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For the three-dimensional incompressible Navier–Stokes equations, we present a formula-
tion featuring velocity, vorticity and helical density as independent variables. We find the
helical density can be observed as a Lagrange multiplier corresponding to the divergence-
free constraint on the vorticity variable, similar to the pressure in the case of the incom-
pressibility condition for velocity. As one possible practical application of this new formu-
lation, we consider a time-splitting numerical scheme based on an alternating procedure
between vorticity–helical density and velocity–Bernoulli pressure systems of equations.
Results of numerical experiments include a comparison with some well-known schemes
based on pressure–velocity formulation and illustrate the competitiveness on the new
scheme as well as the soundness of the new formulation.
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1. Introduction

Numerical simulation of laminar and turbulent incompressible flows is an important subtask in many industrial applica-
tions and remains within the focus of intensive scholarly research. Incompressible viscous flows of a Newtonian fluid are
modeled by the system of the Navier–Stokes equations, which read: Given a bounded, connected domain X � R3 with a
piecewise smooth boundary @X, the simulation time T, and a force field f : Q ! Rd (here and further Q :¼ ð0; TÞ �X), find
a velocity field u : Q ! R3 and a pressure field p : Q ! R such that
@u
@t
� mDuþ ðurÞuþrp ¼ f in Q ; ð1:1Þ

divu ¼ 0 in Q ; ð1:2Þ
ujt¼0 ¼ u0 in X; ð1:3Þ
where m > 0 is the kinematic viscosity coefficient. Some boundary conditions have to be imposed on @X to obtain a closed set
of equations. We pose the Dirichlet conditions for velocity:
u ¼ / on ð0; TÞ � @X; ð1:4Þ
with some / satisfying
R

X div/ ¼ 0; 8t 2 ð0; TÞ, but other boundary conditions are also possible.
. All rights reserved.
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In this paper we shall consider vorticity and helical density as additional flow variables. Vorticity w ¼ r� u plays a fun-
damental role in fluid dynamics as well as in mathematical analysis of the Navier–Stokes equations and in many cases it is
advantageous to describe dynamics of a flow in terms of the evolution of the vorticity. Taking a rotation of (1.1), one imme-
diately arrives at the following vorticity equation:
@w
@t
� mDwþ ðurÞw� ðwrÞu ¼ r� f: ð1:5Þ
Using the definition of the material derivative and vector identity (2.2) one can write (1.5) in the equivalent form
Dw
Dt
� mDw�DðuÞw ¼ r� f;
where the material derivative Dw
Dt represents convection of w along the fluid particle trajectories, �mDw is the vorticity dif-

fusion and the third term DðuÞw is responsible for the intensification (or the decrease) of vorticity depending on the align-
ment of w with eigenvectors corresponding to positive (or negative) eigenvalues of the rate of deformation (also known as
rate of strain) tensor DðuÞ :¼ 1

2 ðruþ ½ru�TÞ. Since tr½DðuÞ� ¼ divu ¼ 0, matrix DðuÞ, if not identically zero, possesses both
positive and negative eigenvalues. This vorticity stretching mechanism is not present in the 2D case and is believed to be
of crucial importance in turbulent flow dynamics, e.g. [2,10,23].

In this paper, starting with the vorticity equation we reformulate it in terms of vorticity and helical density h :¼ uw as (cf.
Section 2)
@w
@t
� mDwþ 2DðwÞu�rh ¼ r� f: ð1:6Þ
This relation suggests that the helical density can be treated as an independent variable and in this way considered as a La-
grange multiplier corresponding to the div-free condition for vorticity, divw ¼ 0, similar to pressure in (1.1) and (1.2). The heli-
cal density h relates to the helicity by H ¼

R
h dx. The helicity is a fundamental quantity in laminar and turbulent flow: it can

be interpreted physically as the degree to which a flow’s vortex lines are tangled and intertwined (defined precisely in terms
of the total circulation and Gauss linking number of interlocking vortex filaments), is an inviscid invariant, cascades over the
inertial range jointly with kinetic energy, manifests the lack of reflectional symmetry of a flow, enjoys a nontrivial topolog-
ical interpretation, and is believed to be closely related to vortex breakdown [1,7,24]. Recent theoretical studies indicate a
possibly important role of helical density for the regularity of the 3D Navier–Stokes solutions, cf. [5], and analytically inves-
tigate the asymptotic dichotomy of the helicity and its relation to the energy [13]. Moreover, that helicity is an inviscid
invariant and is precisely balanced in the forced viscous case means that computed solutions’ helicity can be used as a fur-
ther diagnostic check for physical accuracy. Thus we shall consider a new formulation for the Navier–Stokes problem based
on (1.6) and additional equations involving velocity and vorticity. This formulation might give another insight into the vor-
ticity dynamics, and leads to numerical methods which directly approximate and access such physically important variables
as vorticity and helicity.

To obtain a closed set of equations and computationally feasible method based on the vorticity equation, one has to com-
plement (1.5) or (1.6) with relations linking velocity and vorticity. For this purpose, it is common to consider the Poisson
equation for velocity
�Du ¼ r�w in Q : ð1:7Þ
While the velocity–pressure system (1.1)–(1.3) is usually complemented with some boundary conditions on the velocity
or stress tensor, for computations using the vorticity equation it is convenient to have some boundary conditions for w,
which are typically not given a priori. Setting proper boundary or integral conditions for (1.5) and (1.7) (such that diver-
gence-free velocity and vorticity fields are recovered) is a controversial subject discussed in many publications, see e.g.
[9,15,22,29,30,32] and references therein. The situation becomes much easier with (1.6), which allows divw ¼ 0 to be explic-
itly enforced by treating the helical density as an independent variable, and thus setting appropriate vorticity boundary con-
ditions becomes simple, see Section 2. As an interesting alternative to (1.7) we shall also consider dynamic equations linking
vorticity and velocity, which enforce explicitly the divu ¼ 0 condition and lead to a simple stable time-stepping alternating
scheme to solve the Navier–Stokes equations numerically.

n general, the advantages of using the vorticity Eq. (1.5) for numerical simulations include the following [15,17,25]: it
allows access of the physically relevant variables of vortex dominated flows, simpler elliptic operators arise rather than
the saddle point problems because the pressure term is eliminated, and boundary conditions can be easier to implement
in external flows where the vorticity at infinity is easier to set than the pressure boundary condition. In particular, in the
finite element context, the vorticity–velocity formulation produces a vorticity field that is globally continuous. This is unlike
the velocity–pressure formulation. Most of these conclusions still hold if the vorticity–helicity Eq. (1.6) is used instead of
(1.5).

The remainder of the paper is organized as follows. In Section 2, we derive the velocity–vorticity–helicity (VVH) formu-
lation and prove it is equivalent to the Navier–Stokes system (1.1)–(1.4). Section 3 presents two time-splitting numerical
schemes based on an alternating procedure between vorticity–helical density and velocity–Bernoulli pressure systems of
equations, and proves stability of the velocity for the schemes. A finite element algorithm for the two schemes, as well as
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the results of few numerical experiments, are given in Section 4. These experiments show the VVH formulation indeed leads
to effective and practical numerical simulations.

2. Vorticity–Helicity equation

It is straightforward to check the following vector identities for any sufficiently smooth vector functions u;w:
rðuwÞ ¼ ½rw�T uþ ½ru�T w; ð2:1Þ
½ru�T w ¼ ðwrÞuþw� ðr� uÞ: ð2:2Þ
For w ¼ r� u the last term in (2.2) vanishes and we obtain for nonlinear terms in (1.5):
ðurÞw� ðwrÞu ¼ 2DðwÞu�rðuwÞ;
where 2DðwÞ ¼ rwþ ½rw�T , and
h ¼ uw
is the helical density. Treating h as a new unknown we can write the vorticity equations in the form:
@w
@t
� mDwþ 2DðwÞu�rh ¼ r� f in Q ; ð2:3Þ

divw ¼ 0 in Q ; ð2:4Þ
wjt¼0 ¼ r� u0 in X: ð2:5Þ
Some similarities between (1.1)–(2.5) are clear: like pressure in (1.1) the helical density h can be observed as a multiplier
corresponding to the div-free constraint for vorticity. The Eq. (2.3) can also be written as
Dw
Dt
� mDwþ ½rw�T u�rh ¼ r� f:
The system (2.3)–(2.5) should be complemented with an additional equation relating u and w. Following the velocity–
vorticity methods based on (1.5), for this purpose one may consider (1.7). An interesting alternative is to consider the dy-
namic equations:
@u
@t
� mDuþw� uþrP ¼ f in Q ; ð2:6Þ

divu ¼ 0 in Q ; ð2:7Þ
ujt¼0 ¼ u0 in X; ð2:8Þ
where P ¼ 1
2 uuþ p is the Bernoulli pressure variable. As we will see in the next section, coupling (2.3)–(2.5) with (2.6)–(2.8)

leads to natural alternating time-splitting schemes, which can be proven stable in a certain sense. For the system (2.6)–(2.8),
boundary conditions come from the original problem setting, i.e. conditions (1.4).

The vorticity system (2.3)–(2.5) can be endowed with the consistent boundary conditions:
w ¼ r� u on ð0; TÞ � @X: ð2:9Þ
In this case h is defined up to an additive constant for any t 2 ð0; TÞ. This situation is similar to the definition of pressure
for enclosed flows. The non-uniqueness can be easily avoided by prescribing h ¼ uw at arbitrary point of domain, although a
more computationally sound way [6] would be to enforce a mean condition, e.g.

R
X h� uw ¼ 0. Another consistent way of

setting boundary conditions is to prescribe helicity and the tangential vorticity on the boundary:
h ¼ /ðr � uÞ and n�w ¼ n� ðr� uÞ on ð0; TÞ � @X: ð2:10Þ
The equivalence of the new velocity–vorticity–helicity formulation to the original one is verified in the next theorem.

Theorem 2.1. The system (1.1)–(1.4) is equivalent to the system of Eqs. (2.3)–(2.8), and boundary conditions (1.4) and (2.9) or
(2.10), as well as to the system of Eqs. (2.3)–(2.5), (1.7), and boundary conditions (1.4) and (2.10).

Proof. If u; p solves (1.1)–(1.4) then it follows immediately that u; P ¼ pþ 1
2 uu;w ¼ r� u, and h ¼ wu solves (2.3)–(2.8),

(1.4) and (2.9), as well as (1.7) and (2.10).
Now suppose that u; P;w;h is a solution to (2.3)–(2.8), (1.4) and (2.9). Applying r� to (2.6) we find
@ðr � uÞ
@t

� mDðr � uÞ þ 2DðwÞu�rðwuÞ ¼ r � f:
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Thus for the difference w ¼ r� u�w and r ¼ wu� h we get thanks to (2.3)
@w

@t
� mDwþrr ¼ 0:
Using (2.4), (2.9), (2.5), and (2.8) we get the system of equations:
@w

@t
� mDwþrr ¼ 0 in Q ; ð2:11Þ

divw ¼ 0 in Q ; ð2:12Þ
wjt¼0 ¼ 0 in X; ð2:13Þ
w ¼ 0 on ð0; TÞ � @X: ð2:14Þ
We multiply (2.11) by w and integrate over X. Due to (2.12) and (2.14) we obtain
d
dt
kwk2 þ mkrwk2 ¼ 0:
From this equality and initial condition (2.13) we conclude w ¼ 0. Therefore it holds
w ¼ r� u and h ¼ wuþ cðtÞ: ð2:15Þ
Substituting w from (2.15) into (2.6) shows that u solves (1.1)–(1.3) with p ¼ P � 1
2 uu. Thus we proved the equivalence of

(1.1)–(1.4) and the system of Eqs. (2.3)–(2.8), and boundary conditions (1.4) and (2.9). The case of boundary conditions (2.10)
is treated similarly.

Further suppose that u, w, h is a solution to (2.3)–(2.5), (1.7), (2.10). The Eq. (1.7) and the first condition from (2.10)
implies (cf. [29] p. 30) the equalities w ¼ r� u and divu ¼ 0. Now we substitute w ¼ r� u into (2.3) and through simple
manipulations obtain
r� @u
@t
� mDuþ ðurÞu� f

� �
¼ rðh�wuÞ: ð2:16Þ
Taking divergence of the both sides of (2.16) we find that r ¼ h�wu is harmonic on X for any t 2 ð0; TÞ. The second
boundary condition in (2.10) implies r ¼ 0 on @X. Thus r ¼ 0 and h ¼ wu. Since the right-hand side in (2.16) vanishes, there
exists a scalar function p such that
@u
@t
� mDuþ ðurÞuþrp ¼ f: �
Remark 2.1. Consider the following boundary conditions for the original velocity–pressure formulation:
u � n ¼ 0 and n� ðr � uÞ ¼ 0 on @X: ð2:17Þ
One easily verifies that such conditions lead to the following homogeneous boundary conditions for vorticity and helical
density:
w� n ¼ 0 and h ¼ 0 on @X: ð2:18Þ
Conditions (2.17) and (2.18) may be of interest for a theoretical analysis since they ensure boundary integrals vanish in
typical integration by parts in the vorticity–helicity Eq. (2.3) as well as in velocity–pressure equations. It is interesting that
boundary conditions (2.17) are quite often used for the analysis of the (Navier)–Stokes equations in a bounded domain, see
e.g. [3,26] and references therein, and are physical motivated [8].

Remark 2.2. If we complement the vorticity–helicity equation with (2.6)–(2.8), then an obvious complication of the new
setting is that compared to the original velocity–pressure formulation the number of variables is doubled. This is the price
that must be paid for the direct approximation of all four physically fundamental quantities: Bernoulli pressure and helicity
(both are important inviscid invariants) as well as velocity and vorticity.
3. Numerical scheme

For a moment we omit any spatial discretization and consider only time-stepping techniques. We use the notation un for
an approximation to uðnsÞ, where s is a time step; the same notation is applied for other variables and the right-hand side.
We will also use the notation unþ1=2 ¼ unþunþ1

2 , and define u�1 :¼ u0 and w�1 :¼ w0. Let us consider the following two second
order in time splitting algorithms based on vorticity–helicity and velocity–Bernoulli pressure equations. Note that algorithm
A1 is more implicit in the vorticity step and A2 is more implicit in the velocity step. Both algorithms are second order accu-
rate in time.
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Algorithm A1

Step 1. Given un;wn;wn�1 and w� ¼ 3
2 wn � 1

2 wn�1, find unþ1 and Pnþ1
2 from
unþ1 � un

s
� mDunþ1

2 þw� � unþ1
2 þrPnþ1

2 ¼ fnþ1
2 ð3:1Þ

divunþ1 ¼ 0 ð3:2Þ
unþ1j@X ¼ /nþ1 ð3:3Þ
Step 2. Given unþ1;un, and wn find wnþ1 and hnþ1
2 from
wnþ1 �wn

s
� mDwnþ1

2 þ 2Dðwnþ1
2Þunþ1

2 �rhnþ1
2 ¼ r� fnþ1

2 ð3:4Þ

divwnþ1 ¼ 0 ð3:5Þ
wnþ1j@X ¼ r� unþ1 ð3:6Þ
The second algorithm changes the order of the velocity–pressure and the vorticity–helicity update.

Algorithm A2

Step 1. Given un;un�1;wn and u� ¼ 3
2 un � 1

2 un�1, find wnþ1 and hnþ1
2 from
wnþ1 �wn

s
� mDwnþ1

2 þ 2D wnþ1
2

� �
u� � rhnþ1

2 ¼ r� fnþ1
2 ð3:7Þ

divwnþ1 ¼ 0 ð3:8Þ
wnþ1j@X ¼ r� ð2un � un�1Þ ð3:9Þ
Step 2. Given un;wn and wnþ1, find unþ1 and Pnþ1
2 from
unþ1 � un

s
� mDunþ1

2 þwnþ1
2 � unþ1

2 þrPnþ1
2 ¼ fnþ1

2 ð3:10Þ

divunþ1 ¼ 0 ð3:11Þ
unþ1j@X ¼ /nþ1 ð3:12Þ
Both algorithms involve only linear problems to solve on each time step. At the same time they are unconditionally stable in
the following sense. The velocity approximations satisfy the energy balance and an a priori estimate given in the following
lemma.

Lemma 3.1. Assume / ¼ 0, then
kunk2 þ 2m
Xn

k¼1

skruk�1
2k2 ¼ ku0k2 þ 2

Xn

k¼1

s fk�1
2;uk�1

2

� �
ð3:13Þ
and
kunk2 þ m
Xn

k¼1

skruk�1
2k2
6 ku0k2 þ m�1

Xn

k¼1

skfk�1
2k2 ð3:14Þ
Proof. These results follow immediately from the velocity step of either algorithm by multiplying by unþ1
2 and integrating

over the domain, summing over timesteps, and applying Cauchy-Schwarz and Young’s inequalities to the forcing term. h

Remark 3.1. The statement of the lemma is easily generalized for finite element approximations and for finite difference
schemes, which preserve the skew-symmetry of the vector product and keep the discrete divergence and gradient operators
adjoint.

Remark 3.2. We are not aware of similar stability result in the literature on velocity–vorticity numerical schemes. Indeed, it
is not clear how to approach stability estimates if instead of (2.6)–(2.8) one adopts (1.7), see also next remark.

Remark 3.3. Stability estimate (3.14) involves only the velocity variable. Getting control of kwnk is a delicate issue. Indeed,
proving a global in time L2 estimate for vorticity would imply the regularity of weak solutions to the 3D Navier–Stokes equa-
tions, which is an outstanding open problem. Thus we may hope to obtain only local (for sufficiently small T; kfk; ku0k and
m�1) stability estimates in terms of vorticity. This is, however, a rather technical issue and we will not treat it in the current
paper.
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Remark 3.4. Both algorithms ensure both velocity and vorticity are divergence-free without engaging any integral or non-
local boundary conditions for vorticity.

Remark 3.5. Using (2.3) and (2.4) instead of (1.5) for a numerical method leads back to a saddle point problem to solve
instead of elliptic one. However, due to the significant progress in solution methods for saddle point problems, see e.g.
[4,12], this may be considered as a reasonable price for getting the direct access to helicity and the explicit enforcement
of the div-free condition for vorticity.
4. Numerical experiments

In this section, we test the viability of the proposed formulation with three numerical experiments. We begin by defining
finite element discretizations based on Algorithms A1 and A2 that use inf–sup stable element pairs, although we note that
many other discretization choices could be made, including variational multiscale methods that would allow for equal order
element choices, see Remark 4.3. We first test on the 3D driven cavity benchmark problem, and find the methods are able to
find the correct steady state solution. The final two experiments are done using the Ethier–Steinman exact Navier–Stokes
solution. The first test verifies expected asymptotic convergence rates, and the final experiment compares the new methods
against commonly used methods.

4.1. Finite element method

We test the new algorithms using a finite element (FE) spatial discretization. To formalize the numerical schemes, let
ðXh;Q hÞ be an inf–sup stable FE pair; in our experiments we use the Taylor–Hood element pair to approximate velocity–pres-
sure as well as vorticity–helical density. Define the space of discretely divergence free functions in Xh to be
Vh ¼ fvh 2 Xh : ðdivvh; qhÞ ¼ 0 8qh 2 Q hg
Then given u0
h 2 Vh, calculate w0

h as the L2 projection of r� u0
h into Vh, and define u�1

h ¼ u0
h and w�1

h ¼ w0
h. The fully dis-

crete numerical algorithms for the velocity–vorticity–helicity (VVH) formulations are as follows. We formally define one
algorithm, the finite element discretization for A1; the counterpart for A2 is defined in the same way. Further in numerics
these schemes are denoted by (VVH1) and (VVH2), respectively.

Algorithm 4.1. (VVH1)

Step 1. Given un
h;w

n
h and wn�1

h , find unþ1
h ; P

nþ1
2

h

� �
2 ðXh;Q hÞ satisfying: unþ1

h j@X interpolates /nþ1 on @X, and
8ðvh; qhÞ 2 ðXh;Q hÞ, � �� �
1
s

unþ1
h � un

h;vh
� �

þ m runþ1
2

h ;rvh

� �
þ 3

2
wn

h �
1
2

wn�1
h � unþ1

2
h ;vh

� P
nþ1

2
h ;divvh

� �
þ c1 divunþ1

2
h ;divvh

� �
¼ fnþ1

2;vh

� �
ðdivunþ1

h ; qhÞ ¼ 0 ð4:1Þ
Step 2. Given unþ1
h ;un

h, and wn
h, find wnþ1

h ;h
nþ1

2
h

� �
2 ðXh;Q hÞ satisfying: wnþ1

h j@X interpolates the L2 projection of r� unþ1
h in

Vh and 8ðvh; qhÞ 2 ðXh;Q hÞ,

1
s wnþ1

h �wn
h;vh

� �
þ m rwnþ1

2
h ;rvh

� �
þ 2 D wnþ1

2
h

� �
unþ1

2
h ;vh

� �

þ h
nþ1

2
h ;divvh

� �
þ c2 divwnþ1

2
h ;divvh

� �
¼ r� fnþ1

2;vh

� �
divwnþ1

h ; qh

� �
¼ 0 ð4:2Þ
Remark 4.1. From the formulation of the numerical schemes, the helical density is only unique up to a time dependent addi-
tive constant. It can be recovered after each time step by solving for the constant via

R
Xðh

n þ kn � unwnÞ dx ¼ 0. When solid
walls are on the boundary, another way would be to enforce h ¼ 0 directly in the scheme at these locations.

Remark 4.2. It was already mentioned in the introduction that correctly determining and implementing vorticity boundary
conditions, especially at a no-slip – no-penetration wall, is important. In our implementation we use the projection of the
kinematic definition of vorticity, see step 2 of Algorithm 4.1, as was first suggested in [17,18]. We note that the accuracy
of the vorticity boundary condition at a no-slip wall can be increased to the second order by using more sophisticated
approach based nodal velocity expansions in the near-boundary nodes as suggested in [32]. Below we present numerical
tests for two enclosed flows. We remark that in the case of inflow–outflow boundaries one may prescribe velocity and
vorticity profiles at the inflow boundary and Neumann boundary condition for vorticity at the outflow, see e.g. [31,32].
For the outflow velocity condition the common choice is the Neumann or convection condition for u, see [16]. Note that
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setting ‘‘do-nothing” outflow condition [19], the popular choice in FE community, together with (2.6) would lead to a non-
linear boundary condition since it originally involves kinematic rather than Bernoulli pressure variable: It would be imple-
mented as

R
Cout

v mru� P � 1
2 u2

� �
I

� �
n

� �
¼ 0.

Remark 4.3. Besides the usual Galerkin terms, Eqs. (4.1) and (4.2) involve two terms, which additionally penalize the vio-
lation of the div-free constraint by the FE velocity and vorticity. Including such terms is often a part of Petrov–Galerkin FE
formulations for the Navier–Stokes equations [14] and is well-known as the grad-div stabilization [28]; c1 P 0 and c2 P 0
are user-defined stabilization parameters. The motivation for including the grad-div stabilization with Oð1Þ stabilization
parameter in the velocity equation comes from recent work in [21,27], where its use in similar (rotational form) schemes
was found effective at relieving the velocity error of an undesired scaling with the large error associated with the Bernoulli
pressure. The vorticity equation was stabilized in a similar manner since helical density could adversely affect the vorticity
error analogously to how Bernoulli or kinematic pressure acts in the velocity equation. It is not our intention to find optimal
stabilization parameters, although that in itself could be an interesting topic of future study. However, the general strategy is
for higher Reynolds numbers the parameters should be Oð1Þ and for lower Reynolds number they should be much smaller or
zero.

Remark 4.4. In this paper we do not use any stabilization or multiscale model other than the grad-div stabilization. We note,
however, that the vorticity–helicity system (2.3) and (2.4) might be more convenient for the well-developed variational mul-
tiscale modeling or Petrov–Galerkin type streamline–upwinding [20] than the vorticity Eq. (1.5), since the structure of (2.3)
largely mimics the velocity equations in the convection form (1.1). In particular, in the Petrov–Galerkin method the nonlin-
ear terms from (2.3) would give rise to numerical streamline-dissipation of the form dT

R
T ½uh � uh�DðwhÞð Þ : DðvhÞdx on

every element T. Moreover, the fact that the helical density and Bernoulli pressure variables may share boundary and inter-
nal layers of velocity and vorticity naturally calls for using equal order elements for approximating all variables, which is a
common choice for variational multiscale approach. We will address this discretization approach in more detail elsewhere.
4.2. Numerical experiment 1: The 3D driven cavity benchmark problem

We first test the ability of the methods to find the steady state solution of the well-known 3D lid driven cavity problem.
The ‘‘cavity” domain is the unit cube, equipped with homogeneous Dirichlet boundary conditions for the velocity except on
the z ¼ 1 face, the lid, where ulid ¼ ð1; 0;0ÞT . The kinematic viscosity is set to m ¼ 0:01, which gives Reynolds number
Re ¼ 100. A uniform mesh of Taylor Hood tetrahedral elements provided 333 velocity/vorticity nodes and 173 pressure/heli-
cal density nodes for a total of 207,010 degrees of freedom. These tests were run without stabilization, that is, with
c1 ¼ c2 ¼ 0. The initial condition for velocity is zero in the interior and satisfies the boundary conditions. The initial condition
for vorticity was defined as in Algorithms A1 and A2, that is, to be the projection of the curl of the initial velocity into the
discretely divergence-free subspace.

A steady solution was computed by setting Dt ¼ 1, and iterating between the velocity and vorticity equations until con-
vergence. This is identical to VVH1 and VVH2 except instead of using extrapolated terms for linearization, we use the pre-
vious iterate of the nonlinear iteration. Using a stopping criteria for the nonlinear iteration tol ¼ 10�5 for the relative change
in velocity field, both algorithms converged to the same solution, although VVH2 converged in 18 iterations while VVH1
needed 27; this is not surprising from the physical nature of this particular problem since the first step of VVH1 would
be using a zero vorticity field and thus it takes several iterations to recover. The plots of the steady state midplane velocity
fields are shown in Fig. 1, and agree well with those of [32,33]. We also compute the centerline ðð0:5;0:5; zÞ; 0 6 z 6 1Þu-
velocities of the steady state solution, see Fig. 2, and find good agreement with the results of Wong and Baker [32], who used
many more degrees of freedom.
x

y

y

z

x

z

Fig. 1. Shown above is the steady state velocity fields at the midplanes, computed with VVH, of the cavity for the 3D driven cavity benchmark problem with
Re ¼ 100.
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4.3. Numerical experiment 2: convergence rates

The goal of the next numerical experiment is to confirm expected convergence rates for a well-known 3D benchmark test
problem. This will provide some measure of fidelity of both the formulation and the schemes.

We use as a test problem the well-known Ethier–Steinman exact NSE solution from [11]. This problem was developed as a
3D analogue to the Taylor vortex problem, for the purpose of benchmarking. Although unlikely to be physically realized, it is
a good test problem because it is an exact NSE solution and has nontrivial helicity which implies the existence of turbulent
structure [24] in its velocity field. For chosen parameters a; d and viscosity m, the exact NSE solution is given on ½�1;1�3 by
u1 ¼ �a eax sinðayþ dzÞ þ eaz cosðaxþ dyÞð Þe�md2t ð4:3Þ

u2 ¼ �a eay sinðazþ dxÞ þ eax cosðayþ dzÞð Þe�md2t ð4:4Þ

u3 ¼ �a eaz sinðaxþ dyÞ þ eay cosðazþ dxÞð Þe�md2t ð4:5Þ

p ¼ � a2

2
ðe2ax þ e2ay þ e2az þ 2 sinðaxþ dyÞ cosðazþ dxÞeaðyþzÞ þ 2 sinðayþ dzÞ cosðaxþ dyÞeaðzþxÞ

þ 2 sinðazþ dxÞ cosðayþ dzÞeaðxþyÞÞe�2md2t ð4:6Þ
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Fig. 2. u-Velocity on the centerline of the cavity compared to those from [32].

Fig. 3. The visualization of the Eithier–Steinman solution at t ¼ 0.



Table 1
The velocity and Bernoulli pressure errors and convergence rates for successive mesh and timestep refinements.

h Dt ku� uhk1;0 Rate ku� uhk2;1 Rate kP � Phk2;0 Rate

1 0.02 0.1463 – 0.2011 – 0.3284 –
0.5 0.00667 0.0188 2.96 0.05107 1.98 0.03547 3.21
0.25 0.00222 0.002339 3.01 0.01282 2.00 0.005338 2.73
0.125 0.000741 0.000295 2.99 0.00321 2.00 0.001558 1.78

Table 2
The vorticity and helicity density errors and convergence rates for successive mesh and timestep refinements.

h Dt kr � u�whk1;0 Rate kh� hhk2;0 Rate

1 0.02 0.6940 – 1.133 –
0.5 0.00667 0.1395 2.31 0.3233 1.81
0.25 0.00222 0.03106 2.17 0.08834 1.87
0.125 0.000741 0.007635 2.02 0.02431 1.86
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and from here the exact vorticity w, helical density h and Bernoulli pressure P can all be easily calculated. For t ¼ 0 the solu-
tion is shown in Fig. 3 for parameters a ¼ 1:25; d ¼ 1: The complex flow structure is seen in the streamribbons in the box
and the velocity streamlines and speed contours on the sides. The analytical solution (4.3)–(4.5) was used to prescribe veloc-
ity Dirichlet boundary conditions in numerical method. For a fair comparison we do not use (4.3)–(4.5) to define vorticity
boundary conditions; they has been computed as described on step 2 of Algorithm 4.1.

Taylor–Hood ðP2; P1Þ tetrahedral elements and scheme VVH1 is used to compute approximations to the test problem on 4
successive mesh refinements and corresponding timestep reductions, using parameters a ¼ d ¼ m ¼ 1, with end time
T ¼ 0:02, and without stabilization c1 ¼ c2 ¼ 0. Tables 1 and 2 show the relative errors and corresponding convergence rates.
We use standard notation for the norms k/kp;k :¼ k/kLpð0;T;HkðXÞ.

Although we do not provide a convergence analysis for the finite element schemes, Tables 1 and 2 show the scheme’s
velocity, vorticity and pressure converge in the given norms as one would expect under ideal conditions for ðP2; P1Þ elements
and a trapezoidal time discretization. Results are similar for VVH2, and so we omit them.

4.4. Numerical experiment 3: comparison to related, well-known schemes

In order to gauge a reasonable assessment of the new schemes, we additionally will test three related schemes. One is the
(skew-symmetric) convective form nonlinear Galerkin finite element scheme for the Navier–Stokes equations, i.e. the finite
element method applied directly to (1.1)–(1.3). This is certainly one of the most popular approaches to treat the Navier–
Stokes equation numerically. Similar to algorithms (VVH1) and (VVH2) for treating nonlinear terms we use linear extrapo-
lation, which preserves second order accuracy in time and the energy balance from Lemma 3.1. We will denote this algo-
rithm by (Conv). Note there are two trilinear terms due to the use of skew-symmetry.

Algorithm 4.2 (Conv). Given un
h, find unþ1

h ; pnþ1
2

h

� �
2 ðXh;QhÞ satisfying 8ðvh; qhÞ 2 ðXh;QhÞ:
1
s

unþ1
h � un

h;vh

� �
þ 1

2
u�hr
� �

unþ1
2

h ;vh

� �
� 1

2
u�hr
� �

vh;u
nþ1

2
h

� �

� p
nþ1

2
h ;divvh

� �
þ m runþ1

2
h ;rvh

� �
¼ fnþ1

2;vh

� �
divunþ1

h ; qh

� �
¼ 0
with u�h ¼ 3
2 un � 1

2 un�1.

Another closely related approach is to use the rotation form (2.6)–(2.8) of the Navier–Stokes equations, with the vorticity
computed directly from the velocity approximation. Hence no vorticity equation is involved in the computations. Thus the
first step of the scheme (Rot) below coincides with Step 1 of (VVH1) and the second step consists of vorticity recovery
through the L2 orthogonal projection of r� uh onto velocity FE space.

Algorithm 4.3 (Rot).

Step 1. Given un
h;w

n
h and wn�1

h , find unþ1
h ; P

nþ1
2

h

� �
2 ðXh;QhÞ satisfying: unþ1

h j@X interpolates /nþ1 on @X, and
8ðvh; qhÞ 2 ðXh;Q hÞ, � �� �
1
s
ðunþ1

h � un
h;vhÞ þ m runþ1

2
h ;rvh

� �
þ 3

2
wn

h �
1
2

wn�1
h � unþ1

2
h ;vh

� P
nþ1

2
h ;divvh

� �
þ c1ðdivunþ1

2
h ;divvhÞ ¼ fnþ1

2;vh

� �
divunþ1

h ; qh

� �
¼ 0



Step 2: Given unþ1
h , find wnþ1

h 2 Xh satisfying 8vh 2 Xh:
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Fig. 4.
wnþ1
h ;vh

� �
¼ r� unþ1

h ;vh

� �

We also tried the variation of the algorithm (Rot) with wnþ1

h computed via the projection of r� unþ1
h on the space Vh of

discretely div-free functions. This modification was found to have a minor influence on the algorithm performance, so we
will not include it in our comparisons.

Both schemes (Conv) and (Rot) require a linear saddle point type problem to be solved on every time step. Thus the com-
putational complexity of these schemes is comparable to the one of VVH schemes, which need two linear saddle point type
problem to be solved on every time step. However, from experiments we will see that (Conv) and (Rot) appear to be far less
stable than VVH schemes, especially for higher Reynolds number. Therefore, for an ‘ultimately stable’ scheme in primitive
variables we also consider the fully implicit second order in time scheme (ConvIm) below.

Algorithm 4.4 (ConvIm). Given un
h , find unþ1

h ; pnþ1
2

h

� �
2 ðXh;QhÞ satisfying 8ðvh; qhÞ 2 ðXh;QhÞ:
1
s
ðunþ1

h � un
h;vhÞ þ

1
2

unþ1
2

h r
� �

unþ1
2

h ;vh

� �
� 1

2
unþ1

2
h r

� �
vh;u

nþ1
2

h

� �

� p
nþ1

2
h ;divvh

� �
þ m runþ1

2
h ;rvh

� �
¼ fnþ1

2;vh

� �
divunþ1

h ; qh

� �
¼ 0
Note that the algorithm (ConvIm) requires a nonlinear problem to be solved on every time step. A fixed point iteration
was used to solve the nonlinearity at each time step. In general, this makes (ConvIm) computationally more expensive than
Algorithms 4.1, 4.2, 4.3.

We compute approximations to (4.3)–(4.6) with a ¼ 0:75; d ¼ 0:5, timestep s ¼ 0:01, endtime T ¼ 1, and initial velocity
u0 ¼ ðu1ð0Þ;u2ð0Þ;u3ð0ÞÞT , using 10,368 ðP2; P1Þ tetrahedral elements, enforcing Dirichlet boundary conditions from (4.3)–
(4.5) on the sides of the box by setting /n ¼ ðu1ðtnÞ;u2ðtnÞ;u3ðtnÞÞT on @X, and using c1 ¼ c2 ¼ 1.

For all five schemes, we compute for two different viscosities: m ¼ 0:01 and m ¼ 0:001. The results will be given in this
order. Note that when m ¼ 0:01, (Conv) and (ConvIm) are indistinguishable, and so for more readable plots they are plotted
together. For m ¼ 0:001, the results of these two scheme are different, and thus are plotted separately.

From the theoretical point view all five schemes are of the second order in time and formally obey the energy stability
estimate in (3.14). Indeed, Fig. 4 (left) shows that the kinetic energy stays well-bounded in time with all five schemes for
m ¼ 0:01, although for the (Rot) scheme the balance of energy appears somewhat perturbed for larger times.

For m ¼ 0:01, for all five schemes we plot the velocity and vorticity errors versus time in Figs. 4(right) and 5, respectively.
Since vorticity is not directly solved for in the velocity–pressure scheme (Conv) or (ConvIm), r� uh is used to compute the
estimate of vorticity in this algorithm. It is clear in both figures that schemes (VVH1) and (VVH2) provide more accurate pre-
dictions than (Conv), (ConvIm) and (Rot), both for the velocity and vorticity. The scheme (Rot) based on the rotation form
of the Navier–Stokes equations and without vorticity equation shows the worst results. This suggests that if one wishes
to use the rotation form, then it is better to obtain vorticity dynamically from the vorticity equation rather than as a projec-
tion of the rotation of velocity. Alternatively, one may use the fully implicit in time schemes with the rotation form [21]. This
however leads to solving a nonlinear problem on every time step, similar to (ConvIm).
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Finally, Fig. 5 (right) shows the balance of helicity for all five schemes. The results shows that the (VVH1) scheme ensures
the best balance of helicity.

Further, we repeat the experiment with higher Reynolds number by setting m ¼ 0:001. The energy balance as well as
velocity and vorticity errors versus time for m ¼ 0:001 are plotted in Figs. 6 and 7. These results show (VVH1) is the most
accurate in all plots. Interestingly, fully implicit (ConvIm) is more accurate in all plots than the linear (semi-implicit)
schemes (Conv) and (VVH2), which gave equivalent and better results, respectively, than (ConvIm) in the m ¼ 0:01 experi-
ment. This is likely due to the greater inaccuracy of linearization at lower viscosity. Thus it is interesting that (VVH1) remains
accurate here, even though it is also linear at every time step. In these tests (Rot) and (Conv) both give the largest errors in all
plots. Note that (VVH2) is not becoming unstable; its error is bounded but these plots are ‘‘zoomed in” so that the difference
between (VVH1) and (ConvIm) can be more easily seen. Fig. 8 compares helicity balance for all five schemes. From the left
figure we see that schemes (VVH1) and (ConvIm) balance helicity much better than other three schemes. On the right figure
we removed the helicity error plots for (Rot), (Conv) and (VVH2) allowing the closer comparison of (VVH1) and (ConvIm).
The (VVH1) scheme shows the best result.

Comparing two VVH schemes, it follows from results that the more implicit in vorticity step scheme (VVH1) is more accu-
rate especially for higher Reynolds numbers than the scheme (VVH2), which is more implicit in velocity step.
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5. Conclusions

We introduced a variant of the vorticity equation for the Navier–Stokes problem, which leads to the treatment of the heli-
cal density as an independent variable and relates it to the div-free constraint on the vorticity vector field. A natural choice of
local boundary conditions for vorticity or vorticity and helical density makes the resulting formulation equivalent to the ori-
ginal problem. One possible application of the new formulation is the simple time-splitting numerical scheme based on an
alternating procedure between vorticity–helical density and velocity–Bernoulli pressure systems of equations. Numerical re-
sults illustrate the viability of the new scheme and even its superiority over some other common approaches including the
fully implicit second order scheme in primitive variables. These results allow us to suggest that the new formulation is
theoretically and numerically sound and can be a useful tool for numerical or theoretical treatment of vortex dominated
three-dimensional flows.
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