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Abstract. We study a numerical method for the simulation of free surface flows of viscoplastic
(Herschel-Bulkley) fluids. The approach is based on the level set method for capturing the free
surface evolution and on locally refined and dynamically adapted octree cartesian staggered
grids for the discretization of fluid and level set equations. We consider an extension of the
stable approximation of the Newtonian flow equations on staggered grid to approximate the
visoplastic model and level-set equations if the free boundary evolves and the mesh is dynam-
ically refined or coarsened. In the Newtonian case, the convergence of numerical solutions is
observed towards experimental data when the mesh is refined. We compute several viscoplastic
Herschel-Bulkley fluid flows over incline planes for the dam-break problem. The comparison
of numerical solutions is done versus experimental studies, indicating that intrinsically 3D nu-
merical simulations are often required to compare well with a physical experiment. The efficacy
of the numerical approach is demonstrated for a real-life application of landslide runout mod-
elling in the Western Sayan mountains.
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1 INTRODUCTION

Free surfaces flows of yield stress fluids are common in nature: lava flows, snow avalanches
and debris flows, as well as in engineering applications: flows of melt metal, fresh concrete,
pastes and other concentrated suspensions [2, 26]. Although the rheology of such materials can
be quite complicated, viscoplastic models, for example the Herschel-Bulkley model, are often
used to describe the strain rate – stress tensor relationship and predict the fluids dynamics with
reasonable accuracy, see e.g. [11, 18]. Modeling such phenomena numerically is a challenging
task due to the non-trivial coupling of complex flow dynamics and free surface evolution.

Numerical simulations of viscoplastic fluid flow has already attracted a lot of attention, see,
for example, the review papers [12, 15]. Nevertheless, the accurate modeling of free-surface
viscoplastic fluid flows poses a serious challenge. The previous studies in this area include
the application of the Arbitrary Langrangian–Eulerian method for free-surface tracking of ax-
isymmetric squeezing Bingham flows [21], volume of fluid surface tracking for 2D Bingham
flows [1], the free interface lattice Boltzmann model [16], the simulation of viscoplastic fluids
over incline planes in shallow layer approximations, see, e.g., [3, 5, 20].

The present paper reports on a numerical approach for simulation of complex 3D viscoplastic
fluid flows. The approach is based on the free surface capturing by the level set method [34, 35]
and octree cartesian grids dynamically refined near the free surfaces and coarsened in the fluid
interior. The combination of the level set method and adaptive cartesian grids makes possible
the efficient treatment of complex geometries emerging in the process of the free surface evolu-
tions. We note that using grids adaptively refined towards a free boundary is a common practice,
e.g. [7, 17]. Many adaptive methods studied in the literature are based on locally refined trian-
gulations (tetrahedra) and finite element discretizations, e.g., [7, 14]. However, adaptive (octree)
cartesian grids are more convenient for frequent and routine executions of refining / coarsen-
ing procedures. For the application of such grids in image processing, the visualization of
amorphous medium, free surface Newtonian flow computations and other applications, where
non-trivial geometries occur, see [23, 25, 27, 32, 36]. For the sake of adaptation, the grid is
dynamically refined or coarsened according to the distance to the evolving free boundary on ev-
ery time step. For the space discretization, we use a finite difference method with the staggered
allocation of velocity–pressure nodes. A splitting scheme is applied for time integration.

The remainder of the paper is organized as follows. Section 2 reviews the mathematical
model. In section 3 we discuss the details of the numerical approach. Numerical results for
several 3D test problems are presented in section 4. Numerical tests include the viscoplastic
Herschel-Bulkley fluid flow over incline planes and the simulation of a landslide runout in the
Western Sayan mountains in vicinity of the Sayano-Shushenskaya dam. Section 5 contains
some closing remarks.

2 MATHEMATICAL MODEL

We consider the Herschel-Bulkley model of a viscoplastic non-Newtonian incompressible
fluid flow in a bounded time-dependent domain Ω(t) ∈ ℝ3. We assume that ∂Ω(t) = ΓD∪Γ(t),
where ΓD is the static boundary1 (walls) and Γ(t) is a free surface. In the time interval (0, T ],

1The ΓD part of the boundary may vary in time, although remaining static.
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the fluid flow is described by the fluid equations⎧⎨⎩ �

(
∂u

∂t
+ (u ⋅ ∇)u

)
− div � +∇p = f

∇ ⋅ u = 0

in Ω(t), (1)

and the Herschel-Bulkley constitutive law

� =
(
K ∣Du∣n−1 + �s∣Du∣−1

)
Du ⇔ ∣� ∣ > �s,

Du = 0 ⇔ ∣� ∣ ≤ �s,
(2)

where u, p, � are velocity vector, pressure and the deviatoric part of the stress tensor, K is the
consistency parameter, �s is the yield stress parameter, n is the flow index, for n < 1 the fluid
is shear-thinning, for n > 1 is shear-thickening, and n = 1 corresponds to the classic case of
the Bingham plastic, � is the density of fluid, Du = 1

2
[∇u + (∇u)T ] is the rate of strain tensor

and ∣Du∣ =
( ∑

1≤i,j≤3

∣Diju∣2
) 1

2 , div denotes the vector divergence operator. Thus the medium

behaves like a fluid in the domain, where ∣Du∣ ∕= 0, the so-called flow region, and exhibits
the rigid body behavior in the region where the stresses do not exceed the threshold parameter
�s, the so-called rigid (or plug) region. One of the difficult features of the problem is that two
regions are unknown a priori. Since the stress tensor is indeterminate in the plug region, in
[13] it was pointed out that (formally) the equations (1) make sense only on those parts of the
domain, where ∣Du∣ ∕= 0, and the mathematically sound formulation of (1)–(2) can be written
in terms of variational inequalities. Another common way to avoid this difficulty in practice, is
to regularize the problem by enforcing the fluidic medium behavior in the entire computational
domain (see e.g. [6, 15]). We adopt this approach and replace ∣Du∣with ∣Du∣" =

√
∣Du∣2 + "2

for a small parameter " > 0 (we set " = 10−7 in numerical experiments from this report). This
allows us to pose equations in the entire domain:⎧⎨⎩ �

(
∂u

∂t
+ (u ⋅ ∇)u

)
− div �"Du +∇p = f

∇ ⋅ u = 0

in Ω(t), (3)

with the shear-dependent effective viscosity

�" = K ∣Du∣n−1
" + �s∣Du∣−1

" .

At the initial time t = 0 the domain and the velocity field are known:

Ω(0) = Ω0, u∣t=0 = u0. (4)

On the static part of the flow boundary we assume the Dirichlet (no-slip or inflow) or the Navier
slip boundary conditions:

u = g on Γ1
D, u ⋅ n = n× [Du]n = 0 on Γ2

D, Γ1
D ∪ Γ2

D = ΓD, (5)

here g is given, n is the normal vector to ΓD. Balancing the surface tension and stress forces
yields the second condition on Γ(t):

�"nΓ = &�nΓ − pextnΓ on Γ(t), (6)
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where �" = �"Du−p I is the regularized stress tensor of the fluid, � is the sum of the principal
curvatures, & is the surface tension coefficient, pext is an exterior pressure which we assume to
be zero, pext = 0.

The model of the free surface evolution uses the implicit definition of Γ(t) as the zero level
of a globally defined smooth (at least Lipschitz continuous) function �(t,x),

�(t,x) =

⎧⎨⎩
< 0 if x ∈ Ω(t)

> 0 if x ∈ ℝ3 ∖ Ω(t)

= 0 if x ∈ Γ(t)

for all t ∈ [0, T ].

The initial condition (4) defines �(0,x). For t > 0, the level set function satisfies the following
transport equation [31]:

∂�

∂t
+ ũ ⋅ ∇� = 0 in ℝ3 × (0, T ], (7)

where ũ is any smooth velocity field such that ũ = u on Γ(t). The employed mathematical
model consists of equations (3), (4), (5), (6), and (7). The implicit definition of Γ(t) as the zero
level of a globally defined function � leads to numerical algorithms which can easily handle
complex topological changes of the free surface such as merging or pinching of two fronts and
formation of singularities. The level set function provides an easy access to useful geometric
characteristics of Γ(t). For instance, the unit outward normal to Γ(t) is nΓ = ∇�/∣∇�∣, and the
surface curvature is � = ∇ ⋅ nΓ. From the numerical point of view, it is often beneficial if the
level set function possesses the signed distance property, i.e., it satisfies the Eikonal equation

∣∇�∣ = 1. (8)

3 NUMERICAL METHOD

The numerical method is built on the approach developed in [27, 28] for the Newtonian flows
and described in detail in [29, 30]. Below we outline the algorithm.

We apply a semi-implicit splitting method that avoids nested iteration loops and extends
the well-known approach of Chorin-Temam-Yanenko, see, e.g., [9, 31]. Each time step of the
method (given u(t), p(t), �(t) find approximations to u(t+Δt), p(t+Δt), �(t+Δt)) consists of
the following substeps. For the sake of presentation, we suppress spacial discretization details
for a moment.

Level set part: Ω(t)→ Ω(t+ Δt).

1. Extend velocity to the exterior of fluid body: u(t)∣Ω(t) → ũ(t)∣ℝ3 . In practice, the exten-
sion is performed to a bulk computational domain, rather than ℝ3.

2. Find �(t+Δt) from (7) by a numerical integration with the semi-Lagrangian method [37]
and using the extended velocity field. This is done in few substeps: First, for every grid
point y, solve the characteristic equation backward in time

∂x(�)

∂�
= ũ(x(�), �), x(t+ Δt) = y, for � ∈ [t+ Δt, t]. (9)

The characteristic equation is integrated numerically with the second order accuracy. Sec-
ond, assign

�∗(y, t+ Δt) = �(x(t), t). (10)
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To compute �(x(t), t) and velocity values along numerical characteristics, the second
order interpolation is used. At this step, the signed distance property of � and the volume
balance may be lost.

3. Perform the correction �∗(t + Δt) → �̂∗(t + Δt) in order to enforce the global volume
conservation;

4. Re-initialize the level set function �̂∗(t + Δt) → �(t + Δt) so that �(t + Δt) (approxi-
mately) satisfies (8).

When the “level set” part of the splitting algorithm is complete, the computed �(t + Δt)
implicitly defines the new fluid domain Ω(t+ Δt).

Remeshing. Given the new fluid domain we update and adapt the grid accounting for the new
position of the free surface.

Re-interpolation. Fruther, all discrete variables are re-interpolated to the new grid. Note that the
re-interpolated velocity field is defined globally (due to the extension procedure at the beginning
of the level-set part).

Fluid part: {u(t), p(t)} → {u(t+ Δt), p(t+ Δt)}.

1. First the advection is treated by applying the semi-Lagrangian method for each velocity
component uk, k = 1, 2, 3. This gives an intermediate velocity field u∗k(y, t+ Δt).

2. Next the viscoplastic terms are added:

û∗(t+ Δt) = u∗(t+ Δt) + �−1Δt
[
div

(
K ∣Dũ(t)∣n−1

" + �s∣Dũ(t)∣−1
"

)
Dũ(t) + f(t)

]
(11)

We split the surface tension balance condition (6) between the projection step (12) and
the viscous step (11), so the velocity update in (11) uses the strain-free condition:

[Dũ(t)]nΓ∣Γ(t) = 0

on the free boundary.

3. Solve for pressure p(t+ Δt):⎧⎨⎩
∇ ⋅ ∇p(t+ Δt) =

1

Δt
∇ ⋅ û∗(t+ Δt) in Ω(t+ Δt),

p(t+ Δt) = �−1&�(t+ Δt) on Γ(t+ Δt) and
∂p(t+ Δt)

∂n
= 0 on ΓD.

(12)

Project the velocity on the div-free subspace:

u(t+ Δt) = û∗(t+ Δt)−Δt∇p(t+ Δt).

Goto the level set part.

The time step is subject to the Courant type condition:

Δt = min

{
C1ℎmin

(
max
x∈Ω(t)

∣u(t)∣
)−1

, C2�
1
2ℎ

3
2
min&

− 1
2

}
,
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where ℎmin is the size of the smallest volume cell as defined in the next section. In all compu-
tations we set C1 = 0.66 and C2 = 1.4, which were found sufficient for stability.

Note that we treat the viscoplastic terms explicitly in time. In this case, the standard stability
analysis for parabolic equations would ask for the time step restriction Δt ≤ c ℎ2

min(max�")
−1

(a prohibitively restrictive for max�" ≫ 1). However, such restriction was not found nec-
essary in our computations. A possible explanation is that large effective viscosity values �"

correspond to a constrained fluid motion (tending to the rigid body motion) which resists to the
development of spurious modes.

Resolving the geometry of the free surface and the accurate approximation of the surface
tension forces require a sufficiently fine grid in a neighborhood of Γ(t). In this case, the use of
uniform grids becomes prohibitively expensive, especially in 3D. Locally refined meshes often
need considerably less computational resources. However, such meshes have to be dynamically
refined and coarsened if the free surface evolves. The remeshing is, in general, CPU time
and memory demanding procedure for consistent regular tetrahedrizations. This step becomes
considerably less expensive if one uses cartesian octree meshes with cubic cells. The two-
dimensional analog of an octree mesh refined towards a 1D curve is illustrated in Figure 1 (left)
and the midplane cut of an octree mesh in a numerical experiment of filling a container with a
fluid is shown in Figure 1 (right). More details on quadtree/octree data structures can be found
in [33].

Figure 1: Left: 2D quadtree grid adapted to free boundary. Right: The midplane cut of an octree mesh, which is
adaptively refined towards free surface in a numerical experiment of filling a container with a fluid.

For a stable finite difference method, we use the staggered location of velocity and pressure
unknowns to discretize the fluid equations [19, 22]. The pressure is approximated in cell centers,
velocity components are approximated in face centers. The level set function is approximated
in cell vertices. Finite difference counterparts of the differential operators are considered in
details in [29].

To account for the surface tension forces, we need approximations to the free surface normal
vectors and curvatures. The unit outward normal vector is computed from the level set function:
nΓ = ∇�/∣∇�∣ on Γ(t) by the second order approximation of the gradient. The mean curvature
of the interface is defined as the divergence of the normal vector, �(�) = ∇⋅n = ∇⋅(∇�/∣∇�∣).
Since ∇� is computed with second order accuracy, �(�) is approximated at least with the first
order.

The fluid volume is conserved globally by the regular adjustment of the level set function by
adding a suitable constant function �: �new = �− �. The parameter � solves the equation

meas{x : �(x) < �} = V olreference.
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Figure 2: The sketch of the flow configuration used for Herschel-Bulkley fluid flow computations.

The bisection algorithm is used to find � from this equation and a Monte-Carlo method is applied
to evaluate meas{x : �(x) < �}.

Finally, we employ a re-initialization procedure defined in [28, 29] to satisfy the Eikonal
equation (8) by the discrete level-set function.

4 NUMERICAL EXPERIMENTS

In this section we present results of several numerical tests. First, we validate the code by
comparing computed statistics for the Newtonian case with those available in the literature.
Further, few results are shown for viscoplastic fluid flows over incline planes and for landslide
runout simulations.

4.1 The Herschel-Bulkley fluid flows over incline planes

Flows of viscoplastic fluids over incline surfaces have a long history in research due to their
important role in nature and engineering, see [2, 20] for the review and the comprehensive
coverage of the literature on the subject. Mathematical analysis of the problem, including the
analytical representation of the form of the final arrested state, is available in the special case of
two-dimensional shallow layer approximation and without inertia terms [3, 4, 5, 20]. Therefore,
in a more general setting, numerical modeling is an important and indispensable research tool
for analyzing such types of flows. Earlier numerical studies include computing the dam-break
and sloping yield stress fluid flows in the shallow layer approximations (lubrication models),
e.g. [3, 5, 20]. In such an approach, the effect of inertia and surface tension are often ne-
glected. The method developed in this paper allows to account for true three-dimensionality of
the flow as well as for inertia, surface tension, and more complex geometries, no shallow layer
assumptions are needed.

First, the accuracy and the reliability of the method is demonstrated in [29], where for the
case of the Newtonian fluid the convergence of the following statistic is shown to the experi-
mental data found in a literature [24]. We computed the evolution of the free surface bottom
front for the Newtonian dam break problem and compare it versus experimental values from
[24]. When the finest grid size is of order 1

256
, then the computed results perfectly match the ex-

periment. For non-Newtonian fluids, however, the existing models give typically less accurate
approximation of a complex rheology of real-life fluids. Thus we look below for a qualitative
comparison to experimental data (rather than the perfect matching).

Consider a plane inclined at angle � to the horizontal. A rectangular reservoir of length
X and width Y filled with a volume V of Herschel-Bulkley fluid is placed on the plane. The

7
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Figure 3: Three-dimensional view of the dam-break flow over incline plane with � = 12o at times t ∈
{0.2, 0.6, 1.0, 2.0}s with instantaneous gate removal and K = 47.68Pas−n, n = 0.415, �s = 89Pa.

reservoir is equipped with a gate perpendicular to the slope. When the gate is open, the fluid is
released and starts motion driven by the gravity force. The 2D schematic flow configuration is
shown in Figure 2. The setup reproduces the experimental studies from [10].

We run numerical experiments with the following set of dimensional parameters from [10]:
X = 0.51m, Y = 0.3m, V = 0.06m3, � ∈ {12o, 18o}, and two sets of Herschel-Bulkley model
parameters, K = 47.68Pas−n, n = 0.415, �s = 89Pa and K = 75.84Pas−n, n = 0.579, �s =
109Pa. The Herschel-Bulkley model with such parameters was found in [10] to approximate
the rheology of Carbopol Ultrez 10 gel of 0.30% and 0.40% concentration, respectively. The
gel has density � = 937kg/m3 and surface tension coefficient & = 0.06N/m. The typical
computed fluid evolution is illustrated in Figure 3, where the colors indicate the depth of the
flow.

Figure 4: Effective viscosity �" on midplane profile at times t = 0.6s and t = 1s for the same problem setup as
in fig. 3.
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Figure 5: Contact line at times t = 0.2 k (s), k = 1, . . . , 10 for a) � = 12o, K = 47.68Pas−n, n = 0.415,
�s = 89Pa, b) � = 12o, K = 75.84Pas−n, n = 0.579, �s = 109Pa, c) � = 18o, K = 47.68Pas−n,
n = 0.415, �s = 89Pa, d) � = 18o, K = 75.84Pas−n, n = 0.579, �s = 109Pa.

Regarding the flow structure, the existing shallow-layer theory distinguishes the yielding
region close to the bottom boundary and the pseudo-plug region, the region where the fluid is
weakly yielded and considered solid up to higher order terms with respect to the layer thickness.
Pseudo-plugs are predicted to dominate the dynamics over substantial regions of shallow flows.
Qualitatively the same structure was observed for the computed 3D solutions and illustrated in
figure 4.

We note that in the previous numerical studies of the dam-break problem, the whole bulk
of fluid was assumed to be released instantaneously, i.e. the time needed for the gate to open
was neglected. In the present approach, we are able to model the gradual removal of the gate as
well. In [10] the gate was rased within t = 0.8s, which is not negligibly small time. Numerical
results shown below were also computed for the gate gradually opened within 0.8s. We found
that without this detail the numerical solution (e.g., the flow-depth profile evolution) compared
poorly to those found from experiment in [10]. Accounting for such effects is hardly possible if
a numerical simulations use two-dimensional and/or shallow-layer models.

Figures 5 and 6 show the evolution of the contact line of the free-surface over the inclined
plane and of the flow-depth profile at the midplane. We note that the fluid attains fast initial
motion and sharply decelerates around t = 0.8. Further, the fluid front evolves gradually and
slowly. Such two-stage behavior of numerical solution corresponds perfectly well to the exper-
imental observations. In particular, describing the overall flow dynamics in experiments with
Carbopol gel the authors of [10] stated “... we observed two regimes: at the very beginning
(t < 1s), the flow was in an inertial regime; the front velocity was nearly constant. Then,
quite abruptly, a pseudo-equilibrium regime occurred, for which the front velocity decayed as a
power-law function of time.” Since we stop our simulation at t = 2s, we are not able to recover
the asymptotic decay of the front velocity (the time scale of the real-life experiment was about 8
hours). Nevertheless, the computed contact line plots and midplane profiles (shown in Figures 5
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Figure 6: Midplane flow-depth profiles at times t = 0.2 k (s), k = 1, . . . , 10 for a) � = 12o, K = 47.68Pas−n,
n = 0.415, �s = 89Pa, b) � = 12o,K = 75.84Pas−n, n = 0.579, �s = 109Pa, c) � = 18o,K = 47.68Pas−n,
n = 0.415, �s = 89Pa, d) � = 18o, K = 75.84Pas−n, n = 0.579, �s = 109Pa.

and 6) compare well to the same statistics given in [10] for times t ∈ {0.2, 0.4, 0.6, 0.8, 1.0}s.
In general, it should be noted that any viscoplastic model is an idealization of the possibly com-
plex rheology of such fluid as Carbopol gel and certain deviation of numerical and experimental
data is not unexpected.

4.2 Landslide runout modelling

As an example of the numerical simulation of a large-scale three-dimensional hydrodynamic
event, we consider the modelling of a landslide runout in the Western Sayan mountains [30].
The calculations below do not correspond to any former accident or possible disaster scenario
near the Sayano-Sushenskaya dam, but designed to show the feasibility of such calculations
using the presented technology and if geophysical data for the coastal territory and the condition
of the dam are available. For the computations we used a topographic map obtained from the
Shuttle Radar Topography Mission (NASA) [38]. The accuracy of the map is about 90m. The
polygonal approximation of the earth surface and the dam was constructed with the help of the
Google SketchUp. We model a landslide runout on the left bank of the Yenisey river near the
dam. Lacking a more accurate geophysical data, we take with the coefficients K, �s, n of the
Herschel-Bulkley model from [8], which approximate the rheological properties of the grounds
in the Puglia mountains in southern Italy.

When modeling a landslide, we were interested in the final deposition of masses and the
pressure experienced by the body of the dam at the site of the landslide. The top view of
the computed landslide runout at intermediate and final times is shown in Figure 7. The time
variation of the total kinetic energy of the entire debris masses is shown in Figure 8, right. By
the end of computation, the landslide has lost much of its kinetic energy and it is reasonable
to assume that the final landslide deposition is found. The graph of maximum pressure on the
body of the dam at the site of the landslide is shown in Figure 8, left. Due to the dynamic
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Figure 7: Landslide runout at times t = 100s and t = 167s. Different colors show the absolute values of the
velocity of landslide masses.

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16
x 105

time

pressure

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12
x 107

time

Kinetic energy

Figure 8: Pressure on the body of the dam at the site of the landslide. The change of kinetic energy of the entire
landslide masses over time.

adaptivity, the maximum number of cubic cells in the present computations slightly exceeded
560 000. This leads to the algebraic problems of a modest size and makes the computations
affordable on workstations or small clusters.

5 CONCLUSIONS

We considered a numerical method for computing free surface flows of viscoplastic flu-
ids. The method is based on the level set function free surface capturing, on dynamically re-
fined/coarsened octree cartesian grids, and semi-explicit splitting algorithm. It has been shown
to be an efficient approach to simulate such types of flows numerically. We tested the perfor-
mance of the method by computing several 3D viscoplastic fluid flows of interest. The com-
puted viscoplastic solutions demonstrate expected qualitative behavior and compare reasonably
well with experimental data.
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