ⊂ Rn, n = 2, 3,
satisfies condition (I) in § 1. Then by (6) the results of § 1 and § 2 remain valid if
the spaces U and V are replaced by Hν and Rν , respectively, and the norm ‖ · ‖U
is replaced by ‖ · ‖1. Moreover, the generalized problems in question can be set in
terms of the space Hν . Thus, we have the following result.

Lemma 6. Let Ω be a bounded simply connected subdomain of Rn, n = 2, 3,
satisfying condition (I). If f ∈ H−1

ν , then the problem (9) has a unique solution u
in the space Hν and

‖u‖1 6 c(Ω)‖f‖−1.

If f ∈ H−1
ν and g ∈ L2/R, then the problem (11) has a unique solution {u, p} in

the space Hν × L2/R, which satisfies the estimates

‖u‖1 6 (Ω)(‖g‖0 + 2‖f‖−1), ‖p‖0 6 (Ω)(‖g‖0 + ‖f‖−1).

The operator Aν is the identity operator in L2/R.

By Theorem 3.1.1.1 in [18] and Theorem 3.9 in [15], the inequality

(div u,div u) + (curl u, curl u) > α‖u‖21, u ∈Hν ,
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holds in all convex domains Ω with α = 1, therefore the constant c(Ω) in Lemma 6
can be set equal to 1 for such domains.

We now consider the problem of the regularity of solutions in the case when
we impose additional conditions on the right-hand side and the boundary of the
domain. We require the following lemma from [20].

Lemma 7. Let Ω be a bounded domain in Rn, n = 2, 3, and let ∂Ω ∈ Cm+1,
m > 1. Then

Wm
2 (Ω)n=

{
u∈L2(Ω)n: div u∈Wm−1

2 (Ω), curl u∈Wm−1
2 (Ω)r ,u·ν ∈Wm−1/2

2 (∂Ω)
}

and

‖u‖m 6 c(m,Ω)
(
‖u‖0 + ‖ div u‖m−1 + ‖ curl u‖m−1 + ‖u · ν‖m−1/2,∂Ω

)
,

where r = 1 for n = 2 and r = 3 for n = 3.

We see from Corollary 1 to Theorem 1 that the entire information on the smooth-
ness of the generalized solution of (12) can be obtained from the knowledge of the
smoothness of f , g, and the solutions of (9). Therefore the following lemma is
important.

Lemma 8. Suppose that m > 1 and let Ω be a bounded simply connected subdomain
of Rn, let ∂Ω ∈ Cr, where r = max(m, 2), and let f ∈ Wm−2

2 (Ω)n. Then the
problem (9) has a unique solution u in Wm

2 (Ω)n ∩Hν and

‖u‖m 6 c(m,Ω)‖f‖m−2. (15)

Proof. We first consider the case n = 2. We prove the lemma by induction on m.
For m = 1 the assertion of the lemma follows from Lemma 6. Assume now that
the lemma is proved for m = 1, . . . , k − 1; we shall prove it for m = k > 2.

Since ∂Ω ∈ Ck, it follows that the vector field ν belongs to the class Ck−1(∂Ω)2

and can be continued to a vector field in Ck−1(Ω)2. We denote this continuation
by ν = (ν1, ν2). Note also the embeddings Ck−1(Ω)2 ⊂ W k−1

∞ (Ω)2 ⊂ W k
2 (Ω)2

(see [21]).

Suppose that u is the solution of (9) in W k−1
2 (Ω)2 ∩ Hν , which exists by the

induction hypothesis and satisfies estimate (15) with m = k− 1. We denote by Ωσ,
σ > 0, the set of points in Ω whose distance from ∂Ω is less than σ. It is sufficient to
prove that the lemma holds for the restriction of u to Ωσ for some σ > 0. In fact, if

this is the case, then we can consider the domain Ω′ such that Ω
′ ⊂ Ω, Ω \ Ωσ ⊂ Ω′

and ∂Ω′ ∈ Ck. The function u is the solution in Ω′ of the vector Laplace equation

with Dirichlet boundary conditions on ∂Ω′; in addition u|∂Ω′ ∈W k−1/2
2 (∂Ω′)2 and

‖u|∂Ω′‖k−1/2,∂Ω′ 6 c(Ω,Ω′, σ)‖u‖k,Ωσ 6 c‖f‖k−2.

By the classical results on the regularity of the solutions of elliptic equations we
obtain u ∈ W k

2 (Ω′)2 and ‖u‖k,Ω′ 6 c‖f‖k−2,Ω′ , from which the assertion of the
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lemma follows if we take into account the fact that u belongs to W k
2 (Ωσ)2 and

‖u‖k,Ωσ 6 c‖f‖k−2,Ωσ .
Hence it suffices to prove that u ∈ W k

2 (Ωσ0)2 and ‖u‖k,Ωσ0
6 c‖f‖k−2 for some

σ0 > 0. Consider the function q = u · ν = u1ν1 + u2ν2 in W k−1
2 (Ω) ∩W 1

2,0(Ω). It
follows from the definition of q that

∆q = f · ν +
2∑

i,j=1

∂ui

∂xj

∂νi

∂xj
,

q
∣∣
∂Ω

= 0.

(16)

Since f ∈W k−2
2 (Ω)2, ν ∈W k

2 (Ω)2, and u ∈W k−1
2 (Ω)2 by the induction hypothesis,

it follows that the right-hand side of system (16) belongs to W k−2
2 (Ω) and therefore

q ∈W k
2 (Ω) and

‖q‖k 6 c
∥∥∥∥f · ν +

2∑
i,j=1

∂ui

∂xj

∂νi

∂xj

∥∥∥∥
k−2

6 c1(‖f‖k−2 + ‖u‖k−1) 6 c2‖f‖k−2. (17)

For the function

ϕ =

(
∂u1

∂x1
ν1 +

∂u2

∂x1
ν2,

∂u1

∂x2
ν1 +

∂u2

∂x2
ν2

)
= ∇q − ut · (∇ν)

we now see that ϕ ∈W k−1
2 (Ω) and

‖ϕ‖k−1 6 c(Ω)‖f‖k−2 (18)

by (17).
We also consider the function

ψ =

(
−∂u1

∂x1
ν2 +

∂u2

∂x1
ν1 −

∂u2

∂x2
ν2 −

∂u1

∂x2
ν1,

∂u1

∂x1
ν1 +

∂u2

∂x1
ν2 +

∂u2

∂x2
ν1 −

∂u1

∂x2
ν2

)
.

Equations (9) and the induction hypothesis immediately show that divψ and curlψ

belong to W k−2
2 (Ω), ψ · ν

∣∣
∂Ω

= 0 and

‖ψ‖0 + ‖ divψ‖k−2 + ‖ curlψ‖k−2 6 c(Ω)‖f‖k−2.

Hence ψ ∈W k−1
2 (Ω)2 by Lemma 7 and

‖ψ‖k−1 6 c(Ω)‖f‖k−2. (19)

We note that

∂u1

∂x1
(ν2

1 + ν2
2) = ϕ1ν1 − ϕ2ν2 − ψ1ν2 ∈W k−1

2 (Ω).
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In a similar way we obtain for all other partial derivatives

∂ui

∂xj
(ν2

1 + ν2
2) ∈W k−1

2 (Ω), i, j = 1, 2. (20)

Moreover, ∥∥∥∥ ∂ui∂xj
(ν2

1 + ν2
2)

∥∥∥∥
k−1

6 c(Ω)‖f‖k−2 (21)

by (18) and (19).
We now consider the function ν2

1 + ν2
2 in Ck−1(Ω). Note that ν2

1 + ν2
2

∣∣
∂Ω

= 1.

We choose σ0 > 0 so that ν2
1 + ν2

2 > 1
2 in Ωσ0 . By (20) and (21),

∂ui

∂xj
∈W k−1

2 (Ωσ0)2,∥∥∥∥ ∂ui∂xj

∥∥∥∥
k−1,Ωσ0

6 c(Ω)‖f‖k−2, i, j = 1, 2.

Hence u ∈ W k
2 (Ωσ0)2 and ‖u‖k,Ωσ0

6 c(Ω)‖f‖k−2 for some σ0 > 0, which proves
the lemma for n = 2.

The proof in the case n = 3 is similar. Here it suffices to consider the function
q = u · ν and the vector-valued functions

ψ1 = (−n2, n1, 0) · (∇u)−
(
−[ν · (∇u)]2, [ν · (∇u)]1, 0

)
,

ψ2 = (−n3, 0, n1) · (∇u)−
(
−[ν · (∇u)]3, 0, [ν · (∇u)]1

)
,

where [ · ]i is the ith component of the corresponding vector. The lemma is proved.

Theorem 2 below immediately follows from Lemma 8 and Corollary 1 to
Theorem 1.

Theorem 2. Suppose that m > 1 and let Ω be a bounded simply connected sub-
domain of Rn with boundary ∂Ω ∈ Cr, where r = max(m, 2). Let f ∈ Wm−2

2 (Ω)n

and let g ∈Wm−1
2 (Ω)∩L2/R. Then the problem (11) has a unique solution {u, p}

in the class (Wm
2 (Ω)n ∩Hν)× (Wm−1

2 (Ω) ∩ L2/R) and

‖u‖m 6 c(m,Ω)(‖g‖m−1 + ‖f‖m−2),

‖p‖m−1 6 c(m,Ω)(‖g‖m−1 + ‖f‖m−2).

§ 4. Several observations and consequences

The problem (11) with inhomogeneous conditions on curl u was considered in [6]
for two-dimensional bounded simply connected domains with smooth boundaries
and used there for the construction of an Uzawa-type algorithm of the numerical
solution of (1), (2). The following theorem is a consequence of Theorem 1 and is
similar to the corresponding result in [6].
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Theorem 3. Let Ω be a bounded simply connected domain satisfying condition (I),
let f ∈ L2(Ω)n and let g ∈ W 1

2 (Ω) ∩ L2/R. Then the solution p of (11) belongs to
W 1

2 (Ω) ∩ L2/R and satisfies (in the generalized sense) the system of equations

∆p = ∆g + div f ,

∂p

∂ν

∣∣∣∣
∂Ω

=

(
∂g

∂ν
+ f · ν

)∣∣∣∣
∂Ω

.
(22)

Proof. From Theorem 2 we know that under our assumptions on Ω, f and g the
solution p of (11) belongs to the class W 1

2 (Ω) ∩ L2/R. By Corollary 1 we obtain
p = g + div w, where w = ∆−1

ν f . The function w is in the class W 2
2 (Ω)n ∩Hν and

satisfies the equality

(∇div w,v) + (curl w, curl v) + 〈curl w, γτv〉 = (f ,v) for all v ∈W 1
2 (Ω)n.

Since Rw
∣∣
∂Ω

= 0, it follows that 〈curl w, γτv〉 = 0. Further,

(∇p,v) = (∇g,v) + (curl w, curl v) + (f ,v) ∀v ∈W 1
2 (Ω)n.

For an arbitrary ψ ∈W 2
2 (Ω) we set v = ∇ψ in the last equality and find that

(∇p,∇ψ) = (∇g,∇ψ) + (f ,∇ψ).

Passing here to ψ from the closure of W 2
2 (Ω) with respect to the norm of W 1

2 (Ω)
we obtain that (22) holds in the generalized sense, which proves the theorem.

We now present two other consequences of Theorem 1. We denote by W the
following subspace of U:

W ≡
{
u ∈ U : u = ∆−1

ν ∇p for some p ∈ L2/R
}
.

Theorem 4. Under the hypothesis of Theorem 1,

W = V

as subspaces of U. Moreover, the operator ∆−1
ν ∇ is an isomorphism between L2/R

and V and
‖ div u‖0 = ‖p‖0

for u = ∆−1
ν ∇p.

Proof. We recall that the equality u = ∆−1
ν ∇p means that

(p,div v) = (div u,div v) + (curl u, curl v) for all v ∈ U. (23)

The embedding V ⊂ W obviously follows from (23) if we set p = div u. To see
that W ⊂ V we observe that for each u ∈W it follows from (23) and Theorem 1
that

(curl u, curl v) = 0 for all v ∈ U.
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We now set v = u. Then ‖ curlu‖20 = 0 and therefore u ∈ V. Hence W = V. The
second part of the assertion of the theorem follows from the relations

‖p‖0 = ‖Aνp‖0 = ‖ div u‖0 6 ‖u‖U,

which are valid for each p ∈ L2/R and u = ∆−1
ν ∇p. The theorem is proved.

We now consider the inequality

‖p‖0 6 c0(Ω) sup
06=u∈H0

(p,div u)

‖u‖1
for each p ∈ L2/R. (24)

As mentioned in the proof of Lemma 5, inequality (24) holds with a certain constant
1 < c0(Ω) < ∞ depending only on the domain. We also point out the equality

c0(Ω) = λ
−1/2
min (see, for instance, [6]), where λmin is the smallest eigenvalue of A0

(see the introduction). The discrete analogue of (24) is widely known as the LBB
(or inf-sup-) condition (see, for instance, [15] and [22]). We denote by Hν the
following subspace of U:

Hν ≡
{
u ∈ U : ∆u = 0

}
.

We now define the operator D : V → Hν as follows: v = Du if γνv
∣∣
∂Ω

= 0,

γτv
∣∣
∂Ω

= γτu
∣∣
∂Ω

, and v ∈ Hν . For u ∈ V the function v = Du is uniquely defined
as the solution of the problem

v = r + u, r ∈ H0,

−(∇r,∇w) = (div u,div w) + (curl u, curl w) for all w ∈ H0.
(25)

We use the following notation for functions u in U:

|u|U ≡
(
‖ div u‖20 + ‖ curl u‖20

)1/2
.

For v = Du it immediately follows from (25) that

|v|2U = (div v,div u) + (curl v, curl u), (26)

|v|U 6 c1(Ω)|u|U, (27)

where c1(Ω) 6 1. We have the following result.

Theorem 5. Under the hypothesis of Theorem 1 inequality (24) is equivalent to
the relation

|Du|2U 6
(
1− c−2

0 (Ω)
)
‖ div u‖20 for all u ∈ V. (28)

The equalities in (24) and (28) can hold simultaneously only for p ∈ L2/R and u
equal to ∆−1

ν ∇p ∈ V, respectively. The constant c0(Ω) in (24) and (28) is the same.

Proof. From Theorem 4 it follows that for each p ∈ L2/R and u = ∆−1
ν ∇p ∈ V we

have
‖p‖0 = ‖ div u‖0. (29)
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On the other hand,

sup
06=v∈H0

(p,div v)2

‖v‖21
= sup

06=v∈H0

(∆−1
0 ∇p,v)2

1

‖v‖21
= ‖w‖21 = |w|2U, (30)

where w = ∆−1
0 ∇p is the solution of the Dirichlet problem ∆w = ∇p, w

∣∣
∂Ω

= 0.

We now consider v = u − w. We have the equalities γνv
∣∣
∂Ω

= γνu|∂Ω = 0,

γτv
∣∣
∂Ω

= γτu
∣∣
∂Ω

, and ∆v = 0, therefore v = Du. Now,

|w|2U = |u− v|2U = |u|2U + |v|2V − 2
(
(div u,div v) + (curl u, curl v)

)
.

Using (26) we obtain

|w|2U = |u|2U − |v|2U = ‖ div u‖20 − |Du|2U. (31)

Equalities (31) together with (29) and (30) show that if (28) holds, then so does (24).
Since the operator ∆−1

ν ∇ is an isomorphism between L2/R and V by Theorem 4,
it follows from (29)–(31) that the converse assertion also holds, which proves the
theorem.

The following result is an immediate consequence of (24), (27) and the equality
‖ div u‖20 = |u|2U, u ∈ V.

Corollary 2. The constants c0(Ω) in (24) and c1(Ω) in (27) are related by the
equality c20(Ω) = (1− c21(Ω))−1.

We note that in the notation introduced above the model boundary conditions (7)
can be written as follows:

τ t · (∇u) · ν − νt · (∇u) · τ = 0 on ∂Ω for n = 2;

τ ti · (∇u) · ν − νt · (∇u) · τi = 0 on ∂Ω, i = 1, 2, for n = 3.
(32)

In the case n = 2 the equivalence of (7) and (32) can be verified directly; if n = 3,
then we must set the vectors τi in (7) equal to τ ′i × ν, where the τ ′i , i = 1, 2, are
the tangent vectors in (32).

In the case of a polygon the term τ t (∇u) ν in (32) corresponds to the conven-
tional notation ∂(u · τ)/∂ν used for setting the periodic boundary conditions in a
rectangle (see (4)), while νt(∇u)τ = ∂(u · ν)/∂τ = 0. Writing the model boundary
conditions in the form (32) makes more explicit their generalization to the case of
n > 3.

§ 5. Stokes problem with a parameter

We now consider the Stokes problem with model boundary conditions and with a
parameter in a bounded simply connected domain with Lipschitz boundary Ω ⊂ Rn,
n = 2, 3:

−∆u + αu +∇p = f ,

div u = g,

u · ν
∣∣
∂Ω

= Ru
∣∣
∂Ω

= 0,

(33)

where α ∈ [0,∞), f ∈ U−1, and g ∈ L2/R.
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The problem with a parameter arises, for example, in computational hydro-
dynamics, in the analysis of semi-implicit schemes for the Stokes and Navier–Stokes
equations. In this case α ∼ (υ δt)−1, where υ is the kinematic viscosity and δt is
the time step.

The generalized formulation of (33) consists in finding {u, p} in U× L2/R such
that

(div u,div v) + (curl u, curl v) + α(u,v) − (p,div v) = 〈f ,v〉 ,
(div u, q) = (g, q) for all v ∈ U and q ∈ L2/R.

The results on the solubility of the problem (33) and the regularity of its solutions
are literally the same as for problem (11). We now consider the Schur complement

Aν(α) ≡ div(∆− αI)−1
ν ∇,

where I is the identity operator. The following result is a generalization of
Theorem 1.

Theorem 6. Under the hypothesis of Theorem 1, for any α ∈ [0,∞), p ∈ L2/R
and for q = Aν(α)p, q ∈ L2/R, we have

p = q − α∆−1
N q, (34)

where r = ∆−1
N q is the solution of the Neumann problem

∆r = q,
∂r

∂ν

∣∣∣∣
∂Ω

= 0.

Proof. If α = 0, then the assertion of the theorem coincides with Theorem 1. We
now suppose that α > 0. Then an arbitrary function p in L2/R and q = Aν(α)p
are related by the formulae

−∆u + αu +∇p = 0,

div u = q,

u · ν
∣∣
∂Ω

= Ru
∣∣
∂Ω

= 0.

(35)

We consider the functions p1 = −α∆−1
N q and u1 = α−1∇p1 and we define u2 ∈ U

from the system

−∆u2 = ∇q, u2 · ν
∣∣
∂Ω

= Ru2

∣∣
∂Ω

= 0.

Then ∆u1 = ∇div u1 = −∇q = ∆u2, and since u1 ∈ U and Ru1

∣∣
∂Ω

= 0, it follows
that u1 = u2.

We now set p̃ = q+p1. Then the functions ũ = u1 = u2 and p̃ satisfy the system

−∆ũ + αũ +∇p̃ = 0,

div ũ = q,

ũ · ν
∣∣
∂Ω

= Rũ
∣∣
∂Ω

= 0.

(36)
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From the uniqueness of the solution of (33) and formulae (35) and (36) we see that
p = p̃ = q − α∆−1

N q, which proves the theorem.

We observe that equality (34) makes it possible to generalize the construction
and analysis of the efficient preconditioning of the Uzawa algorithm for the numer-
ical solution of the Stokes problem with a parameter and with Dirichlet boundary
conditions (see [9], [14], and [23]) to a wide class of domains.

The following result is a generalization of Theorem 3.

Theorem 7. Let Ω be a bounded simply connected domain satisfying condition (I).
Let f ∈ L2(Ω)n and let g ∈ W 1

2 (Ω) ∩ L2/R. Then the solution p ∈ W 1
2 (Ω) ∩ L2/R

of the problem (33) solves the equation

∆p = ∆g − αg + div f ,

∂p

∂ν
=
∂g

∂ν
+ f · ν

in the generalized sense.

The proof of Theorem 7 is the same as that of Theorem 3.

Conclusion

From the variational standpoint, we can treat the pressure in the Stokes system
as a Lagrange multiplier corresponding to the constraint div u = 0 on the velocity
field. Hence the conventional point of view that, under the incompressibility con-
dition, the velocity and the pressure are inseparable in principle is quite justified.
Our example of the problem with model boundary conditions shows that there are
exceptions to this rule. Corollary 1 and Theorem 2 demonstrate that in the Stokes
problem with model boundary conditions we can find the pressure by solving one
vector Poisson equation with homogeneous boundary conditions of the third kind or
one scalar Poisson equation with inhomogeneous Neumann conditions. The veloc-
ity field is found separately, which additionally requires the solution of a vector
Poisson equation.

The relaxation of the conditions imposed on the domain to the weakest possible
ones (from our point of view) has required additional mathematical ‘effort’, in
particular, the consideration of function spaces less ‘familiar’ than the Sobolev
spaces. This has brought us to a greater completeness of results.

Finally, the natural generalization of the results to the Stokes problem with
a parameter seems to be important in the further analysis of this problem with
Dirichlet boundary conditions from the point of view of numerical analysis.

The author thanks G. M. Kobel’kov for posing the problem and E. V. Chizhonkov
for a number of helpful remarks.
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