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Abstract
We consider phase-field models with and without lateral flow for the numerical simulation
of lateral phase separation and coarsening in lipid membranes. For the numerical solution
of these models, we apply an unfitted finite element method that is flexible in handling
complex and possibly evolving shapes in the absence of an explicit surface parametrization.
Through several numerical tests, we investigate the effect of the presence of lateral flow on
the evolution of phases. In particular, we focus on understanding how variable line tension,
viscosity, membrane composition, and surface shape affect the pattern formation.

Keywords Lateral phase separation · Surface Cahn–Hilliard equation ·
Lateral flow · Surface Navier–Stokes–Cahn–Hilliard system · TraceFEM

Mathematics Subject Classification (2010) 65N30 · 76D05 · 76T99

1 Introduction

Recent years have witnessed an increased interest in studying phase separation in biological
membranes [9, 31]. This is due to the fact that lateral phase separation has been recog-
nized as a critical mechanism for dynamic control of the spatial organization of membrane
components [26, 36]. The lipid bilayer in biological membranes may be organized into one
of two phases: liquid disordered and liquid ordered [5]. The liquid ordered domains, also
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known as lipid rafts, have been linked to a wide range of cellular functions, from membrane
trafficking to inter- and intracellular signaling [22]. In addition, domain formation on mem-
branes has also been utilized to create novel membrane-based materials with heterogenous
surfaces [6, 43].

Phase separation and pattern formation in lipid bilayers has been studied theoretically
(see, e.g., [4, 21, 27, 42]), experimentally (see, e.g., [8, 49]), and numerically (see, e.g.,
[17, 30, 32–34, 37, 46, 50]). Computational studies are particularly useful to observe the
dynamics of phases, which is hard to address theoretically, and to gain insights that are
too expensive (or even impossible) to obtain experimentally. In this paper, we choose a
continuum-based computational approach that relies on a phase-field description. In such
approach, a smooth indicator function is used to distinguish between ordered and disor-
dered phases of a matter; see [10, 11, 23, 48] for an introduction to the topic. Emerged as a
powerful computational approach to modeling and predicting phase separation in materials
and fluids, the phase-field method describes the system using a set of field variables that are
continuous across the interfacial regions separating the phases.

In our previous work, we have developed a computationally efficient method based on
the surface Cahn–Hilliard (CH) phase-field model to predict the phase behavior and domain
formation on heterogeneous membranes [52, 53]. More recently, such method has been val-
idated against laboratory experiments [54]. While a good agreement was achieved between
numerical results and experimental data, the CH model does not account for viscous and
fluidic phenomena that are recognized to be important in lipid membranes [28]. In fact, it
has been demonstrated that membrane fluidity within the liquid ordered domains can be
substantially lower than that in the liquid disordered phase [44], affecting the coarsening
dynamics of rafts on membranes [47]. In order to capture these phenomena, in [41] we have
considered the more complex surface Navier–Stokes–Cahn–Hilliard (NSCH) model and a
numerical method for it.

Although the importance of viscous dissipation and fluidity in lipid membranes is
acknowledged, it remains to be understood how lateral flow affects pattern formation. Thus,
in this paper we compare the evolution of phases as predicted by the CH model (i.e., without
lateral flow) and NSCH model (i.e., with lateral flow) through a series of numerical tests. For
the numerical solution of both models, we apply an unfitted finite element method called the
trace finite element method (TraceFEM) [38, 39]. See [14] for the review of other surface
FEM. We opted for an unfitted finite element method because of its flexibility in handling
complex shapes, as we will show in this paper, and possibly evolving surfaces, as shown in
[53] for the CH model. For additional numerical studies on the evolving CH equation, we
refer the reader to [15, 16]. Although the surfaces treated in this paper are steady, our inter-
est in evolving surfaces is associated with our long term goal of simulating membrane-based
drug carriers that used phase-separated patterns to facilitate fusion with the target cell [54].
Among all unfitted finite element methods, TraceFEM has several advantages that make it
appealing: i) it employs a sharp surface representation, ii) surfaces can be defined implic-
itly and no surface parametrization is required, iii) the number of active degrees of freedom
is asymptotically optimal, and iv) the order of convergence is optimal. An alternative to
unfitted finite element methods is given by, e.g., Isogeometric Analysis [7, 12].

The paper outline is as follows. In Section 2, we state the two phase-field models and
their variational formulations. The application of TraceFEM to both models is described in
Section 3. In Section 4, we report several numerical results obtained with both models on
the surface of a sphere and an asymmetric torus. Section 5 provides concluding remarks.
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2 Mathematical Model

In order to formulate the surface the CH and NSCH equations, we need some notation. Let
Γ be an arbitrary-shaped closed, smooth, and stationary surface, with the outward pointing
unit normal n. Let P = P(x) := I− n(x)n(x)T for x ∈ Γ be the orthogonal projection onto
the tangent plane. For a scalar function p : Γ → R or a vector function u : Γ → R

3 we
define pe : O(Γ ) → R, ue : O(Γ ) → R

3 as suitable extensions of p and u from Γ to its
neighborhood O(Γ ). The surface gradient and covariant derivatives on Γ are then defined
as ∇Γ p = P∇pe and ∇Γ u := P∇ueP. These definitions are independent of a particular
smooth extension of p and u off Γ . On Γ we consider the surface rate-of-strain tensor [20]
given by

Es(u) := 1

2
(∇Γ u + (∇Γ u)T ).

The surface divergence operators for a vector g : Γ → R
3 and a tensor A : Γ → R

3×3

are defined as:

divΓ g := tr(∇Γ g), divΓ A :=
(

divΓ (eT
1 A), divΓ (eT

2 A), divΓ (eT
3 A)

)T

,

with ei the ith standard basis vector in R
3 and tr(·) is the trace of a matrix. The Laplace–

Beltrami operator for a sufficiently smooth function g in a neighborhood of Γ is:

�Γ g := divΓ (∇Γ g).

Further L2(Γ ) is the Lebesgue space of square-integrable functions on Γ and H 1(Γ ) is the
Sobolev space of all functions g ∈ L2(Γ ) such that ∇Γ g ∈ L2(Γ )3.

On Γ we consider a heterogeneous mixture of two species with surface fractions ci =
Si/S, i = 1, 2, where Si are the surface area occupied by the components and S is the
surface area of Γ . Since S = S1 + S2, we have c1 + c2 = 1. Let c1 be the representative
surface fraction, i.e. c = c1.

2.1 The Cahn–Hilliard Problem

A well established model for the process of spinodal decomposition and phase separation
alone (i.e., in the absence of surface fluid flow) is the CH phase-field model [10, 11]. The
surface CH equation governs the evolution in time t of c = c(t, x), x ∈ Γ ⊂ R

3:

∂c

∂t
= divΓ

(
M∇Γ

(
1

ε
f ′

0(c) − ε �Γ c

))
on Γ, for t ∈ (0, T ], (1)

suitably endowed with an initial condition c(0, x) = c0. In (1), f0(c) = 1
4 c2 (1 − c)2 is

the specific free energy of a homogeneous phase, parameter ε > 0 defines the width of the
(diffuse) interface between the phases, M is the so-called mobility (see [29]), and T is the
end of a time interval of interest. We note that the above f0 is a smooth approximation of
the physically relevant potential [10, 11]. We consider the degenerate mobility of the form

M = Dc(1 − c) (2)

with diffusivity constant D > 0. Mobility (2) is a popular choice for numerical stud-
ies. Equation (1) is obtained from minimizing the total specific free energy

∫
Γ

1
ε
f0(c) +

1
2ε|∇Γ c|2ds subject to the conservation of surface area

∫
Γ

c ds.
Equation (1) is a fourth-order equation. In order to avoid higher order spatial derivatives,

which would need careful numerical treatment, it is common to rewrite (1) as two coupled
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second-order equations:

∂c

∂t
= divΓ (M∇Γ μ) on Γ, (3)

μ = 1

ε
f ′

0 − ε�Γ c on Γ . (4)

In (4), μ represents the chemical potential.
For the numerical method, we need a weak (integral) formulation. In order to devise it,

one multiplies (3) by v ∈ H 1(Γ ) and (4) by q ∈ H 1(Γ ), integrates over Γ and employs the
integration by parts identity. The weak (variational) formulation of problem (3)–(4) reads:
Find (c, μ) ∈ H 1(Γ ) × H 1(Γ ) such that

∫

Γ

∂c

∂t
v ds +

∫

Γ

M∇Γ μ ∇Γ v ds = 0, (5)
∫

Γ

μ q ds −
∫

Γ

1

ε
f ′

0(c) q ds −
∫

Γ

ε∇Γ c ∇Γ q ds = 0, (6)

for all (v, q) ∈ H 1(Γ ) × H 1(Γ ).

2.2 The Navier–Stokes–Cahn–Hilliard Problem

Let us now consider the case of phase separation occurring together with lateral flow. The
classical phase-field model for the flow of two immiscible, incompressible, and Newtonian
fluids with the same density is the so-called Model H [24]. To be able to account for non-
matching densities, here we focus on a generalization of Model H first presented in [41],
which builds on the thermodynamically consistent model introduced in [1].

To state the NSCH model, let mi be the mass of component i and m is the total mass.
The density of the mixture can be expressed as ρ = m

S
= m1

S1

S1
S

+ m2
S2

S2
S

. Thus, ρ = ρ(c) =
ρ1c + ρ2(1 − c) for c ∈ [0, 1], where densities ρ1, ρ2 > 0 are given constants. Similarly,
for the dynamic viscosity of the mixture we can write η = η(c) = η1c + η2(1 − c) for
c ∈ [0, 1], where η1, η2 > 0 are the constant dynamic viscosities of the two species. Since
the polynomial double-well potential f0(c) does not enforce c ∈ [0, 1], we use a smooth
cut-off function to ensure ρ(c) ≥ ρmin > 0, η(c) ≥ ηmin > 0, while preserving the linear
dependence for c > 0 [41]. Then, the governing equations read:

ρ∂tu + ρ(∇Γ u)u − PdivΓ (2ηEs(u)) + ∇Γ p = −σγ c∇Γ μ + Mθ(∇Γ (θu))∇Γ μ, (7)

divΓ u = 0, (8)

∂t c + divΓ (cu) − divΓ (M∇Γ μ) = 0, (9)

μ = 1

ε
f ′

0 − ε�Γ c, (10)

on Γ × (0, T ]. Here, u is the surface averaged tangential velocity, p is pressure, σγ is
line tension, and θ2 = dρ

dc
. All other variables and parameters are the same as defined in

Section 2.1. Without loss of generality we let ρ1 ≥ ρ2. Then, the model (7)–(10) assumes
that ρ is a smooth monotonic function of c, i.e. dρ

dc
≥ 0. We note that system (7)–(10)

coincides with the model in [1] in the range of linear ρ–c dependence, but it exhibits thermo-
dynamic consistency for a general monotone ρ–c relation. See [41] for details. The energy
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balance delivered by the model reads [41]:

d

dt

∫

Γ

(
ρ

2
|u|2 + σγ

(
1

ε
f0 + ε

2
|∇Γ c|2

))
ds

+
∫

Γ

2η|Es(u)|2ds +
∫

Γ

σγ M|∇Γ μ|2ds = 0. (11)

The only difference between model (7)–(10) and Model H is the last term in (7), which
can be interpreted as an additional momentum flux due to diffusion of the components
driven by the gradient of the chemical potential. This term vanishes for matching densities

since θ =
√

dρ
dc

= 0, thereby recovering Model H. For other thermodynamic consistent
extensions of Model H that involve a generic smooth ρ(c) (no monotonicity assumption),
the reader is referred to [2, 3].

For the purpose of writing the weak formulation of problem (7)–(10), we define the
spaces

VT := {u ∈ H 1(Γ )3 | u · n = 0}, L2
0(Γ ) :=

{
p ∈ L2(Γ )

∣∣∣
∫

Γ

p ds = 0

}
.

The weak formulation of the surface NSCH problem (7)–(10) reads: Find (u, p, c, μ) ∈
VT × L2

0(Γ ) × H 1(Γ ) × H 1(Γ ) such that
∫

Γ

(ρ∂tu · v + ρ(∇Γ u)u · v + 2ηEs(u) : Es(v)) ds −
∫

Γ

p divΓ v ds

= −
∫

Γ

σγ c∇Γ μ · v ds +
∫

Γ

M(∇Γ (θu))(∇Γ μ) · (θv) ds, (12)
∫

Γ

q divΓ u ds = 0, (13)
∫

Γ

∂t c v ds −
∫

Γ

cu · ∇Γ v ds +
∫

Γ

M∇Γ μ · ∇Γ v ds = 0, (14)
∫

Γ

μ g ds =
∫

Γ

1

ε
f ′

0(c) g ds +
∫

Γ

ε∇Γ c · ∇Γ g ds, (15)

for all (v, q, v, g) ∈ VT × L2(Γ ) × H 1(Γ ) × H 1(Γ ). More details on the derivation of
(12)–(15) can be found in [41].

3 Numerical Method

For the numerical solution of the problems presented in Section 2, we apply the trace finite
element method (TraceFEM) [38, 39]. TraceFEM relies on a tessellation of a 3D bulk com-
putational domain Ω (Γ ⊂ Ω holds) into shape-regular tetrahedra untangled to the position
of Γ .

Surface Γ is defined as the zero level set of a function φ (where φ is at least Lips-
chitz continuous), i.e. Γ = {x ∈ Ω : φ(x) = 0}, such that |∇φ| ≥ c0 > 0 in a 3D
neighborhood U(Γ ) of the surface. The vector field n = ∇φ/|∇φ| is normal on Γ and
defines quasi-normal directions in U(Γ ). Let Th be the collection of all tetrahedra such that
Ω = ∪T ∈Th

T , with h denoting the characteristic tetrahedra size. The subset of tetrahedra
that have a nonzero intersection with Γ is denoted by T Γ

h . We allow for local refinement of
the grid towards Γ . The domain formed by all tetrahedra in T Γ

h is denoted by ΩΓ
h .
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In order to state the fully discretized CH and NSCH problems, we introduce some finite
element spaces. Let V k

h denote the bulk (volumetric) finite element space of continuous
functions that are polynomials of degree k on each T ∈ T Γ

h :

V k
h = {

v ∈ C(ΩΓ
h ) : v ∈ Pk(T ) for any T ∈ T Γ

h

}
.

The traces of functions from V 1
h on Γ will be used to approximate the surface fraction

and the chemical potential. Our bulk velocity and pressure finite element spaces are the
Taylor–Hood elements on ΩΓ

h :

Vh = (V 2
h )3, Qh = V 1

h ∩ L2
0(Γ ). (16)

Higher order approximations are possible (see, e.g., [19, 41]) but will not be considered
here.

For the purpose of numerical integration, we approximate Γ by a “discrete” surface
Γh so that integrals over Γh can be computed accurately and efficiently. For first order
finite elements, a straightforward polygonal approximation of Γ ensures that the geometric
approximation error is consistent with the finite element interpolation error. See, e.g., [38].

Next, we introduce two finite element bilinear forms that are common to the discrete
versions of both NS and NSCH problems:

aμ(μ, v) :=
∫

Γ

M∇Γ μ · ∇Γ v ds + τμ

∫

ΩΓ
h

(n · ∇μ)(n · ∇v) dx, (17)

ac(c, g) := ε

∫

Γ

∇Γ c · ∇Γ g ds + τc

∫

ΩΓ
h

(n · ∇c)(n · ∇g) dx. (18)

Forms (17)–(18) are well defined for μ, v, c, g ∈ H 1(ΩΓ
h ). The volumetric terms in (17)

and (18) are there to recover algebraic stability as possible small cuts of tetrahedra from
T Γ

h by Γ may lead to poorly conditioned algebraic systems. Notice that these terms are
consistent up to geometric errors related to the approximation of Γ by Γh and n by nh. We
set the stabilization parameters as follows [52]: τμ = h, τc = ε h−1.

For the time discretization, let �t = T
N

be a time step. For ease of presentation, the time
step is assumed to be fixed, although adaptive time stepping techniques can be applied [18].
At time instance tn = n�t , ζ n denotes the approximation of generic variable ζ(tn, x). To
approximate the time derivatives in problems (5)–(6) and (12)–(15), we use the backward
differentiation formula of order 1:

[ζ ]nt = ζ n − ζ n−1

�t
.

Once fully discretized, CH problem (5)–(6) reads: Given cn
h ∈ V 1

h , find (cn+1
h , μn+1

h ) ∈
V 1

h × V 1
h such that:

(
[ch]n+1

t , vh

)
+ aμ

(
μn+1

h , vh

)
= 0,

(
μn+1

h − γc�t

ε
[ch]n+1

t − 1

ε
f ′

0(c
n
h), gh

)
− ac

(
cn+1
h , gh

)
= 0, (19)

for all (vh, gh) ∈ V 1
h × V 1

h . Following [45], the second term in (19) stabilizes the explicit
treatment of non-linear part of the free energy variation.

Next, we turn to the NSCH problem (12)–(15). For its numerical solution, we adopt
a decoupled linear finite element method introduced in [41]. In order to described such
method, we need to introduce some additional forms related to the Navier–Stokes part of
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the problem and the decomposition of a vector field on Γ into its tangential and normal
components: u = u + (u · n)n. The additional forms are defined as follows:

a(η; u, v) :=
∫

Γ

2ηEs(u) : Es(v) ds + τ

∫

Γ

(n · u)(n · v) ds

+βu

∫

ΩΓ
h

[(n · ∇)u] · [(n · ∇)v] + γ̂

∫

Γ

divΓ u divΓ v ds dx, (20)

c(ρ;w, u, v) :=
∫

Γ

ρvT (∇Γ u)w ds + 1

2

∫

Γ

ρ̂(divΓ w)u · v ds, (21)

b(u, q) :=
∫

Γ

u · ∇Γ q ds, (22)

s(p, q) := βp

∫

ΩΓ
h

∇p · ∇q dx, (23)

where γ̂ is the grad-div stabilization parameter [40] (set equal to 1) and ρ̂ = ρ− dρ
d c

c. Forms
(20)–(23) are well defined for p, q ∈ H 1(ΩΓ

h ) ∩ H 1(Γ ), u, v,w ∈ H 1(ΩΓ
h )3 ∩ H 1(Γ )3.

In (20), τ > 0 is a penalty parameter to enforce the tangential constraint (i.e., condition
uh · n = 0 on Γ for uh ∈ Vh), while βu ≥ 0 in (20) and βp ≥ 0 in (23) are stabilization
parameters to deal with possible small cuts. They are set according to [25]: τ = h−2,
βp = h, βu = h−1.

The decoupled finite element method from [41] requires the solution of one linear prob-
lem Cahn–Hilliard type system (step 1) and one linearized Navier–Stokes system (step 2)
per time step tn+1, thereby ensuring low computational costs. This scheme reads:

- Step 1: Given un
h ∈ Vh and cn

h ∈ V 1
h , find (cn+1

h , μn+1
h ) ∈ V 1

h × V 1
h such that:

(
[ch]n+1

t , vh

)
−

(
un

hc
n+1
h ,∇Γ vh

)
+ aμ(μn+1

h , vh) = 0,
(

μn+1
h − γc�t

ε
[ch]n+1

t − 1

ε
f ′

0(c
n
h), gh

)
− ac(c

n+1
h , gh) = 0,

for all (vh, gh) ∈ V 1
h × V 1

h .

- Step 2: Set θn+1 =
√

dρ
dc

(cn+1
h ). Find (un+1

h , pn+1
h ) ∈ Vh × Qh such that

(
ρn [uh]n+1

t , vh

)
+ c

(
ρn+1;un

h, un+1
h , vh

)
+ a

(
ηn+1; un+1

h , vh

)
+ b

(
vh, pn+1

h

)

= −
(
σγ cn+1

h ∇Γ μn+1
h , vh

)
+ M

(
(∇Γ (θn+1un+1

h ))∇Γ μn+1
h , θn+1vh

)
+

(
fn+1
h , vh

)
,

b
(
un+1

h , qh

)
− s

(
pn+1

h , qh

)
= 0

for all (vh, qh) ∈ Vh × Qh.

In [41, Theorem 4.2], we proved that the above scheme is stable under relatively mild
restrictions on time-step and mesh size. However, in the numerical results presented in [41]
and in Section 4 of this paper, we observed only a restriction of the form h � ε, which
is very typical for a phase field approach. Moreover, we note that failure to resolve the
interface, i.e. h ≥ ε, leads to inaccurate computed solutions rather than a blow-up in time.
We speculate that restrictions on h in terms of �t in Theorem 4.2 of [41] may be an artifact
of the analysis.
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4 Numerical Results

We present a series of numerical results aimed at understanding the difference in the
evolution of phases when modeled by the Cahn–Hilliard or Navier–Stokes–Cahn–Hilliard
equations posed on a closed smooth surface. For the latter model, we experiment with dif-
ferent settings for the physical parameters. All the numerical results have been obtained
with open source finite element package DROPS [13].

We start by comparing the numerical results produced by the two models on a sphere
in Section 4.1. Then, we consider an asymmetric torus in Section 4.2 to see the effects
of a different geometry on the evolution of phases. More complex shapes are treated in
[52], where we performed a computational study of two phase separation models with no
surface flow (surface Allen–Cahn and Cahn–Hilliard equations). For all the simulations
we set ε = 0.02 and D = 0.02 in (2). In order to model an initially homogenous mix
of components, the initial area fraction c0 is defined as a realization of Bernoulli random
variable crand ∼ Bernoulli(a) with mean value a, i.e. we set:

c0 := crand(x) for active mesh nodes x. (24)

We set a = 0.5 for the 50%-50% composition (meaning that 50% of the surface is covered
by one phase and the remaining 50% by the other phase) and a = 0.3 for the 30%-70%
composition. The other physical parameters will be specified for each case. We run all the
simulations till T = 100 and with an adaptive time stepping technique [18].

For all the simulations, we will study the evolution of the discrete Lyapunov energy:

EL
h (ch) =

∫

Γh

f (ch)ds =
∫

Γh

(
1

ε
f0(ch) + 1

2
ε|∇Γ ch|2

)
ds (25)

and we will visually compare the evolutions of phases. In addition, for the NSCH model we
will compare the flow in a qualitative way.

4.1 Phase Separation on a Sphere

The surface of the sphere is appealing for its simplicity and for its relevance in practical
applications. In fact, lipid vesicles used as drug carriers have a spherical shape [54]. We
characterize Γ as the zero level set of function φ(x) = ‖x‖2 −1 and we embed it in an outer
cubic domain Ω = [−5/3, 5/3]3.

We experimented with different meshes to find one with an appropriate level of refine-
ment for the given value of ε. The initial triangulation Th�

of Ω we considered consists of
eight sub-cubes, where each of the sub-cubes is further subdivided into six tetrahedra. We
applied several level of refinement � ∈ N, with associated mesh size h� = 10/3

2�+1 . Each mesh
also features a refinement towards the surface. We found that � = 5 is a good compromise
between accuracy and computational cost. See also [41]. Thus, the results reported in this
section refer to the mesh with � = 5. We note that for the NSCH model such mesh has
225822 active degrees of freedom (193086 for uh and 10912 for ph, ch, and μh).

4.1.1 Variable Line Tension

In this section, we focus on composition 50%-50%. One initial condition (24) is generated
and used to compare phase separation given by the CH model and the NSCH model with
variable line tension. We assign density ρ1 = 3 and viscosity η1 = 0.1 to species 1, while
species 2 has ρ2 = 1 and η2 = 0.008. We consider a low value of line tension σγ = 0.004
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and one high value σγ = 0.4. These are dimensionless values that allow us to explore
the interplay between different physical phenomena. For realistic values of the physical
parameters in lipid vesicles, we refer to [51, 54].

Figure 1 shows the Lyapunov energy (25) over time computed by the CH model, NSCH
model with low and high line tension. We observe that when switching form the CH model
to NSCH model with low line tension the Lyapunov energy decay is slightly faster. It
becomes substantially faster when the value of σγ is increased, which can be expected from
the energy balance (11) since the last dissipative term scales with σγ .

These differences are reflected in the evolution of phases displayed in Fig. 2. The evo-
lution of the surface fraction does not vary significantly when going from the CH model to
the NSCH model with σγ = 0.004, although some differences can be noticed from t = 30
on. Changing to σγ = 0.4 produces more evident differences, starting already from t = 5.
Moreover, by comparing the center and bottom rows in Fig. 2 it is clear that a larger value
of σγ accelerates the transition towards a steady state, i.e. one large black domain and one
large pink domain separated by a minimal length interface.

Figure 3 displays the velocity vectors superimposed to the surface fraction for the bottom
two cases in Fig. 2. Since for visualization purposes the arrows have been magnified with
different factors, the velocity vectors cannot be compared across rows. In the NSCH model
in (7)-(10), the fluid flow is purely driven by the coupling with the phase separation process.
For σγ = 0.4 (bottom row in Fig. 3), the larger surface tension forces initially produce more
significant fluid motion, which however decays faster over time. This is due to the fact that
the system evolves more rapidly towards a steady state, as mentioned above. This is not the
case for σγ = 0.004. See Fig. 3, top row.

4.1.2 Variable Viscosity

Now, we set line tension to σγ = 0.04 and vary the viscosity for composition 50%-50% and
30%-70% (which means that 30% of the surface is in phase 1). We consider a high viscosity

Fig. 1 Discrete Lyapunov energy (25) given by the CH model, NSCH model with σγ = 0.004, and NSCH
model with σγ = 0.4
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Fig. 2 Phase separation given by the CH model (top), NSCH model with σγ = 0.004 (center), and NSCH
model with σγ = 0.4 (bottom)

case (η1 = 0.01, η2 = 0.0008) and a low viscosity case (η1 = 0.0001, η2 = 0.000008). The
densities are set like in Section 4.1.1.

Figure 4 reports the discrete Lyapunov energy (25) over time computed by the CH model,
NSCH model with low and high viscosities for both compositions. We observe that the
presence of surface flow leads to a faster Lyapunov energy decay. In the case of composition
50%-50%, we see that switching from high to low values of the viscosity does not produce
a significant change in the energy decay. Instead, for composition 30%-70% Fig. 4 shows
that lower values of viscosity lead to a faster Lyapunov energy decay than higher values. An
explanation of this phenomenon is not obvious from the energy balance (11), since the first
dissipation term scales with viscosity. To ensure that this was not an accident, we repeated
the numerical experiment for composition 30%-70% ten times with different realizations
of initial condition (24). The average Lyapunov energy computed by CH model and NSCH
model with low and high viscosities is reported in Fig. 5, which confirms the trend. It seems
plausible to hypothesize the following: for lower viscosity the surface tension produces

Fig. 3 Velocity vectors superimposed to the surface fraction for σγ = 0.004 (top) and σγ = 0.4 (bottom).
For visualization purposes, the velocity vectors are magnified by a factor 40 in the top row and 2 in the
bottom row
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Fig. 4 Discrete Lyapunov energy (25) given by the CH model, NSCH model with high values of viscosities
(η1 = 0.01, η2 = 0.0008), and NSCH model with low values of viscosities (η1 = 0.0001, η2 = 0.000008)
for composition 50%-50% (left) and 30%-70% (right)

higher speed lateral flows (as illustrated in Fig. 3), which increases the probability of small
rafts coming together and merging, thereby releasing the free energy.

Figures 6 and 7 show the evolution of phase separation by the CH model and NSCH
model for the high viscosity and low viscosity cases for composition 50%-50% and 30%-
70%, respectively. The patterns are very different for the two compositions: composition
50%-50% gives rise to pink macrodomains with a tortuous interface, while from composi-
tion 30%-70% one gets many small domains with a more or less elongated shape. Switching
from high viscosities to low viscosities in the NSCH model does not produce significant
differences in the appearance of the domains until t = 100 for composition 50%-50%.
Compare center and bottom row in Fig. 6. This is somewhat expected from the fact that the
lines corresponding to the two cases in Fig. 4 (left) are almost superimposed until about

Fig. 5 Average discrete Lyapunov energy (25) given by the CH model and the NSCH model with high values
of viscosities (η1 = 0.01, η2 = 0.0008) and low values of viscosities (η1 = 0.0001, η2 = 0.000008).
The average is taken over ten simulations for composition 30%-70% (right) with different realizations of the
random initial distribution
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Fig. 6 Phase separation given by the CH model (top), NSCH model with viscosities η1 = 0.01, η2 = 0.0008
(center), and NSCH model with viscosities η1 = 0.0001, η2 = 0.000008 (bottom) for composition 50%-50%

t = 80. The change in domain appearance happens faster when going from high viscosities
to low viscosities for composition 30%-70%. Indeed, by comparing center and bottom row
in Fig. 7 we observe remarkable differences already at t = 40. Again, this can have been
expected from looking at the two lines for the NSCH model in Fig. 4 (right).

Finally, let us take a look at the fluid flow in Figs. 8 and 9 for compositions 50%-50%
and 30%-70%, respectively. In both figures, the velocity vectors have been magnified by a
factor 5. We see that the velocity magnitude in the bottom row of both figures is larger than

Fig. 7 Phase separation given by the CH model (top), NSCH model with viscosities η1 = 0.01, η2 = 0.0008
(center), and NSCH model with viscosities η1 = 0.0001, η2 = 0.000008 (bottom) for composition 30%-70%
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Fig. 8 Velocity vectors superimposed to the surface fraction for η1 = 10−2, η2 = 8 · 10−4 (top row) and
η1 = 10−4, η2 = 8 · 10−6 (bottom row) for composition 50%-50%. For visualization purposes, the velocity
vectors are magnified by a factor 5 in both rows

in the top row for every time under consideration, as one would expect when inertial forces
become more dominant over viscous forces.

4.2 Phase Separation on a Torus

We consider a more complex surface than the sphere used so far. We choose an asymmetric
torus with constant distance from the center of the tube to the origin R = 1 and variable
radius of the tube: rmin = 0.3 ≤ r(x, y) ≤ rmax = 0.6, with r(x, y) = rmin + 0.5(rmax −
rmin)(1 − x√

x2+y2
). We note that toroidal vesicles are not uncommon [35]. We characterize

the torus surface as the zero level set of function φ = (x2 + y2 + z2 + R2 − r(x, y)2)2 −
4R2(x2 + y2). The torus is embedded in an outer domain Ω = [−5/3, 5/3]3, just like the
sphere. We also selected same mesh level, i.e. l = 5.

Like in Section 4.1.1, we focus on composition 50%-50% and select ρ1 = 3, ρ2 = 1.
Line tension is set to σγ = 0.04 and we consider that same high viscosity and low viscosity
cases as in Section 4.1.2.

Figure 10 reports the discrete Lyapunov energy (25) over time computed by the CH
model, NSCH model with low and high viscosities on the torus (left) and sphere (right).
Figure 10 (right) is the same as Fig. 4 (left); it is reported again to facilitate the comparison.
On the torus, just like on the sphere, the presence of surface flow leads to a faster Lyapunov
energy decay. Moreover, on both surfaces switching from high to low values of the viscosity

Fig. 9 Velocity vectors superimposed to the surface fraction for η1 = 10−2, η2 = 8 · 10−4 (top row) and
η1 = 10−4, η2 = 8 · 10−6 (bottom row) for composition 30%-70%. For visualization purposes, the velocity
vectors are magnified by a factor 5 in both rows
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Fig. 10 Discrete Lyapunov energy (25) given by the CH model, NSCH model with high values of viscosities
(η1 = 0.01, η2 = 0.0008), and NSCH model with low values of viscosities (η1 = 0.0001, η2 = 0.000008)
on the torus (left) and sphere (right)

does not produce a significant change in the Lyapunov energy decay. On the sphere though,
the energy drops to a lower value after the initial fast phase of phase separation and flattens
faster in the subsequent slower phase. This suggests an effect of the surface geometry on
the evolution of phases.

The effect of the geometry can bee seen also when comparing Fig. 6 with Fig. 11, which
shows the evolution of phases delivered by the CH model and NSCH model for the high
viscosity and low viscosity cases on the torus. We see that the interface separating the two
phases remains tortuous for a longer period of time on the torus. As for within the torus
itself, we do not observe a particular difference in pattern between “skinny” and “fat” side
of the torus.

Next, in Fig. 12 we report the the velocity vectors superimposed to the surface fraction
for the bottom two cases in Fig. 11. The velocity vectors have been magnified by a factor

Fig. 11 Phase separation given by the CH model (top), NSCH model with viscosities η1 = 0.01, η2 = 0.0008
(center), and NSCH model with viscosities η1 = 0.0001, η2 = 0.000008 (bottom)
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Fig. 12 Velocity vectors superimposed to the surface fraction for η1 = 10−2, η2 = 8 · 10−4 (top row) and
η1 = 10−4, η2 = 8 · 10−6 (bottom row). For visualization purposes, the velocity vectors are magnified by a
factor 5 in both rows

5. This allows us to compare the fluid flows on the sphere (in Fig. 8) and the torus. We
observe more intricate flow patters on the torus due to both the more complex shape and the
persistence of the tortuosity in the interface separating the phases.

5 Conclusions

We performed a computational study of lateral phase separation and coarsening on surfaces.
To model these processes, we considered both the Cahn–Hilliard (phase separation alone)
and the Navier–Stokes–Cahn–Hilliard (phase separation coupled to lateral flow) equations
posed on manifolds. Both models were solved numerically using an unfitted finite element
method called TraceFEM, which allows for a flexible treatment of complex and evolv-
ing surfaces. This choice is motivated by our interest in the computational design of lipid
membranes used as drug carriers.

Through a series of numerical tests on the surface of a sphere and an asymmetric torus,
we investigated how the evolution of phases changes when switching from the Cahn–
Hilliard (CH) model to the Navier–Stokes–Cahn–Hilliard (NSCH) model with variable line
tension, viscosity, and membrane composition. We observed that the discrete Lyapunov
energy decays faster when using the NSCH model. In particular, such faster decay is more
significant when the line tension is increased and the viscosity is lowered. The latter is
more evident in some membrane compositions (i.e., 30%-70%) than others (i.e., 50%-50%).
Finally, by comparing the evolution of phases on the sphere and on the torus we do observe
differences that indicate an effect of the surface geometry.
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