
TRACE FINITE ELEMENT METHOD FOR MATERIAL
SURFACE FLOWS

by
Alexander Zhiliakov

A dissertation submitted to the Department of Mathematics,
College of Natural Sciences and Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

Chair of Committee: Maxim Olshanskii

Committee Member: Alexander Mamonov

Committee Member: Andreas Mang

Committee Member: Alan Demlow

University of Houston
May 2022



In memory of Valentina Novak and Alan K. Womack

i



ABSTRACT

This dissertation studies a geometrically unfitted finite element method (FEM), known as trace

FEM, for the numerical solution of the Navier–Stokes problem posed on a closed smooth material

surface. The key result proved is an inf-sup stability of the discrete formulation based on standard

Taylor–Hood bulk elements, with the stability constant uniformly bounded w.r.t. the mesh param-

eter and position of the surface in the bulk mesh. Optimal order convergence rates follow from this

new stability result and interpolation properties of the trace FEM.

An augmented Lagrangian preconditioner which is robust w.r.t. variation of the Reynolds

number is proposed, along with an efficient recycling strategy of the velocity matrix factorization.

Eigenvalue bounds for the preconditioned Schur complement are derived.

Properties of the proposed method are illustrated with numerical examples which include sim-

ulation of Kelvin–Helmholtz instability at different Reynolds numbers on a sphere and torus, as

well as tangential flow induced by inextensible radial deformations of a surface.
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1 INTRODUCTION

Traditionally, 2D flows have been considered as a mathematical idealization of real-life 3D phenom-

ena. However, recently we saw a growing interest in understanding and solving fluid systems posed

on 2D surfaces (or, more generally, on Riemannian manifolds). See, e.g., (Nitschke, Voigt, and Wen-

sch 2012; Jankuhn, Olshanskii, and Reusken 2018; Olshanskii, Quaini, Reusken, and Yushutin 2018;

Fries 2018; Reuther and Voigt 2018; Nitschke, Reuther, and Voigt 2019; Olshanskii and Yushutin

2019; Gross, Trask, Kuberry, and Atzberger 2020; Bonito, Demlow, and Licht 2020; Jankuhn,

Olshanskii, Reusken, and Zhiliakov 2020; Lederer, Lehrenfeld, and Schöberl 2020; Brandner and

Reusken 2020; Olshanskii, Reusken, and Zhiliakov 2021; Jankuhn, Olshanskii, Reusken, and Zhil-

iakov 2020; Brandner, Reusken, and Schwering 2021; Olshanskii, Reusken, and Zhiliakov 2022).

Fluid partial differential equations (PDEs) posed on manifolds arise in continuum-based mod-

els of thin material layers exhibiting lateral viscosity, such as lipid bilayers and plasma mem-

branes (Gurtin and Murdoch 1975; Arroyo and DeSimone 2009; Rangamani, Agrawal, Mandadapu,

Oster, and Steigmann 2013; Torres-Sánchez, Millán, and Arroyo 2019; Zhiliakov, Wang, Quaini,

Olshanskii, and Majd 2021; Wang, Palzhanov, Quaini, Olshanskii, and Majd 2022). Beyond biolog-

ical sciences, fluid equations on surfaces appear in the literature on modeling of foams, emulsions,

and liquid crystal (Scriven 1960; Slattery, Sagis, and Oh 2007; Fuller and Vermant 2012; Brenner

2013; Rahimi, DeSimone, and Arroyo 2013; Nitschke, Reuther, and Voigt 2019).

In this dissertation, we study a geometrically unfitted finite element method (FEM) for the

simulation of incompressible flows on surfaces. Our approach builds on earlier work on an unfitted

FEM for elliptic PDEs posed on surfaces (Olshanskii, Reusken, and Grande 2009a) called trace

FEM. In this method, restrictions (or traces) of standard surface-independent finite element spaces

defined in a 3D bulk domain are employed. Unlike some other geometrically unfitted methods

for surface PDEs, the trace FEM allows for sharp surface representation. This method is suitable

for approximating scalar quantities or vector fields on a surface, for which a parametrization or

triangulation is not required, i.e., the surface can be defined implicitly.

Main advantages of the proposed method are that it
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1. works well for PDEs posed on evolving surfaces (because no remeshing is required), including

cases with strong deformations and topological changes (Lehrenfeld, Olshanskii, and Xu 2018),

and

2. can be naturally extended to treat surface–bulk problems due to the presence of the back-

ground mesh in which the surface is embedded. See, e.g., (Olshanskii, Quaini, and Sun 2022).

Trace FEM has been extended to handle

1. the Stokes problem posed on a stationary surface for the trace P1–P1 finite elements in (Ol-

shanskii, Quaini, Reusken, and Yushutin 2018) and for the Taylor–Hood finite elements in

(Olshanskii, Reusken, and Zhiliakov 2021; Jankuhn, Olshanskii, Reusken, and Zhiliakov

2020),

2. the Navier–Stokes problem posed on a stationary surface in (Olshanskii and Yushutin 2019;

Olshanskii and Zhiliakov 2020), and recently to

3. the Navier–Stokes problem posed on an evolving surface with known geometrical evolution

in (Olshanskii, Reusken, and Zhiliakov 2022).

In this dissertation, we mainly concentrate on the cases (1) and (2). To demonstrate flexibility of

the proposed method, we include numerical simulations for the case (3).

The rest of the dissertation is organized as follows.

Chapter 2. We start by collecting necessary notations and results from differential geometry,

tangential differential calculus, and present a continuum-based model that describes flows of

inextensible material surfaces.

Chapter 3. Next we supplement the flow model with Boussinesq–Scriven constitutive law, giving

rise to a set of PDEs governing the evolution of a viscous material layer: evolving surface

Navier–Stokes equations. We discuss several simplifications of the model including the case

of known radial motions, leading to the tangential Navier–Stokes equations. These equations

are obtained employing tangential projection of the fluid system. We conclude the chapter
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by showing the well-posedness of the (linearized) tangential Navier–Stokes problem posed on

a stationary surface.

Chapter 4. We introduce the trace FEM to discretize the (linearized) tangential Navier–Stokes

problem posed on a stationary surface. We (i) establish the inf-sup stability property for the

case of Taylor–Hood trace finite element pair (which leads to well-posedness of the discrete

method) and (ii) conclude the chapter by proving the error estimates for the trace FEM.

Chapter 5. We develop a fast and reliable solver for the discretized problem. We discuss properties

of the resulting linear algebraic system, introduce a grad-div stabilization and an augmented

Lagrangian preconditioner, and prove eigenvalue bounds for the preconditioned problem. We

introduce a simple and efficient strategy to reuse factorizations of positive definite matri-

ces that leads to a solver that is robust w.r.t. the mesh parameter and Reynolds number

variations.

Chapter 6. We conclude by presenting a set of numerical experiments that confirm the theoretical

results of the dissertation: simulations confirming the discrete inf-sup stability, tests for

expected convergence rates for smooth solutions, Kelvin–Helmholtz instability simulations

on a sphere and torus, robustness checks of the proposed algebraic solver w.r.t. the mesh

parameter and Reynolds number variations, an energy dissipation study with a comparison

to an R2-case, and tangential flow on a radially deforming inextensible sphere.

The author’s contributions are listed in the beginning of the bibliography section. To cite this

dissertation, please use the following BibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX fileBibTEX file:

@phdthesis{zhiliakov2022phd,
author = "Zhiliakov, Alexander",

title = "Trace finite element method for material surface flows",

school = "University of Houston",

year = "2022",

month = "May",

url = "https://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?codehttps://u.pcloud.link/publink/show?code

=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7=XZ0wHFVZ1EUibC0Nw9jJPXS80JX7pJU3fVi7"

3
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2 PRELIMINARIES

2.1 Embedded Surfaces in Rd+1

We recall some basic background material of differential geometry following (Ciarlet 2013; Prüss

and Simonett 2016). Let d ∈ N. Latin indexes i, j, k etc. range over
{
1, 2, . . . , d + 1

}
, Greek

indexes α, β, µ etc. range over
{
1, 2, . . . , d

}
, and Einstein summation is assumed for repeated

indexes, e.g.,

aib
i :=

d+1∑
i=1

aib
i.

Intuitively, Γ ⊂ Rd+1 is a d-dimensional hypersurface if locally it looks like Rd. To elaborate on

what “looks like” means, we first need to define neighborhoods (open subsets) of Γ: A subset γ ⊂ Γ

is a neighborhood of Γ if there exists a neighborhood O of Rd+1 such that

γ = Γ ∩ O. (2.1)

A map f : Γ → Rd is called continuous if the preimage f−1(O) :=
{
x ∈ Γ : f(x) ∈ O

}
of any

neighborhood O is a neighborhood of Γ; we write f ∈ C(Γ). Further, the map f ∈ C(Γ) is called a

homeomorphism if f−1 ∈ C
(
Rd
)
, i.e., if both the map and its inverse are continuous. Two sets

are called homeomorphic if there exists a homeomorphism between them.

We call a set Γ ⊂ Rd+1 a d-dimensional hypersurface if for any x ∈ Γ there exists a neigh-

borhood γ of Γ, see (2.1), containing x, which is homeomorphic to Rd. Such homeomorphism

χ : Rd ↔ γ, χ(0) = x (2.2)

is called a local parametrization of Γ around x, and its inverse χ−1 : γ ↔ Rd is called a local

chart. Since any neighborhood Ξ of Rd is homeomorphic to Rd, one may equivalently use Ξ as

the parametrization domain in the definition (2.2). Euclidean coordinates ξ = (ξ1, · · · , ξd) ∈ Rd
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of χ = χ(ξ) are referred to as convective coordinates. Further we use the notation

•,α := ∂

∂ξα
•

for partial derivatives w.r.t. convective coordinates ξα of a function defined on Rd.

If χ ∈ Ck(Rd, γ) for all x ∈ Γ, we say that the hypersurface is of class Ck (or Ck-smooth for

short), Γ ∈ Ck. Smoothness of a surface map f : Γ→ R is defined via superposition of f with the

parametrization (2.2), i.e., we write f ∈ Ck(Γ) := Ck(Γ,R) if, for any x ∈ Γ and the corresponding

parametrization χ, we have

fχ := f ◦ χ ∈ Ck(Rd).

Similar definitions hold for vector- and tensor-valued functions.

Let τα := χ,α and define a metric tensor ταβ := τα · τ β. If the latter is positive definite for

all x ∈ Γ and the corresponding parametrizations χ,

(ταβ) > 0, (2.3)

the hypersurface is called regular. The regularity condition (2.3) guarantees that the Jacobian

(
τ 1, · · · , τ d

)

of χ is injective, i.e., it has a full rank (equals to d), or, equivalently, that its columns τα are

linearly independent. Let Γ be a regular hypersurface. A d-dimensional subspace

TχΓ := span
{
τ 1, · · · , τ d

}
⊂ Rd+1, (2.4)

TχΓ ∼ Rd,

is called a tangent space of Γ at χ. In particular, TxΓ = Tχ(0)Γ is the tangent space of Γ at x.

6



For two vectors σ = σατα and ω = ωατα from TχΓ we have

σ · ω = σαωβ ταβ,

and hence (ταβ) induces a metric on TχΓ due to (2.3).

Let Γsph :=
{
x ∈ Rd+1 : ‖x‖ = 1

}
. A regular hypersurface Γ is called orientable if there exists

a continuous vector field n ∈ C(Γ,Γsph) such that

nχ ⊥ TχΓ, TχΓ⊕ {nχ} = Rd+1. (2.5)

If the regular hypersurface Γ is compact, i.e.,

sup
x,y∈Γ

‖x− y‖ <∞ and Γ = Γ

holds, then Γ is orientable. For brevity, we use the term surface for a regular, C2-smooth, and

compact hypersurface.

We set

τ d+1 := nχ

so that span
{
τ 1, · · · , τ d+1

}
= Rd+1. We introduce a contravariant basis

{
τ 1, · · · , τ d+1} through

τ i · τ j = δji .

Thus, we have τ d+1 = τ d+1 = nχ and
(
τ ij
)

= (τij)−1. An in-plane projector Pχ of Γ at χ is

defined via

Pχ := τα ⊗ τα = τ i ⊗ τ i − τ 3 ⊗ τ 3 = I−nχ ⊗ nχ, so

P = I−n⊗ n, P⊥ = n⊗ n, (2.6)

where (Iij) is the identity tensor. Note that P2 = P = PT , i.e., P is an orthogonal projector.

Employing (2.6) we use the decomposition of a vector field v : Γ→ Rd+1 into tangential and normal

7



components:

v = vT + vN , with

vT := P v, vN := P⊥ v = (v · n) n = vN n,
(2.7)

so that vT · n = 0 and P vN = 0.

A surface gradient of f ∈ C1(Γ) and a surface covariant derivative of v ∈ C1(Γ,Rd+1)

are defined as

(∇Γf)χ := fχ,ατ
α, (2.8)

(∇Γv)χ := (τ β · vχ,α) τ β ⊗ τα, (2.9)

respectively. Note that ∇Γf(x) ∈ TxΓ is an in-plane vector and ∇Γv(x) ∈ TxΓ⊗TxΓ is an in-plane

tensor.

Remark 2.1. ∇Γ does not depend on the choice of parametrization χ.

A shape operator H (also known as the Weingarten map) is defined as

Hχ := ∇Γnχ = τ β · nχ,ατ β ⊗ τα = (τ β · τ 3,α)︸ ︷︷ ︸
ηβα:=

τ β ⊗ τα. (2.10)

Differentiating τ β · τ 3 = 0 w.r.t. ξα we get

ηβα = τ β · τ 3,α = −τ 3 · τ β,α, (2.11)

and hence H = HT since τ β,α = χ,βα = χ,αβ. Eigenvalues κα of H are called principal curva-

tures, and

κ := tr H = −τ 3 · (τ 1,1 + · · ·+ τ d,d) = κ1 + · · ·+ κd

is a (doubled) mean curvature. Note that κd+1 = 0 since rank H ≤ d. For d = 2, K := κ1κ2 is a

Gauss curvature.

8



Now we take a closer look at (2.9). Let ν := vχ. Product rule yields

ν ,α =
(
νiτ

i
)
,α

= νi,ατ
i + νiτ

i
,α = νi,ατ

i + νµτ
µ
,α + ν3τ

3
,α. (2.12)

We proceed by expressing τ i,α in terms of contravariant basis vectors
{
τ 1, · · · , τ d+1}. We start

with τ 3
,α = τ 3,α = (τ 3,α · τλ)τλ + (τ 3,α · τ 3)τ 3. Since ‖τ 3(ξ)‖ = 1 for any ξ ∈ Rd by construction,

we have

0 = (τ 3 · τ 3),α = 2τ 3,α · τ 3,

and, hence, τ 3,α is an in-plane vector,

τ 3,α = (τ 3,α · τλ)τλ (2.11)= ηλατ
λ. (2.13)

Next we find contravariant coordinates of τµ,α = (τµ,α·τλ)τλ+(τµ,α·τ 3)τ 3. Differentiating τµ · τλ = δµλ

and τµ · τ 3 = 0 w.r.t. ξα we get

τµ,α · τλ = −τµ · τλ,α = −τµ · (τλ,α · τ i)τ i = −τλ,α · τµ =: −Γµλα,

τµ,α · τ 3 = −τµ · τ 3,α
(2.13)= −(τµ · τλ)ηλα = −τµληλα = −ηµα,

and thus

τµ,α = −Γµλατ
λ − ηµατ 3. (2.14)

Substituting (2.13) and (2.14) into (2.12) and rearranging we get

ν ,α =
(
νλ,α − Γµλανµ + ηλαν3

)
τλ + (ν3,α − ηµανµ) τ 3

=:
(
νλ|α + ηλαν3

)
τλ +

(
ν3|α − ηµανµ

)
τ 3.

(2.15)

Substituting this back in (2.8) yields

(∇Γv)χ = νβ|ατ
β ⊗ τα + ν3ηβατ

β ⊗ τα,
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and thus

∇Γv = ∇ΓvT + vN H (2.16)

provided that vN is differentiable.

The symmetric part of the surface covariant derivative is given by

E(v) := 1
2
(
∇Γv +∇TΓv

)
. (2.17)

If v = u is a velocity field of a material surface, see Section 2.3, E(u) has the meaning of the

surface rate-of-strain tensor (Gurtin and Murdoch 1975; Brandner, Reusken, and Schwering

2021). Similar to (2.16) we have

E(v) = E(vT ) + vN H

provided that vN is differentiable.

A surface divergence of v ∈ C1(Γ,Rd+1) is defined as

(divΓ v)χ := tr (∇Γv)χ = tr
(
(τ β · vχ,α) τ β ⊗ τα

)
= vχ,α · τα.

For a tensor-valued map T ∈ C1(Γ,R(d+1)×(d+1)) the surface divergence is

(divΓ T)χ := TT
χ,α τ

α. (2.18)

2.2 Tangential Differential Calculus on Surfaces

Concerning the implementation of numerical methods for PDEs posed on manifolds, there are two

difficulties related to the evaluation of the surface differential operators introduced in the previous

section:

1. the choice of parametrization χ (which in practice may not be available, or its quality may

depend on the computational mesh), and

2. the fact that the induced basis vectors τ i (or τ i) of TχΓ depend on the convective coor-
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dinates ξ. This implies that the computation of derivatives of a vector quantity ν = νiτ
i

requires to differentiate not only its components, but also the basis vectors:

v,α =
(
νiτ

i
)
,α
6= νi,ατ

i,

see (2.15).

This motivates us to rewrite the differential operators employing tangential differential calcu-

lus (Delfour and Zolésio 2011). This approach uses the fixed standard basis vectors
{
e1, · · · , ed+1

}
of the embedding space Rd+1 ⊃ Γ and avoids explicit surface parametrization by using the intrinsic

tangential derivatives.

Let Ω ⊂ Rd+1 be a domain containing the surface, Γ ⊂ Ω, and consider a map fe ∈ C1(Ω). We

define f ∈ C1(Γ) to be the restriction of fe to Γ, i.e.,

f := fe
∣∣
Γ. (2.19)

Then the application of the chain rule in (2.8) yields

(∇Γf)χ = (fe ◦ χ),α τα = (∂ife)χ (τα · ei) τα = (∂ife)χPχ ei = Pχ (∇fe)χ ,

or

∇Γf = P∇fe (2.20)

on Γ. In particular, if fn = fe extends f constantly along the surface normal, we have

∇fn = P∇fn + ∂nf
nn = P∇fn = ∇Γf (2.21)

on Γ. Note that the in-plane projector P depends on the normal vector field n, see (2.6), and if the

surface is given implicitly, e.g., as a level contour of some function, then evaluation of (2.20) does

not require parametrization.
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Similarly, for the covariant derivative (2.9) we get

∇Γv = P∇ve P

on Γ (Brandner, Reusken, and Schwering 2021). Note that

∇vn = ei ⊗∇vni
(2.21)= ei ⊗∇Γvi = (∇Γv1, · · · ,∇Γvd+1)T ,

∇vn P =
(
P (∇Γv1, · · · ,∇Γvd+1)

)T = ∇vn,
(2.22)

and thus

∇Γv = P∇vn

on Γ. For the surface divergence (2.18) we have

divΓ T = divΓ
(
TT ei

)
ei,

i.e., the ith component (ei · divΓ T) of divΓ T is the surface divergence of the ith row
(
TT ei

)
of T.

Consider a tubular neighborhood

Oε (Γ) :=
{
x + dn(x) : x ∈ Γ, 2|d| < ε

}
⊂ Rd+1

of the surface Γ of width ε > 0. We have the following result (Barrett, Garcke, and Nürnberg 2020):

If the surface is compact and Ck-smooth, k ≥ 2, then the closest point projection

p(x) := arg miny∈Γ ‖x− y‖ = x− dist(x)∇ dist(x) (2.23)

is well-defined for ε sufficiently small, and

dist ∈ Ck (Oε (Γ)) , p ∈ Ck−1 (Oε (Γ) ,Γ) .
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Here dist is a signed-distance function on Γ, i.e.,

dist
∣∣
Γ = 0,

dist(x) = −‖x− p(x)‖ < 0 inside the volume bounded by Γ and

dist(x) = + ‖x− p(x)‖ > 0 outside.

We have

dist2(x) = ‖x− p(x)‖2 = dist2(x) ‖∇ dist(x)‖2 , or

‖∇ dist‖ = 1

in Oε (Γ) \ Γ. Continuity of dist yields ‖∇dist‖ = 1 in Oε (Γ), so

n ◦ p = (∇ dist) ◦ p

if one fixes the normal vector n to point outside the volume bounded by Γ. Moreover,

(∇ dist) ◦ p = ∇ dist

in Oε (Γ) (Delfour and Zolésio 2011, Chapter 7, Theorem 8.4 (i)), and hence

P ◦ p = I−∇ dist⊗∇dist,

∇p = P ◦ p− dist∇2 dist,

∇2 dist = ∇ (∇ dist) = ∇
(

(∇ dist) ◦ p
)

=
((
∇2 dist

)
◦ p
)
∇p

=
((
∇2 dist

)
◦ p
) (

P ◦ p− dist∇2 dist
)
,(

∇2 dist
)
◦ p =

(
∇2 dist P

)
◦ p

13



in Oε (Γ). Since the Hessian matrix is symmetric,

∇2 dist = P∇2 dist P

on Γ, and

H ◦ p = (P∇ (n ◦ p) P) ◦ p =
(
P∇2 dist P

)
◦ p =

(
∇2 dist

)
◦ p, or

H = ∇2 dist

on Γ. Note that n ◦ p = ∇ dist but H ◦ p 6= ∇2 dist.

Assume that f ∈ C1(Γ) is given. Akin to (2.19), the projection map (2.23) allows to get a bulk

function f ◦ p ∈ C1 (Oε (Γ)) that extends f off of the surface. We have

∇ (f ◦ p) = ∇ (f ◦ p ◦ p) = (∇p)T ∇ (f ◦ p) ◦ p

=
(
P ◦ p− dist∇2 dist

)
∇ (f ◦ p) ◦ p, (2.24)

∇ (f ◦ p) ◦ p =
(
P∇ (f ◦ p)

)
◦ p (2.20)= ∇Γf ◦ p, (2.25)

in Oε (Γ). Note that

∂n (f ◦ p) ◦ p = (∇ (f ◦ p) · n) ◦ p = (∇Γf · n) ◦ p = 0,

i.e., p extends f constantly along n. In the literature such an extension is referred to as canonical.

Akin to (2.21) and (2.22), further we will use the superscript •n := •◦p for the canonical extension.

Substituting (2.25) back into (2.24) yields

∇fn(x) =
(
I−dist(x)∇2 dist(x)

)
∇Γf

(
x− dist∇ dist(x)

)

for x ∈ Oε(Γ). It is interesting to note that one may recover the full gradient evaluated off the

surface of the canonically extended surface function using the surface gradient and information

about Γ, i.e., the distance function and its derivatives.
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2.3 Modeling of Material Surface Flows

Intuitively, a surface is material if it evolves as a material set (Gurtin, Fried, and Anand 2010), i.e.,

it consists of the same set of material particles at any given time. The surface does not penetrate

itself as it flows, adjacent particles stay adjacent, and there exists a velocity field associated with

the surface flow (giving rise to a material derivative).

Let I := [0, T ] be the time interval, 0 < T <∞, and consider a family of surfaces
{
Γt
}
t∈I . We

call Γ : t 7→ Γt a material surface if

1. there exists a (sufficiently smooth) map Ψ : Γ0 × I → Rd+1 such that Ψ(·, t) : Γ0 → Γt is a

diffeomorphism between surfaces Γ0 and Γt for t ∈ I, with Ψ(·, 0) = identity, and

2. some initial density distribution ρ0 : Γ0 → R is specified, ρ0 > 0.

The physical interpretation of the definition above is the following. Consider a thin material

body embedded in 3-dimensional space that consists of material particles, e.g., a liposome that

consists of lipid molecules. We represent the body by the surface Γ0: each xP ∈ Γ0 corresponds

to an initial location of one material particle. The map Ψ gives a Lagrangian description of the

surface flow: a particle initially located at xP moves along a trajectory Ψ(xP , ·), i.e., its position

at time t is given by Ψ(xP , t) ∈ Γt. The curve Ψ(xP , ·) : I → Rd+1 is called an orbit of xP ,

and Ψ(·, t) : Γ0 → Γt is a flow map of Γt.

Fix t ∈ I and let Ψt := Ψ(·, t). Note that Ψt
(
Γ0
)

= Γt, and for another particle initially

occupying xP ′ 6= xP we have Ψt(xP ′) 6= Ψt(xP ) since the flow map is diffeomorphic. In other

words, there exists a unique inverse flow map Ψ−1
t : Γt → Γ0:

Ψ−1
t (Ψt(xP )) = xP ∈ Γ0,

Ψt(Ψ−1
t (x)) = x ∈ Γt.

(2.26)

Given a spatial coordinate x ∈ Γt, the pullback map Ψ−1
t recovers the initial location Ψ−1

t (x) ∈ Γ0

of a material particle occupying x at t. See Figure 1 for an example.

15



Material velocity U : Γ0 × I → Rd+1 describing particles motion is defined as

U(xP , t) := ∂tΨt(xP ).

Using (2.26) we can define its spatial counterpart

u(x, t) := U(Ψ−1
t (x), t) = ∂tΨt(Ψ−1

t (x)),

U(xP , t) = u(Ψt(xP ), t) = ∂tΨt(xP ).
(2.27)

We emphasize that the domain Γt of u(·, t) varies in time, while U(·, t) is defined on the reference

domain Γ0. The spatial velocity u takes values on the graph ΓI of Γ defined as

ΓI :=
⋃
t∈I

Γt × {t} ⊂ Rd+2. (2.28)

The graph is a (d+ 1)-dimensional regular hypersurface embedded in Rd+2, ∂ΓI = Γ0 ∪ ΓT .

Akin to the notations introduced in Section 2.1, n(·, t) denotes the unit normal vector field on Γt,

n : ΓI → Rd+1. In what follows we will use the same notation for the orthogonal projector P(·, t),

second fundamental form H(·, t), principal curvatures κα(·, t) etc. defined on Γt. We will use

subscript •I for the analogous quantities on ΓI .

The velocity field u = uT + uNn, see decomposition (2.7), gives a Eulerian description of

the flow, i.e., it gives the velocity of a material particle occupying x ∈ Γt at t. As is typical in

hydrodynamics, equations governing fluid motion are formulated for the spatial fluid velocity u (see

Chapter 3). This leads to an alternative way of the material surface description. Namely, given

an initial surface Γ0 and a spatial velocity field u, one recovers the flow map Ψ via solving ODEs

associated with every material point xP ∈ Γ0:

dtΨt(xP ) = u(Ψt(xP ), t), t > 0,

Ψ0(xP ) = xP .
(2.29)

Let F ∈ C1(Γ0×I) be a Lagrangian description of some material particles property, e.g., density,
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x

y

Γt+∆t

Γt

Figure 1: Illustration for the evolution of a material curve (1-dimensional surface) t 7→ Γt.

• Since x ∈ Γt, there exists a material particle associated with the position xP = Ψ−1
t (x) ∈ Γ0.

However, the pullback map Ψ−1
t+∆t(x) is undefined since x 6∈ Γt+∆t, i.e., no particle occupies x

at t+ ∆t even for h� 1.

• We have y ∈ Γt ∩Γt+∆t, and both pullbacks Ψ−1
t (y) and Ψ−1

t+∆t(y) are defined. They may or
may not correspond to the same material particle.

temperature, pressure, etc. A material (time) derivative of the property F is its temporal rate-

of-change ∂tF .

We would like to get Eulerian description of the material derivative. Akin to (2.27), we can

define a spatial map f : ΓI → R corresponding to F via

f(x, t) := F (Ψ−1
t (x), t),

F (xP , t) = f(Ψt(xP ), t),

and its material derivative
.
f : ΓI → R as

.
f(x, t) := ∂tF (Ψ−1

t (x), t), (2.30)

∂tF (xP , t) =
.
f(Ψt(x), t).

Given location and time (x, t) ∈ ΓI ,
.
f gives the temporal rate-of-change of F for the material

particle that occupies x ∈ Γt at t.

Consider an arbitrary smooth extension fe of f off of ΓI , i.e.,

fe(x, t) = f(x, t) for (x, t) ∈ ΓI .
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We have F (xP , t) = fe(Ψt(xP ), t), and application of chain rule yields

∂tF (xP , t) = ∂tf
e(Ψt(xP ), t) +∇fe(Ψt(xP ), t) · ∂tΨt(xP )

= ∂tf
e(Ψt(xP ), t) +∇fe(Ψt(xP ), t) · u(Ψt(xP ), t), or

.
f = ∂tf

e +∇fe · u = ∂tf
e + (u · ∇) fe. (2.31)

Similarly, for a vector-valued map v ∈ C1(ΓI) we have

.v = ∂tve + (∇ve) u = ∂tve + (u · ∇) ve.

In particular, Eulerian surface acceleration is given by

.u = ∂tue + (u · ∇) ue.

Remark 2.2 (Partial time derivative). Note that we cannot replace ∂tfe with ∂tf : if x ∈ Γt, there

is no guarantee it stays in Γt+∆t even for h� 1, see Figure 1. Thus f(x, t+ ∆t) in

∂tf(x, t)∆t = f(x, t+ ∆t)− f(x, t) + o(∆t)

is undefined.

Corollary 2.1 (Spatial representation of material derivatives). The following statements are true:

1. It is clear from the definition (2.30) that the material derivative is an intrinsic quantity, i.e.,

it does not depend on the off surface extension choice in (2.31).

2. Extending f(·, t) canonically, i.e., with constant values along normal vectors n(·, t) of Γt,

fe = fn, yields
.
f = ∂tf

n +∇Γf · uT . (2.32)

3. If Γ = Γt ≡ Γ0, then ∂tf(x, t) is well-defined for any smooth f and x ∈ Γ, and (2.32) simplifies
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further to
.
f = ∂tf +∇Γf · uT . (2.33)

Let γt ⊂ Γt be an arbitrary material subsurface and f ∈ C1(ΓI). The following transport

relation (also known as a Leibniz rule for material surfaces) holds (Cermelli, Fried, and Gurtin

2005):

dt
∫
γt
f(·, t) ds =

∫
γt

.
f(·, t) + f(·, t) divΓt u(·, t) ds, (2.34)

For the area and mass of γt ⊂ Γt,

areaγ(t) :=
∫
γt

1 ds, massγ(t) :=
∫
γt
ρ(·, t) ds,

we further impose two conditions:

1. Inextensibility, i.e., dt areaγ(t) ≡ 0. The latter can be rewritten invoking the Leibniz

rule (2.34) as ∫
γt

divΓt u(·, t) ds = 0

for t ∈ I. Since γt can be taken arbitrary, the above is equivalent to divΓt u(x, t) = 0

for (x, t) ∈ ΓI . We write

divΓ u = 0 on Γt. (2.35)

2. Mass conservation, i.e., dt massγ(t) ≡ 0. Similar arguments along with inextensibility

condition (2.35) yield
.
ρ = 0 on Γt. (2.36)

In this dissertation we assume constant initial density distribution, ρ0 = const. Mass con-

servation (2.36) implies ρ(·, t) = ρ0 for t ∈ I. For the case of non-constant density distribution

treatment we refer to (Palzhanov, Zhiliakov, Quaini, and Olshanskii 2021; Olshanskii, Palzhanov,

and Quaini 2021).

Next we make a couple of remarks about evolution of Γ.
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Theorem 2.1 (Surface speed). Assume that two different velocity fields u 6= u′ give rise to the

same material surface Γ. Then uN = u′N .

Proof. Fix (s, z) ∈ ΓI and let Ψ and Ψ′ be flows associated with u and u′, respectively, see (2.29).

We have

Γs = Ψs
(
Γ0
)

= Ψ′s
(
Γ0
)
,

and thus there exist xP ,xP ′ ∈ Γ0 such that

z = Ψs(xP ) = Ψ′s(xP ′). (2.37)

Consider two C1(I,ΓI)-curves

y(t) := (Ψ(xP , t), t), y′(t) := (Ψ′(xP ′ , t), t),

y(s) = y′(s) = (z, s),

and let τα span the tangent space of Γs at z,

TzΓs = span{τ 1, τ 2}.

Then for the corresponding tangent space of ΓI at (z, s) we have (Prüss and Simonett 2016, Section

5.2)

T(z,s)ΓI = span
{
(τ 1, 0), (τ 2, 0), dty(s)

}
= span

{
(τ 1, 0), (τ 2, 0), (∂tΨs(xP ), 1)

}
(2.38)

= span
{
(τ 1, 0), (τ 2, 0), dty′(s)

}
= span

{
(τ 1, 0), (τ 2, 0), (∂tΨ′s(xP ′), 1)

}
, (2.39)
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From (2.38) we have that (∂tΨs(xP ), 1) ∈ T(z,s)ΓI , and expanding it in the basis (2.39) yields

(∂tΨs(xP ), 1) = cα(τα, 0) + c3(∂tΨ′s(xP ′), 1)

= cα(τα, 0) + (∂tΨ′s(xP ′), 1),

∂tΨs(xP ) = cατα + ∂tΨ′s(xP ′), (2.40)

where cα ∈ R are two basis coefficients. Using (2.29) and (2.37) we get

∂tΨs(xP ) = u(Ψs(xP ), s) = u(z, s), (2.41)

∂tΨ′s(xP ′) = u′(Ψ′s(xP ′), s) = u′(z, s),

u(z, s) = cατα + u′(z, s). (2.42)

Contracting (2.42) with n(z, s) ⊥ τα yields

uN (z, s) = u′N (z, s).

Noting that (s, z) ∈ ΓI is arbitrary completes the proof.

Corollary 2.2 (Surface speed). We have the following observations:

1. The surface speed uN of the material surface Γ is intrinsic, i.e.,

uN (x, t) = ∂tΨt(Ψ−1
t (x)) · n(x, t) (2.43)

is independent of the flow map Ψ that realizes a given ΓI .

2. It is clear from (2.38) and (2.41) that

nI := (n,−uN )√
1 + u2

N

⊥ TΓI ,

i.e., nI is a unit normal vector field on ΓI . If n is continuous on ΓI , then the graph ΓI is

orientable.
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3. If uN = 0, then the graph normal vector nI = (n, 0) is perpendicular to t-axis, and ΓI = Γ0×I

becomes a cylinder. In this case geometry of Γ stays unchanged, Γt ≡ Γ0, and the flow is

purely tangential. Conversely, Γt ≡ Γ0 implies uN = 0. If uN 6= 0, material surface Γ : t 7→ Γt

is called evolving. If uN = 0, we call Γt ≡ Γ0 stationary and use notation Γ for Γt, t ∈ I.

4. Note that uN = 0 does not imply Ψt = identity since u = uT does not necessarily vanish.

5. Any stationary surface is material. To see this, take Ψt = identity.

Further we assume the existence of a global level set function φ ∈ C2(Ω × I), Ω ⊂ Rd+1, such

that

Γt = φ−1( {0} , t) := {x ∈ Ω : φ(x, t) = 0}, ‖∇φ(·, t)‖ > 0, t ∈ I.

We assume that φ < 0 inside the volume bounded by Γ and φ > 0 outside, so n = ∇φ / ‖∇φ‖ is

an outward unit normal vector on Γ. The choice of the level set is not unique; one example is a

signed-distance function φ = dist, see Section 2.2.

Note that φ(Ψt(xp), t) ≡ 0, and thus

0 =
.
φ = ∂tφ+∇φ · u

Given initial surface Γ0, i.e., φ(·, 0) = φ0, and material velocity u, one can recover Γt = φ−1( {0} , t)
via solving

∂tφ+∇φ · u = 0. (2.44)

The second term in (2.44) can be rewritten as

∇φ · u = u · ∇φ
‖∇φ‖

‖∇φ‖ = u · n ‖∇φ‖ = uN ‖∇φ‖ ,

so the geometric evolution of Γ is independent of the tangential velocity uT : if φ satisfies (2.44),

then it also satisfies

∂tφ+ uN ‖∇φ‖ = 0. (2.45)

and vice-versa, i.e., uT can be chosen arbitrary. This means that the flow map Ψ that solves (2.29)
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and the flow map Ψn that solves

dtΨn
t (xP ) = uN (Ψn

t (xP ), t),

Ψn
0 (xP ) = xP

(2.46)

define the same material surface Γt ≡ Ψt
(
Γ0
)
≡ Ψn

t

(
Γ0
)
.

Remark 2.3 (ALE). One may employ equivalence of (2.29) and (2.46) to track the material

interface Γt: by adding an appropriate tangential correction uT , one may expect to get a better

discrete approximation of Γt w.r.t., e.g., quality of computational mesh. This is a basis for a so-

called arbitrary Lagrangian-Eulearian approach (ALE), see, e.g., (Morigi 2010; Mikula, Remeśıková,

Sarkoci, and Sevcovic 2014; Zhiliakov, Svyatskiy, Olshanskii, Kikinzon, and Shashkov 2019) and

references therein.

In this dissertation we use the Eulerian approach for the interface tracking based on the level

set equation (2.45) first introduced in (Osher and Sethian 1988).

In agreement with Corollary 2.2, one readily sees from (2.45) that Γ is stationary if and only

if uN = 0, and uN = −∂tφ / ‖∇φ‖ is independent of a particular choice of the level set function.
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3 MATHEMATICAL MODELS

3.1 Navier–Stokes Problem on Evolving Surfaces

Equipping material surface inextensibility condition (2.35) and mass conservation (2.36) (in the

form ρ = const > 0) with conservation of linear momentum leads to the evolving surface Navier–

Stokes problem, see (Jankuhn, Olshanskii, and Reusken 2018): Find the level set φ : Ω× I → R,

surface velocity u : ΓI → R3, and surface pressure p : ΓI → R satisfying

ρ
.u− 2µ divΓ E(u) +∇Γp− pκn = f , (3.1a)

divΓ u = 0 on Γt>0 := φ−1( {0} , t > 0
)
, (3.1b)

∂tφ+ uN ‖∇φ‖ = 0 in Ω, (3.1c)

subject to given initial conditions φ0 and u0:

φ(·, 0) = φ0 in Ω, (3.2a)

u(·, 0) = u0 on Γ0 := φ−1
0
(
{0}

)
. (3.2b)

Here f : ΓI → R3 is a given acting area external force term, constant µ > 0 is a given dynamic viscos-

ity coefficient arising from Boussinesq–Scriven constitutive law in the momentum equation (3.1a).

We refer to (Brandner, Reusken, and Schwering 2021) for an overview and alternative forms of the

system (3.1), (3.2).

We note that the geometric operators / quantities n, P, κ etc. above are computable in terms

of φ, and (3.1) forms the system of five equations (three scalar equations in the vector momentum

equation (3.1a), inextensibility condition (3.1b), and the level set equation (3.1c)) for five unknowns:

u = (ux, uy, uz), p, and φ.
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3.1.1 Prescribed Geometric Evolution of the Surface

Further we assume that the geometrical evolution of the surface is known, i.e., φ is prescribed and

hence uN and all the geometric quantities are known. Applying P to the momentum equation (3.1a)

leads to the following system for uT and p:

ρ (P .uT + uN H uT )− 2µP divΓ E(uT ) +∇Γp = bT ,

divΓ uT = g on Γt>0,

(3.3)

subject to the velocity initial condition

uT (·, 0) = P (·, 0) u0 on Γ0. (3.4)

The operator P .• in the momentum equation can be interpreted as covariant material derivative.

The right-hand sides of (3.3) are known in terms of geometric quantities and uN :

g := −uNκ, bT := fT + 2µP divΓ(uN H) + ρ

2∇Γu
2
N .

We call (3.3), (3.4) evolving surface tangential Navier–Stokes problem.

3.2 Navier–Stokes and Oseen Problems on Stationary Surfaces

Assuming that the surface is in geometric equilibrium,

Γ = Γt ≡ Γ0 ⇔ uN = 0,
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we can rewrite the inertia term in the momentum equation of (3.3) as

P .uT + uN H uT = P .uT

(2.33) = P (∂tuT + (∇ΓuT ) uT )

∂t P = 0 = ∂t (P uT ) + P (∇ΓuT ) uT

∇ΓuT ⊂ TΓ⊗ TΓ = ∂tuT + (∇ΓuT ) uT = .uT

on Γ. Thus the system (3.3) reduces to the surface tangential Navier–Stokes problem:

Find (uT , p) such that

ρ (∂tuT + (∇ΓuT ) uT )− 2µP divΓ E(uT ) +∇Γp = fT ,

divΓ uT = 0 on Γ,
(3.5)

subject to the velocity initial condition (3.4).

For the purpose of analysis, it is convenient to introduce one more supplementary model.

Letting ρ = 1, applying a finite difference-based discretization to ∂tuT , and linearizing inertia

term (∇ΓuT ) uT in (3.5) for each time step, one ends up with an Oseen-type problem: Find (uT , p)

such that

αuT + (∇ΓuT ) w− 2νP divΓ E(uT ) +∇Γp = fT ,

divΓ uT = 0 on Γ.
(3.6)

The constant α > 0 is inversely proportional to a time step size, the r.h.s. fT collects contributions

from the area forces and from the previous step velocities of the discretized time derivative, and w

is some known (e.g., extrapolated from divergence-free velocities from the previous time steps) flow

field such that the inertia term is skew-symmetric:

〈(∇ΓuT ) w,vT 〉0 = −〈(∇ΓvT ) w,uT 〉0 . (3.7)

Here 〈·, ·〉0 :=
∫

Γ 〈·, ·〉ds is the L2-scalar product on Γ, and ‖·‖20 := 〈·, ·〉0. We elaborate on the
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discretization of the time derivative and linearization of the inertia term in Section 4.1.

If w 6= 0, we call (3.6) surface tangential Oseen problem. As is typical in the anal-

ysis of Navier–Stokes equations, we presented (3.6) in dimensionless form with Reynolds num-

ber Re ∝ ν−1 > 0 such that

‖w‖∞ := ‖w‖L∞(Γ) = 1. (3.8)

Further we refer to ν as the viscosity coefficient.

If w = 0, we call (3.6) surface tangential Stokes problem. The Stokes problem is an

approximation of the Oseen problem for the case of slow (viscous) flows, ν � ‖w‖∞.

3.2.1 Weak Formulation

Consider the surface Sobolev space H1 (Γ) equipped with the scalar product and the induced norm

〈u, v〉1 := 〈u, v〉0 + 〈∇Γu,∇Γv〉0 , ‖·‖21 := 〈·, ·〉1 .

We refer to (Aubin 1982, Chapter 2) for the detailed discussion of the concept of Sobolev spaces

on manifolds. The vector space

H1 (Γ) :=
[
H1 (Γ)

]d+1
=
{
uiei : ui ∈ H1 (Γ)

}

is defined componentwise.

Corollary 3.1. We have u ∈ H1 (Γ) if and only if

‖u‖21 := ‖u‖20 + ‖∇un‖20 =
∫

Γ
‖u‖2 + ‖∇un‖2 ds <∞, (3.9)

i.e., (3.9) defines a norm on H1 (Γ). Here

‖A‖ := sup
‖x‖=1

‖A x‖

is the spectral (i.e., induced by the Euclidean dot product) norm of A ∈ R(d+1)×(d+1).
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Proof. Note that

∇un (2.22)= (∇Γu1, · · · ,∇Γud+1)T ,

‖∇un‖0 = ‖(∇Γu1, · · · ,∇Γud+1)‖0 ,

and hence (3.9) includes only tangential gradients of each component. Thus we have

‖∇Γui‖0 ≤ ‖(∇Γu1, · · · ,∇Γud+1)‖0 ≤ ‖∇Γu1‖0 + · · ·+ ‖∇Γud+1‖0

due to the estimate

‖A ei‖ ≤ ‖A‖ ≤ ‖A e1‖+ · · ·+ ‖A ed+1‖ (3.10)

for any matrix A ∈ R(d+1)×(d+1).

Let VT :=
{
v ∈ H1 (Γ) : vN = 0

}
be a subspace of tangential vector fields. In the context of a

discretization method developed in the next chapter, it is convenient to allow the velocity space to

have a non-vanishing normal component. Hence we introduce

H1 (Γ) ⊂ V :=
{
vT + vN n : vT ∈ VT , vN ∈ L2 (Γ)

}
∼ VT ⊕L2 (Γ), and (3.11)

‖v‖2V := ‖vT ‖21 + ‖vN‖20 = ‖∇vnT ‖
2
0 + ‖v‖20 (3.12)

for v ∈ V.

The space (3.11) is a suitable test and trial space for velocity fields. Since the surface is closed

(and thus no boundary conditions are prescribed), the pressure field is defined up to a hydrostatic

mode. For the test and trial space of pressure fields we take

L2
0(Γ) :=

{
q ∈ L2(Γ) :

∫
Γ
q ds = 0

}
∼ L2(Γ) \ R.
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Consider the continuous bilinear forms

a(u,v) :=
∫

Γ
αuT · vT + 2ν E(uT ) : E(vT ) + (∇ΓuT ) w · v + τ uN vN ds, (3.13a)

bT (v, q) := −
∫

Γ
q divΓ vT ds (3.13b)

for u,v ∈ V, q ∈ L2(Γ), with some penalty parameter τ > 0 for the normal component of the

velocity field. The double-contraction in (3.13a) is defined via

A : B := 〈A,B〉 := tr
(
A BT

)

for two square matrices A and B ∈ R(d+1)×(d+1). For the induced spectral norm (3.10) we have

‖A‖2 = A : A .

Let λi ∈ sp (A) and r = rank (A). The Cauchy–Schwarz inequality

1 · λ1 + · · ·+ 1 · λr ≤ r
1
2
(
λ2

1 + · · ·+ λ2
r

) 1
2

implies
| tr A |2 = (λ1 + · · ·+ λr)2 ≤ r

(
λ2

1 + · · ·+ λ2
r

)
= r tr A2 = r ‖A‖2 ,

‖divΓ vT ‖0 = ‖tr∇ΓvT ‖0 ≤
√
d ‖∇ΓvT ‖0 ,

(3.14)

and hence
bT (v, q) = −

∫
Γ
q tr∇ΓvT ds

Cauchy–Schwarz ≤ ‖q‖0 ‖tr∇ΓvT ‖0

(3.14) ≤
√
d ‖q‖0 ‖∇ΓvT ‖0

(3.15)

for any V×L2 (Γ). We further estimate

‖∇Γv‖20 =
∫

Γ
‖P∇vn‖2 ds ≤

∫
Γ
‖P‖2 ‖∇vn‖2 ds = ‖∇vn‖20 ,

‖∇Γv‖0 ≤ ‖∇vn‖0

(3.16)
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for any v ∈ H1 (Γ), since P is an orthogonal projector, ‖P(x)‖ = 1 for any x ∈ Γ. Hence the

form bT is continuous on V×L2 (Γ):

bT (v, q) ≤
√
d ‖q‖0 ‖∇ΓvT ‖0

(3.16) ≤
√
d ‖q‖0 ‖∇vnT ‖0

(3.12) ≤
√
d ‖q‖0 ‖v‖V .

(3.17)

Due to linearity of the trace operator and tr A = tr AT we can alternatively write

bT (v, q) = −
∫

Γ
q tr E (vT ) ds.

Note that in the definition (3.13b) of bT (v, ·) only tangential component of v is used, i.e.,

bT (v, ·) = bT (vT , ·)

for any v ∈ V. This property motivates the notation bT instead of b. If q ∈ H1(Γ), then integration

by parts yields

bT (v, q) =
∫

Γ
vT · ∇Γq ds =

∫
Γ

v · ∇Γq ds. (3.18)

Using (3.8), estimating
‖E(v)‖0 = 1

2
∥∥∥∇Γv +∇TΓv

∥∥∥
0

≤ 1
2
(
‖∇Γv‖0 +

∥∥∥∇TΓv
∥∥∥

0

)
= ‖∇Γv‖0 , v ∈ H1 (Γ) ,

(3.19)

and applying similar arguments as in (3.15), (3.17) yields

a(u,v) ≤ C ‖u‖V ‖v‖V

for all u, v ∈ V.

The weak formulation of the surface tangential Oseen problem (3.6) reads: Find (u, p) ∈ V×L2
0(Γ)
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such that

a(u,v) + bT (v, p) = 〈fT ,v〉0 ,

bT (u, q) = 0
(3.20)

holds for all (v, q) ∈ V×L2(Γ). Equivalently, one may consider only test functions q ∈ L2
0(Γ) since

L2(Γ) \ L2
0(Γ) ∼ R,

and

bT (v, const) =
∫

Γ
v · ∇Γ const = 0

holds due to (3.18) for any v ∈ V.

The following surface Korn inequality and Ladyzhenskaya–Babuška–Brezzi condition (also known

as the inf-sup condition) were derived in (Jankuhn, Olshanskii, and Reusken 2018, Lemma 4.2 and

equation (4.8)): Assuming Γ is C2-smooth and compact, there exist cK > 0 and c0 > 0 such that

‖vT ‖0 + ‖E(vT )‖0 ≥ cK ‖vT ‖1 (3.21)

for any vT ∈ VT , and

sup
vT∈VT

bT (vT , q)
‖vT ‖1

≥ c0 ‖q‖0 (3.22)

for any q ∈ L2
0(Γ).

Corollary 3.2. The norm (3.12) is equivalent to

V 3 v 7→ ‖∇ΓvT ‖20 + ‖v‖20 .

The result follows from the estimates (3.16), (3.19), and the Korn inequality (3.21).
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From the Korn inequality (3.21) we have

c2
K ‖vT ‖

2
1 ≤ (‖vT ‖0 + ‖E(vT )‖0)2

≤ 2
(
‖vT ‖20 + ‖E(vT )‖20

)
,

min{ν, α2 }c
2
K ‖vT ‖

2
1 ≤ min{2ν, α} ‖vT ‖20 + min{2ν, α} ‖E(vT )‖20

≤ α ‖vT ‖20 + 2ν ‖E(vT )‖20 ,

min{ν, α2 }c
2
K ‖vT ‖

2
1 + τ ‖uN‖20 ≤ α ‖vT ‖

2
0 + 2ν ‖E(vT )‖20 + τ ‖vN‖20

(3.7) = a(v,v),

min
{
τ,min

{
ν,
α

2

}
c2
K

}
‖v‖2V ≤ a(v,v)

(3.23)

for any v ∈ V, i.e., the linear form a is coercive on V. Since VT ⊂ V and ‖vT ‖1 = ‖vT ‖V
for vT ∈ VT , (3.22) implies

sup
v∈V

bT (v, q)
‖v‖V

≥ c0 ‖q‖0 (LBB)

for any q ∈ L2
0(Γ).

The inf-sup property (LBB) of the form bT , the coercivity (3.23) of the form a, and the continuity

of these forms imply well-posedness of the weak formulation (3.20), see, e.g., (Girault and Raviart

2012). The unique solution of (3.20) is denoted by (u?, p?).

Corollary 3.3. The solution u? is tangential, i.e., u? = u?T ∈ VT .

To see this, consider the weak problem (3.20) with V replaced with VT and note that its

solution also solves (3.20).
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4 PROBLEM DISTRETIZATION

4.1 Time Discretization and Linearization

We start with the time discretization of (3.5). We split the time interval I into nt ∈ N subintervals,

0 = t0 < t1 < · · · < tnt = T,

and assume a constant time step ∆t := T /nt. We adopt the notation uk for the approximation of

the velocity solution uT (·, tk) at time tk = k∆t, and similar for pk and fk. A semi-implicit time-

stepping scheme for (3.5) reads: Given approximate solutions uk−1 and uk−2 from two previous

steps, find uk with uk · n = 0 and pk such that

[u]kt +
(
∇Γuk

)
wk − 2νP divΓ E(uk) +∇Γp

k = fk,

divΓ uk = 0 on Γ
(4.1)

for k = 2, 3, . . . , nt.

For the numerical experiments in Sections 6.2 and 6.3 we employ the second order method with

[u]kt := 3uk − 4uk−1 + uk−2

2∆t , wk := 2uk−1 − uk−2, (4.2)

but this particular choice has little effect on the properties of the resulting linear systems analyzed

in Chapter 5. For k = 1 we utilize the initial condition (3.4), u0 := uT (·, 0), and the backward

Euler scheme

[u]1t := u1 − u0

∆t , w1 := u0. (4.3)

We see that on each time step the linearized semi-discrete problem (4.1) is the surface tangential

Oseen problem (3.6) with uT := uk, w := wk, p := pk, and

α := 3
2 ∆t−1, fT := fk + 4uk−1 − uk−2

2∆t

33



for (4.2). For (4.3) we have

α := ∆t−1, fT := f1 + u0

∆t .

Thus the weak formulation corresponding to (4.1) resembles (3.20) with the parameters specified

above.

Remark 4.1 (Coercivity). The wind field w above is only divergence free in a weak sense, i.e., it

does not necessarily satisfy the condition (3.7) (and thus the form a is not necessarily coercive). In

practice, one may eliminate this issue by skew-symmetrizing the form a in (3.13a), i.e., by replacing

the term

〈(∇Γu) w,v〉0

with
1
2 (〈(∇Γu) w,v〉0 − 〈(∇Γv) w,u〉0) .

4.2 Trace Finite Element Method

We start by formulating the trace finite element method (Olshanskii, Reusken, and Grande 2009b)

for discretization of the linearized surface Navier–Stokes problem (3.20). For a more detailed intro-

duction of the trace FEM for elliptic and parabolic problems we refer to a review paper (Olshanskii

and Reusken 2017). The method uses a surface-independent ambient (bulk) mesh to discretize

a PDE posed on an immersed surface, and thus falls into a category of unfitted FEMs. In the

context of interface PDEs posed in the bulk domain, the method is sometimes referred to as cut

FEM ; see, e.g., (Olshanskii, Quaini, and Sun 2021). Material in the current chapter extends the

work in (Olshanskii, Reusken, and Zhiliakov 2021).

Further we assume d = 2, i.e., Γ ⊂ Rd+1 = R3. To formulate the method, consider a fixed poly-

hedral domain Ω ⊂ R3 that strictly contains Γ and a family of tetrahedral triangulations
{
Ωh

}
h>0

of Ω. The subset of tetrahedra that have a nonzero intersection with Γ is collected in the set

denoted by Th ⊂ Ωh, see Figure 2. Tetrahedra from Th form an active computational mesh.
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Let hT := diam(T ). We assume
{
Th
}
h>0 to be quasi-uniform, i.e.,

maxT∈Th hT
minT∈Th hT

≤ RT , (4.4)

holds with a shape-regularity constant RT > 0 independent of h. We set h := maxT∈Th hT , and for

numerical simulations in Chapter 6 we denote the typical mesh size of Th by h.

The domain formed by all tetrahedra in Th is denoted by

Oh := int
(
∪T∈ThT

)
⊂ Ω. (4.5)

On Th we use standard finite element spaces of continuous functions, which are polynomials of

degree k on each tetrahedron. These so-called bulk finite element spaces are denoted by V k
h ,

V k
h :=

{
v ∈ C(Oh) : v

∣∣
T
∈ Pk(T ) for all T ∈ Th

}
. (4.6)

Finite element spaces associated with velocity and pressure are chosen to be the Taylor–Hood

spaces defined on the bulk mesh Th, i.e.,

Vh :=
[
V k+1
h

]3
, Qh := V k

h ∩ L2
0(Γ), (4.7)

with k ≥ 1. In the trace FEM formulated below, traces of functions from Vh and Qh on Γ are used

to discretize (3.20).

Remark 4.2 (Surface approximation). For the Pk+1–Pk Taylor–Hood finite element pair the op-

timal rate of convergence for velocity (in the L2-norm) is O(hk+2). A piecewise planar surface

approximation Γh ' Γ leads to a geometric error of order O(h2) and a suboptimal discretization

error. To overcome this, for the trace FEM a general higher order technique, based on a parametric

mapping of the domain Oh, has been developed (Grande, Lehrenfeld, and Reusken 2018). This

approach can be directly applied to the Taylor–Hood spaces, see (Jankuhn, Olshanskii, Reusken,

and Zhiliakov 2020). To avoid further technical issues related to the analysis of the parametric

mapping, in this dissertation we do not study these isoparametric spaces. Instead we use assume
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Figure 2: Left: Unit sphere Γsph (red) immersed into the bulk mesh Ωh (light gray) and the active
computational mesh Th (dark gray). Middle and right: Induced surface triangulations of Γsph, see
Remark 4.2.

that integrals over Γ can be computed exactly and analyze the spaces (4.7).

For numerical experiments in Chapter 6 we use the following approach. We use a Lagrange

(nodal) P1-interpolant of the level set φ defined on Ωh, I1
h(φ), to identify tetrahedrons cut by a

discrete surface

Γh :=
{
x ∈ R3 :

(
I1
h ◦ φ

)
(x) = 0

}
,

and collect them to the set Th: Since I1
h(φ)

∣∣
T∈Ωh

is linear, we have

T ∈ Ωh \ Th ⇔ values of I1
h(φ) are of the same sign at vertices of T . (4.8)

To approximate integrals over Γ, we iterate over T ∈ Th and refine each tetrahedronm times, m ∈ N,

getting a “virtual” mesh Th2−m . Then we build the nodal P1-interpolant of φ on each subtetrahedron

from Th2−m and, using the same approach as in (4.8), get a piecewise planar approximation Γh2−m

of Γ. We take m sufficiently large to ensure that the contribution of the surface approximation

error is of lower order compared to the interpolation error. Note that with this approach one does

not need to build Ωh2−m , i.e., refine the whole bulk mesh. Figure 2 shows Γh / 2 (left) and Γh / 4

(right), where planar pieces of Γh / 2 and Γh / 4 have the same color if they belong to the same

tetrahedron T ∈ Th.

There are two important issues specifically related to discretization of the surface tangential
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problem (3.20):

1. Firstly, the numerical treatment of the tangentiality condition u · n = 0 on Γ. Enforcing

the tangentiality condition uh · n = 0 on Γ for polynomial functions uh ∈ Vh is inconvenient

and may lead to locking, i.e., only uh = 0 satisfies it. Following (Hansbo and Larson 2016;

Hansbo, Larson, and Larsson 2019; Jankuhn, Olshanskii, and Reusken 2018; Reuther and

Voigt 2018; Olshanskii, Quaini, Reusken, and Yushutin 2018) we included a penalty term

τ 〈uN , vN 〉0 (4.9)

in the weak formulation, see (3.13a), to enforce the tangential constraint weakly.

2. The second issue is related to possible small cuts of tetrahedra from Th by the surface,

see Figure 2. For the standard choice of finite element basis functions this may lead to

poorly conditioned algebraic systems. The algebraic stability is recovered by adding certain

volumetric terms to the finite element formulation.

Hence, the bilinear forms that we use in the discretization method contain a penalty term (4.9)

and two terms related to algebraic stability. We introduce the following bilinear forms:

A(u,v) := a(u,v) + ρu

∫
Oh
∂nu · ∂nv dx, (4.10a)

sn(p, q) := ρp

∫
Oh
∂np∂nq dx, (4.10b)

with two stabilization parameters ρp > 0 and ρu > 0. The normal derivatives in the introduced

volumetric terms require n to be defined in the strip Oh. Such an extension may be naturally

obtained from the level set φ, i.e., one may take

nφ := ∇φ
‖∇φ‖

, nφ
∣∣
Γ = n. (4.11)

If φ = dist, then one obtains the canonical extension of the normal vector, see Section 2.2; otherwise,

(4.11) defines quasi-normal directions in Oh \ Γ (which is also admissible). In practice, the exact
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level set φ may be replaced with a sufficiently accurate approximation, e.g., with the kth order

nodal interpolant φh := Ikh(φ), k ∈ N.

The trace FEM for the surface tangential Oseen problem (3.20) reads as follows: Find (uh, ph) ∈ Vh×Qh

such that
A(uh,vh) + bT (vh, ph) = 〈fT ,vh〉0 ,

bT (uh, qh)− sn(ph, qh) = 0
(4.12)

holds for all (vh, qh) ∈ Vh×Qh. Since Vh
∣∣
Γ ⊂ H

1 (Γ), we have

a(u,v) =
∫

Γ
αu · v + 2ν (E(u)− uN H) : (E(v)− vN H) +

(∇Γu− uN H) w · v + τ̂ uN vN ds,

b(v, q) =
∫

Γ
v · ∇Γq ds

(4.13)

for (u,v, q) ∈ V2
h×Qh, τ̂ := α+ τ , due to (2.16) and integration by parts (3.18). Note that (4.13)

avoids differentiation

∇ΓvT = ∇Γ (P v)

of projected quantities, and hence is more attractive for the implementation of (4.12). We also note

that in the context of the trace FEM the off surface extensions of the test and trial functions are

readily available, and thus the surface differential operators in (4.13) can be naturally computed

employing (4.11) and the results from Section 2.2. For example, for the surface rate-of-strain

tensor (2.17) we have

E
(
P uh

)
= 1

2 Pφ

(
∇uh +∇Tuh

)
Pφ− (uh · nφ) Hφ, with

Pφ = I−nφ ⊗ nφ, Hφ = Pφ
∇2φ

‖∇φ‖
Pφ,

(4.14)

where the bulk gradient ∇uh is well-defined for uh ∈ Vh.

Further we write

x . y (4.15)

to state that the inequality x ≤ Cy holds for quantities x and y with a constant C = C(Γ) > 0
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independent of the mesh parameter h and the position of Γ in the background mesh Ωh, and similar

for x & y. We write x ' y iff both x . y and x & y hold.

We allow the following ranges of parameters:

τ ' h−2, ρp ' h, h . ρu . h−1. (4.16)

Note that τ ' τ + α, so one may equivalently use τ̂ = τ in the implementation (4.13) of the

discretization method. We comment on the choice of the bounds in (4.16):

1. The finite element (discrete) stability analysis in the Section 4.3 together with the error

analysis in Section 4.4 require ρu . h−1. For the sake of algebraic stability, i.e., optimal

conditioning of the resulting system of algebraic equations, see (Grande, Lehrenfeld, and

Reusken 2018, Section 6), we require ρu & h.

2. The discrete stability analysis requires ρp & h and the error analysis requires ρp . h, which

leads to ρp ' h. It is interesting to note that ρp & h is required not only for algebraic stability

but also for the optimal performance of the discretization method.

3. The discrete stability and error analysis yield 1 . τ . h−2. We choose τ ' h−2.

The volumetric term in the definition of A is the so called volume normal derivative stabilization

first introduced in (Burman, Hansbo, Larson, and Massing 2016; Grande and Reusken 2016) in the

context of trace FEM for the scalar Laplace–Beltrami problem on a surface. The term vanishes for

the solution of (3.20) since one can always assume an extension (u?T )φ of u?T that is constant in the

(quasi-)normal direction (4.11), i.e.,

(
∇(u?T )φ

)
nφ = 0 (4.17)

in Oh. Similar argument holds for the form sn and p?. Thanks to (4.17), Vh

∣∣
Γ ⊂ V, and Qh

∣∣
Γ ⊂
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L2 (Γ), the method (4.12) is consistent, i.e.,

A(u?T ,vh) + bT (vh, p?) = a(u?T ,vh) + bT (vh, p?) = 〈fT ,vh〉0 ,

bT (u?T , qh)− sn(p?, qh) = bT (u?T , qh) = 0
(4.18)

holds for all (vh, qh) ∈ Vh×Qh.

4.3 Stability Analysis

For the discrete surface problem (4.12) the situation is similar to the planar one (i.e., posed in

a domain of Rd) in the following sense: While the coercivity of the finite element velocity form

follows immediately from the analogous property of the original formulation, the inf-sup stability

of the bT -form for a given pair of finite element spaces is a delicate question. Here we address it for

the case of P2–P1 trace elements (4.7). Higher-order finite element pairs are analyzed in (Jankuhn,

Olshanskii, Reusken, and Zhiliakov 2020).

It is natural to study the stability of (4.12) using the following problem-dependent norms on Vh

and Qh:

‖v‖2A := A(v,v), ‖q‖2h := ‖q‖20 + sn(q, q). (4.19)

Functionals in (4.19) indeed define norms on Vh and Qh thanks to the included volumetric terms,

i.e., they define the norms not only on the trace spaces, but also on the spaces of bulk finite element

functions in Oh. In particular, for τ & 1

h−
1
2 ‖v‖L2(Oh) . ‖v‖A and h−

1
2 ‖q‖L2(Oh) . ‖q‖h (4.20)

hold for any v ∈ Vh and q ∈ Qh, see (Grande, Lehrenfeld, and Reusken 2018, Lemma 7.4).

We immediately see that the forms bT and sn are continuous and the form A is both coercive

and continuous with corresponding constants independent of h and the position of Γ in Ωh. Thus

the finite element formulation (4.12) is well-posed in the product norm

(
‖·‖2A + ‖·‖2h

) 1
2
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if the following discrete inf-sup condition

‖q‖h . sup
v∈Vh

bT (v, q)
‖v‖A

+ s
1
2
n (q, q) (LBBh)

holds for any q ∈ Qh. See, e.g., (Ern and Guermond 2013) or (Guzmán and Olshanskii 2018,

Section 5) for the case of sn 6= 0. Proving that (LBBh) is satisfied for trace P2–P1 elements (4.7)

is the main topic of the current section.

Remark 4.3 (Condition (LBBh) is a finite element counterpart of (LBB)). Let us take a closer

look at condition (LBBh). For the norm on the left-hand side the inequality ‖q‖h ≥ ‖q‖0 trivially

holds. Thanks to (3.23), for the norm in the denominator we have the estimate ‖v‖A & ‖v‖V for

all v ∈ Vh. Therefore, (LBBh) yields

‖q‖0 . sup
v∈Vh

bT (v, q)
‖v‖V

+ s
1
2
n (q, q),

for any q ∈ Qh. The latter bound resembles (LBB) for finite element spaces up to the term s
1
2
n (q, q),

which depends on the normal derivative of q over the tetrahedra cut by Γ.

Remark 4.4 (sn vs. common “pressure-stabilization”). In the finite elements analysis of the

standard planar Stokes problem, it is common to add pressure stabilization in mixed FEMs that

do not satisfy the LBB condition, such as equal-order elements, see, e.g., (John 2016). Such a

stabilization also results in an additional bilinear (ph, qh)-form in the finite element formulation.

There is, however, an essential difference between such standard stabilizations of equal-order (or

other LBB-unstable) finite element pairs and the volumetric normal pressure stabilization added

in (4.12).

For manifolds, such a standard pressure stabilization would mean the penalization of the tan-

gential variation of ph, while sn defined in (4.10b) imposes a constraint on the normal behavior

of ph. For example, for the surface case the classical Brezzi–Pitkäranta stabilization (Brezzi and
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Pitkäranta 1984) is given by ρp
∫

Γ∇Γp · ∇Γq ds with ρp = O(h2), or in the volumetric form by

stang(p, q) := ρp

∫
Oh
∇Γp · ∇Γq dx (4.21)

with ρp as in (4.16). Combining (4.21) with the normal volume stabilization one obtains a full

pressure gradient stabilization

sfull(p, q) := stang(p, q) + sn(p, q) = ρp

∫
Oh
∇p · ∇q dx. (4.22)

This full pressure gradient stabilization has been used and analyzed in (Olshanskii, Quaini, Reusken,

and Yushutin 2018) with P1–P1 trace finite elements for the surface Stokes problem. Numerical

experiments in Section 6.1.1 show that the stability analysis presented below is sharp in the following

sense: From the computed optimal constants c0 in (LBBh),

c0
(
‖q‖20 + s?(q, q)

)
≤ sup

v∈Vh

b2T (v, q)
‖v‖2A

+ s?(q, q), q ∈ Qh, (4.23)

we conclude that

1. for P2–P1 trace FEM the discretization (4.12) is unstable for ? = 0 (no stabilization, s0 := 0),

but becomes stable with only the normal volume stabilization sn, while

2. for P1–P1 trace FEM the discretization (4.12) is unstable for both s0 and sn, and the full-

gradient stabilization sfull makes it stable.

4.3.1 Equivalent Formulations of Discrete Inf-sup Stability

We outline the structure of our analysis for proving the inf-sup stability condition. We present two

equivalent formulations of (LBBh):

1. First formulation essentially follows from the so-called “Verfürth’s trick,” which is well-known

in the stability analysis of mixed finite element pairs (Verfürth 1984).

2. Based on this, another equivalent formulation is derived that uses the notion of regular ele-
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ments, which is known in the literature on trace FEM (Burman, Hansbo, and Larson 2015;

Demlow and Olshanskii 2012).

The derivation of the latter equivalent formulation is based on a key new result, “neighborhood

estimate,” which essentially states that for finite element functions the L2-norm on any element T ∈

Th can be controlled by the L2-norm on a neighboring regular element and the L2-norm of the

normal derivative (i.e., normal to the surface) in a small neighborhood. This result may be useful

also in other analyses of trace FEMs. The results concerning equivalent formulations of the inf-sup

stability condition and the neighborhood estimate are valid for trace finite element pairs (4.7) for

all k ≥ 1. The formulation of the inf-sup stability condition in terms of regular elements is tailor-

made for our setting, and in Section 4.3.2 we show that it is satisfied for k = 1, i.e., for the P2–P1

trace pair (4.7).

Let

ΓT := Γ ∩ T (4.24)

be the intersection of the surface with a tetrahedron T ∈ Th. We make use of the following local

trace inequality (Hansbo and Hansbo 2002; Reusken 2015; Guzmán and Olshanskii 2018):

hT ‖v‖2L2(ΓT ) . ‖v‖
2
L2(T ) + h2

T ‖v‖
2
H1(T ) (4.25)

for all T ∈ Th and v ∈ H1(T ) and. We further need the following broken seminorm on Qh:

|q|21, h :=
∑
T∈Th

hT ‖∇q‖2L2(T ) . (4.26)

For ρp ' h we have |q|1, h ' s
1
2
full(q, q) due to (4.4).

Lemma 4.1 (Verfürth’s trick for trace FEM). The inf-sup stability condition (LBBh) is equivalent

to

|q|1, h . sup
v∈Vh

bT (v, q)
‖v‖A

+ s
1
2
n (q, q) (LBB1, h)

for any q ∈ Qh.
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Proof. From a finite element inverse inequality and (4.20) we get

( ∑
T∈Th

hT ‖∇q‖2L2(T )

) 1
2
. h−

1
2 ‖q‖L2(Oh) . ‖q‖h

for all q ∈ Qh. Hence, (LBBh) implies (LBB1, h).

We now show that (LBB1, h) implies (LBBh). Take q ∈ Qh. Thanks to the inf-sup prop-

erty (LBB), there exists vT ∈ VT such that

bT (vT , q) = ‖q‖20 , ‖vT ‖1 . ‖q‖0 . (4.27)

We consider vnT ∈ H1(Oε(Γ)
)
, a normal extension of vT off the surface to a neighborhood Oε(Γ) of

width ε = O(h) such that Oh ⊂ Oε(Γ). For this normal extension one has

‖vnT ‖H1(Oh) ' h
1
2 ‖vT ‖1 , (4.28)

see (Olshanskii, Reusken, and Grande 2009b).

A set of neighboring tetrahedra of T ∈ Th is defined as

ωh(T ) :=
{
T ′ ∈ Th : T ′ ∩ T 6= Ø

}
. (4.29)

Note that ωh(T ) 6= Ø since T ∈ ωh(T ). With a slight abuse of notation, we use ωh(T ) to also

denote a domain formed by neighboring tetrahedra of T , i.e., int
(
∪T ′∈ωh(T )T ′

)
.

We take v := Ih(vnT ) ∈ Vh, where Ih : H1(Oε(Γ)
)
→ Vh is the Clément interpolation operator.

By standard arguments based on stability and approximation properties of Ih(vnT ), see (Reusken
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2015), one gets

‖v‖2A = ‖Ih(vnT )‖2A

. ‖Ih(vnT )‖21 + h−2 ‖Ih(vnT ) · n‖20 + h−1 ‖(∇Ih(vnT )) n‖2L2(Oh)

vT · n = 0, (4.25) .
∑
T∈Th

h−1
T ‖Ih(vnT )‖2H1(T ) + h−2 ∥∥(Ih(vnT )− vT

)
· n
∥∥2

0

(4.25) .
∑
T∈Th

h−1
T ‖v

n
T ‖

2
H1(ωh(T )) + h−2 ∑

T∈Th

h−1
T ‖Ih(vnT )− vnT ‖

2
L2(T ) +

h−2 ∑
T∈Th

hT ‖Ih(vnT )− vnT ‖
2
H1(T )

.
∑
T∈Th

h−1
T ‖v

n
T ‖

2
H1(ωh(T )) . h−1 ‖vnT ‖

2
H1(Oh)

(4.28) . ‖vT ‖21 .

Hence due to (4.27) we obtain

‖v‖A . ‖q‖0 . (4.30)

Using (4.25) and approximation properties of Ih(vnT ) one gets

‖vT − Ih(vnT )‖0 . h ‖vT ‖1 , (4.31)

and

bT (v, q) = bT (vT , q)− bT (vT − Ih(vnT ), q)

≥ ‖q‖20 − ‖vT − Ih(vnT )‖0 ‖∇Γq‖0

(4.31) ≥ ‖q‖20 − ch ‖vT ‖1 ‖∇Γq‖0

= ‖q‖20 − ch ‖vT ‖1

∑
T∈Th

‖∇Γq‖2L2(ΓT )

 1
2

(4.25) ≥ ‖q‖20 − ch
1
2 ‖vT ‖1

∑
T∈Th

‖∇q‖2L2(T )

 1
2

(4.27) ≥ ‖q‖20 − c ‖q‖0 |q|1, h .
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This and (4.30) yield

‖q‖0 − c |q|1, h . sup
v∈Vh

bT (v, q)
‖v‖A

, (4.32)

and from (4.32) and (LBB1, h) we have

‖q‖0 . sup
v∈Vh

bT (v, q)
‖v‖A

+ s
1
2
n (q, q)

for q ∈ Qh, which implies (LBBh).

Corollary 4.1 (Full gradient stabilization sfull). For ρp & h we have

(
‖q‖20 + sfull(q, q)

) 1
2 . sup

v∈Vh

bT (v, q)
‖v‖A

+ s
1
2
full(q, q) (4.33)

for any q ∈ Qh. To see this, we square (4.32) add sfull(q, q) to both sides:

‖q‖20 + sfull(q, q) . sup
v∈Vh

b2T (v, q)
‖v‖2A

+ |q|21, h + sfull(q, q)

hT < h ≤ sup
v∈Vh

b2T (v, q)
‖v‖2A

+
(
hρ−1

p + 1
)
sfull(q, q)

ρp & h . sup
v∈Vh

b2T (v, q)
‖v‖2A

+ sfull(q, q),

which yields (4.33).

Thus the trace FEM (4.12) with sn replaced with sfull is well-posed w.r.t. the norm

(
‖·‖2A + ‖·‖20 + sfull(·, ·)

) 1
2

for any Taylor–Hood pair (4.7), k ≥ 1, as well as for the P1–P1 finite element pair. However, due

to the consistency error

sfull(p?, q) 6= 0, q ∈ Qh,

cf. (4.18), such a method does not have an optimal order discretization error for Taylor–Hood finite

elements.
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We now derive another condition that is equivalent to (LBB1, h), in which the norm on the

left-hand side of (LBB1, h) is replaced with a weaker one: ∑T∈Th is replaced with ∑T∈Tregh
,

Treg h ⊂ Th

is a subset of “regular elements.” The following notion of regular elements appeared earlier in

the literature on trace FEM (Demlow and Olshanskii 2012; Burman, Hansbo, and Larson 2015).

We define the set of regular elements as those T ∈ Th for which the area of the intersection with

the surface is not less than cregh
2
T , with some sufficiently small threshold parameter creg > 0

independent of h and how the surface cuts the bulk mesh Ωh:

Treg h :=
{
T ∈ Th : area (ΓT ) ≥ cregh

2
T

}
. (4.34)

The value of creg will be specified in the following Theorem 4.1 which shows that

1. the set Treg h is “dense” in Th the following sense: Every T ∈ Th has a regular element T ′ in

the set of its neighboring tetrahedra (4.29), and

2. for any q ∈ Qh the norm ‖q‖L2(T ) can essentially be controlled with ‖q‖L2(T ′) and normal

derivatives in a small volume neighborhood.

In addition to (4.26), it is convenient to introduce the following seminorm on Qh:

|q|21, reg h :=
∑

T∈Tregh

hT ‖∇q‖2L2(T ) .

Theorem 4.1 (Neighborhood estimate). For each T ∈ Th

1. there exists T ′ ∈ ωh(T ) ∩ Treg h, and

2. a neighborhood estimate

‖q‖L2(T ) . ‖q‖L2(T ′) + hT ‖n · ∇q‖L2(ωh(T )) + h2
T ‖∇q‖L2(ωh(T )) (4.35)
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Figure 3: 2-dimensional illustration for the proof of Theorem 4.1: Local graph representation of Γ
over the tangent plane x0 + Tx0Γ

holds for any q ∈ Qh. A constant (embedded into the notation ., see (4.15)) in the inequal-

ity (4.35) depends only on the shape regularity property (4.4) of
{
Th
}
h>0 and the (local)

smoothness of Γ.

Proof. Consider an arbitrary T ∈ Th. First we show that ωh(T ) ∩ Treg h 6= Ø. Due to shape

regularity (4.4), the number of elements in ωh(T ) is uniformly bounded w.r.t. h by some con-

stant NT = NT (RT ) ∈ N, i.e.,

|ωh(T )| ≤ NT .

Furthermore, there exists a constant rT = rT (RT ) ∈ (0, 1] such that

OrT hT (x) ∩ Oh ⊂ ωh(T ) (4.36)

for any x ∈ T . Here Or(x) ⊂ R3 is the ball of radius r > 0 centered at x, and Oh is defined in (4.5).

Fix some x0 ∈ ΓT and let L0 := x0 + Tx0Γ be the tangent plane corresponding to the tangent

space of Γ at x0, see (2.4), with the normal vector n0 ⊥ Tx0Γ,

P0 := I−n0 ⊗ n0, P⊥0 := n0 ⊗ n0.
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Let T0 be the orthogonal projection of T on the plane L0, i.e.,

T0 :=
{
x−P⊥0 (x− x0) : x ∈ T

}
⊂ L0.

We have

∥∥∥(x−P⊥0 (x− x0)
)
− x0

∥∥∥ = ‖P0 (x− x0)‖ ≤ ‖P0‖ ‖x− x0‖ = ‖x− x0‖ ≤ hT

for x ∈ T , i.e., T0 ⊂ OhT (x0). For hT sufficiently small the surface can be represented as a graph

over T0, i.e., there exists a height function g : T0 → R such that

{
x + g(x)n0 : x ∈ T0

}

is a subset of Γ. We set g(x) := x + g(x)n0 and write Γ0 := g (T0) ⊂ Γ. We have

g(x0) = 0,

‖g‖L∞(T0) ≤ Cgh
2
T ,

(4.37)

with a constant Cg that depends only on the local smoothness of Γ. We assume that hT is sufficiently

small such that

CghT ≤
1
2 rT (4.38)

holds with rT from (4.36). Consider a subset T̂0 ⊂ T0 defined as

T̂0 := O 1
2 rT hT

(x0) ∩ T0. (4.39)

Note that the projection T0 is either a triangle or a convex quadrilateral. From elementary ge-

ometry it follows that all interior angles of T0 are bounded away from zero, and the lower bound

depends only on the shape regularity (4.4). This implies that area (T0) ' h2
T , and there exists a
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constant bT = bT (RT ) > 0 such that

area (OrhT (x0) ∩ T0) ≥ bT (rhT )2

holds for any r ∈ (0, 1]. In particular, we have

area
(
T̂0
)
≥ 1

4 bT r
2
T h

2
T . (4.40)

We lift T̂0 to the surface,

Γ̂0 := g
(
T̂0
)
⊂ Γ0,

and estimate

‖g (x)− x0‖ = ‖x + g(x)n0 − x0‖ ≤ ‖x− x0‖+ |g(x)|

(4.39) ≤ 1
2 rT hT + |g(x)|

(4.37) ≤ 1
2 rT hT + Cgh

2
T

(4.38) ≤ rT hT

for x ∈ T̂0. Thus we have Γ̂0 ⊂ OrT hT (x0). Combining this with Γ̂0 ⊂ Oh and (4.36) yields

Γ̂0 ⊂ ωh(T ) ⇒ Γ̂0 =
⋃

T ′∈ωh(T )
Γ̂0 ∩ T ′.

Noting that area
(
Γ̂0
)
≥ area

(
T̂0
)

and using (4.40), we get

1
4 bT r

2
T h

2
T ≤ area

(
Γ̂0
)
≤ NT max

T ′∈ωh(T )
area

(
Γ̂0 ∩ T ′

)
≤ NT max

T ′∈ωh(T )
area

(
Γ0 ∩ T ′

)
.

This implies that there exists T ′ ∈ ωh(T ) with area (Γ0 ∩ T ′) ≥ cωh2
T ,

cω := 1
4N

−1
T r2

T bT ,
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and the set of local regular elements

ωreg h(T ) :=
{
T ′ ∈ ωh(T ) : area

(
T ′ ∩ Γ0

)
≥ cωh2

T

}

is not empty. Consider T ′ ∈ ωreg h(T ). We have

area (ΓT ′) = area
(
T ′ ∩ Γ

)
≥ area

(
T ′ ∩ Γ0

)
≥ cωh2

T , (4.41)

Note that due to (4.4) we have

hT ≥ min
K∈Th

hK ≥ R−1
T max

K∈Th
hK ≥ R−1

T hT ′ ,

area (ΓT ′) ≥ cωR−2
T h2

T ′ .

With creg := cωR
−2
T in the definition (4.34) of Treg h we have T ′ ∈ Treg h, or

ωreg h(T ) ⊂ Treg h.

This and ωreg h ⊂ ωh(T ) yields

ωreg h ⊂ ωh(T ) ∩ Treg h 6= Ø.

Next we show (4.35). Consider q ∈ Qh. The surface Γ0 is the graph of a function g on T0.

Hence, there is a subset S ⊂ T0 such that

T ′ ∩ Γ0 = g (S) .

Using the surface area formula for the graph and (4.41) we get

cωh
2
T ≤ area

(
T ′ ∩ Γ0

)
=
∫
S

√
1 + ‖∇T0g‖

2 ds ≤
√

1 + max
S
‖∇T0g(·)‖2 area (S) .

Since the surface is tangent to T0 at x0, we have ∇T0g(x0) = 0. This and C2-smoothness of the
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surface imply ‖∇T0g‖L∞(T0) . h, and hence

cregh
2
T ≤ (1 + ch2) area (S) , area (S) & h2

T .

For the perimeter of S we have

length (S) . length
(
∂(T ′ ∩ Γ0)

)
. hT .

Since T ′ ∩ Γ is simply-connected, so is T ′ ∩ Γ0 and S, and there exists a disc DS ⊂ S such that

radius(DS) & hT . (4.42)

Let CS be a corresponding cylinder,

CS :=
{
x + αn0 : x ∈ DS , α ∈ R

}
.

Due to DS ⊂ T0, (4.42), and the shape regularity (4.4) one can inscribe a ball BT ⊂ CS ∩ T such

that radius(BT ) & hT , see Figure 3. By a standard scaling and norm equivalence argument it

follows that

‖q‖L2(T ) . ‖q‖L2(BT )

holds. Using this we obtain

‖q‖2L2(T ) . ‖q‖
2
L2(BT ) . ‖q‖

2
L2(CS∩T ) . ‖q‖

2
L2(CS∩ωh(T ))

. hT ‖q‖2L2(T ′∩Γ0) + h2
T ‖n0 · ∇q‖2L2(CS∩ωh(T ))

. hT ‖q‖2L2(ΓT ′ )
+ h2

T ‖n0 · ∇q‖2L2(ωh(T )) .

Combining this with hT ‖q‖L2(ΓT ′ )
. ‖q‖L2(T ′) (which follows from (4.25) and a finite element

inverse inequality) and ‖n0 − n(y)‖ . hT for all y ∈ ωh(T ), we have

‖q‖2L2(T ) . ‖q‖
2
L2(T ′) + h2

T ‖n · ∇q‖
2
L2(ωh(T )) + h4

T ‖∇q‖
2
L2(ωh(T )) ,
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which completes the proof.

Remark 4.5 (On the neighboring estimate (4.35)). To see the improvement offered by (4.35) over

available results, it is instructive to compare (4.35) to a local Sobolev inequality, which is proved

by a different argument (Olshanskii, Reusken, and Grande 2009b, Lemma 3.1):

‖v‖L2(T ) ≤ ‖v‖L2(ωh(T )) . ‖v‖L2(T ′) + hT ‖∇v‖L2(ωh(T )) (4.43)

for any v ∈ H1(ωh(T )
)
. The latter result holds for v ∈ H1(ωh(T )

)
, while in (4.35) we restrict

to q ∈ Qh. In (4.43) the first order term w.r.t. hT contains the full gradient, whereas in (4.35) only

the normal derivative is involved.

The following corollary is needed in the proof of Lemma 4.2 below.

Corollary 4.2. For any T ∈ Th there exists T ′ ∈ ωh(T ) ∩ Treg h such that

‖∇q‖L2(T ) . ‖∇q‖L2(T ′) + ‖n · ∇q‖L2(ωh(T )) + hT ‖∇q‖L2(ωh(T )) (4.44)

for q ∈ Qh. Furthermore, for ρp & h, and h sufficiently small we have

|q|21, h . |q|21, reg h + sn(q, q). (4.45)

for q ∈ Qh.

Proof. Take T ∈ Th and the corresponding T ′ ∈ ωh(T ) ∩ Treg h as in Lemma 4.1. Take q ∈ Qh and

define c0 :=
∫
T ′ q dx / volume (T ′). Using a local Poincaré inequality,

‖q − c0‖L2(T ′) . hT ‖∇q‖L2(T ′) ,
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with a finite element inverse inequality and (4.35) we obtain

‖∇q‖L2(T ) = ‖∇(q − c0)‖L2(T )

. h−1
T ‖q − c0‖L2(T )

. h−1
T ‖q − c0‖L2(T ′) + ‖n · ∇q‖L2(ωh(T )) + hT ‖∇q‖L2(ωh(T ))

. ‖∇q‖L2(T ′) + ‖n · ∇q‖L2(ωh(T )) + hT ‖∇q‖L2(ωh(T )) ,

which is the desired estimate (4.44). Squaring and multiplying (4.44) by hT , summing over T ∈ Th,

and using a finite overlap property we obtain

|q|21, h ≤ C
(
|q|21, reg h + sn(q, q) + h2 |q|21, h

)
, or

(1− Ch2) |q|21, h ≤ C
(
|q|21, reg h + sn(q, q)

)
,

with a constant C independent of the mesh size parameter h and position of Γ in the ambient

mesh Ωh. For h < C−
1
2 we have 1− Ch2 > 0, so

|q|21, h ≤
C

1− Ch2

(
|q|21, reg h + sn(q, q)

)

Restricting h further, e.g, h ≤ (2C)− 1
2 < C−

1
2 , yields

|q|21, h ≤ 2C
(
|q|21, reg h + sn(q, q)

)
,

and thus the result (4.45) holds for h sufficiently small.

Lemma 4.2. For h sufficiently small, the condition (LBB1, h) is equivalent to

|q|1, reg h . sup
v∈Vh

bT (v, q)
‖v‖A

+ s
1
2
n (q, q) (LBB1, reg h)

for any q ∈ Qh.

Proof. Clearly, (LBB1, h) implies (LBB1, reg h). The reverse follows from (4.45).
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Figure 4: 2-dimensional illustration for the proof of Theorem 4.2: Reference triangle T̃ (yellow),
its base edge F̃b, and the corresponding reduced triangle T̃δ (green).

4.3.2 Well-posedness of Discrete Problem

We are now ready to derive the main result of the stability analysis. We show that the inf-sup

stability condition (LBB1, reg h) holds for the case of P2–P1 trace finite elements (4.7). In the proof

we construct a velocity function from Vh, which delivers control over pressure gradients for all

regular tetrahedra.

Theorem 4.2 (Well-posedness of the discrete problem). Inf-sup stability condition (LBBh) is

satisfied for P2–P1 trace finite element pair (4.7) with velocity penalty and stabilization parameters

τ . h−2, ρu . h−1, ρp & h,

and h sufficiently small.

Proof. Below we prove the statement for (LBB1, reg h). Due to Lemmas 4.1 and 4.2 this im-

plies (LBBh) for h sufficiently small.

Let Eh(T ) be a set of all edges of T ∈ Th, |Eh(T )| = 6, and Eh := ∪T∈ThEh(T ) be a set of all

edges of Th. Similarly, we define Ereg h := ∪T∈TreghEh(T ) and Ereg h(T ) := Ereg h ∩ Eh(T ). Let tE be

a (normalized) vector connecting the two endpoints of E ∈ Eh and φE ∈ V 2
h be the quadratic nodal
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finite element basis function associated with the middle point of E. For q ∈ Qh define v ∈ Vh as

follows:

v(x) :=
∑

E∈Eregh

h2
EφE(x) (tE · ∇q(x)) tE =

∑
E∈Eregh

h2
EφE(x) (tE ⊗ tE)∇q(x). (4.46)

For T ∈ Th we obtain

〈v,∇Γq〉L2(ΓT ) = 〈v,P∇q〉L2(ΓT )

=
∑

E∈Eregh(T )

∫
ΓT
h2
EφE

(
|P tE · ∇q|2 + (P⊥ tE · ∇q)(P tE · ∇q)

)
ds

≥ 1
2

∑
E∈Eregh(T )

∫
ΓT
h2
EφE

(
|P tE · ∇q|2 − |P⊥ tE · ∇q|2

)
ds

= 1
2

∑
E∈Eregh

∫
ΓT
h2
EφE

(
|P tE · ∇q|2 − |(n · tE) · (n · ∇q)|2

)
ds

Cauchy–Schwarz ≥ 1
2

∑
E∈Eregh(T )

∫
ΓT
h2
EφE

(
|P tE · ∇q|2 − |n · ∇q|2

)
ds

φE ≤ 1, hE ≤ hT , |Eregh(T )| ≤ 6 ≥ 1
2

∑
E∈Eregh(T )

∫
ΓT
h2
EφE |P tE · ∇q|2 ds− 3h2

T ‖n · ∇q‖
2
L2(ΓT )

Application of the local trace inequality (4.25) with v := n · ∇q yields

hT ‖n · ∇q‖2L2(ΓT ) . ‖n · ∇q‖
2
L2(T ) + h2

T ‖n · ∇q‖
2
H1(T )

= (1 + h2
T ) ‖n · ∇q‖2L2(T ) + h2

T ‖∇ (n · ∇q)‖2L2(T )

Γ ∈ C2, ∇2q
∣∣
T

= 0 . ‖n · ∇q‖2L2(T ) + h2
T ‖∇q‖

2
L2(T ) ,

and thus

〈v,∇Γq〉L2(ΓT ) ≥
1
2

∫
ΓT

∑
E∈Eregh(T )

h2
EφE |P tE · ∇q|2 ds −

ctr
(
hT ‖n · ∇q‖2L2(T ) + h3

T ‖∇q‖
2
L2(T )

)
, or

〈v,∇Γq〉L2(ΓT ) + hT ‖n · ∇q‖2L2(T ) &
∫

ΓT

∑
E∈Eregh(T )

h2
EφE |P tE · ∇q|2 ds− ch3

T ‖∇q‖
2
L2(T ) .

(4.47)
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We now restrict to T ∈ Treg h ⇒ Ereg h(T ) = Eh(T ) and estimate the first term in (4.47). Note

that |ΓT | ≥ cregh
2
T holds. Let T̃ be a reference tetrahedron, see Figure 4, and G : T̃ → T be an

affine transformation mapping,

G(x̃) = A x̃ + b, G
(
T̃
)

= T,

with some b ∈ R3 and A ∈ R3×3, det A 6= 0. Define Γ̃T := G−1(ΓT ) and f̃ := f ◦G for a func-

tion f : T → R. Then we have

∫
ΓT
|f |ds ≥ c0h

2
T

∫
Γ̃T

∣∣f̃ ∣∣ ds, area
(
Γ̃T
)
≥ c1, (4.48)

with constants c0 = c0(RT ) > 0 and c1 = c1(RT ) > 0 that depend only on the shape regularity

property (4.4). For the normal vector ñ on Γ̃T we have

ñ = AT n ◦G∥∥∥AT n ◦G
∥∥∥ .

Using ‖A‖ = ‖∇G‖ . h and ‖∇n‖L∞(ΓT ) . 1, we check that

‖∇ñ‖
L∞
(

Γ̃T
) . h.

Normals on faces F̃ of T̃ are denoted by n
F̃

. For these normals we take orientation the same as

that of ñ on Γ̃T . For Γ̃T we choose a corresponding base face F̃b as the one that fits best to Γ̃T in

the following sense:

min
Γ̃T

∥∥∥ñ(·)− n
F̃b

∥∥∥ ≤ min
Γ̃T

∥∥∥ñ(·)− n
F̃

∥∥∥
for all faces F̃ of T̃ , see Figure 4. We take a fixed ε > 0 sufficiently small such that ‖∇ñ‖

L∞(Γ̃T ) ≤ ε

holds, i.e., Γ̃T is sufficiently close to a plane. This and the minimization property imply that

for F̃ 6= F̃b the angle between ñ and n
F̃

is uniformly bounded below from zero. To see this,

let ỹ ∈ Γ̃T be such that ∥∥∥ñ(ỹ)− n
F̃b

∥∥∥ = min
Γ̃T

∥∥∥ñ(·)− n
F̃b

∥∥∥ .
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Then

min
Γ̃T

∥∥∥ñ(·)− n
F̃

∥∥∥ ≥ ∥∥∥ñ(ỹ)− n
F̃

∥∥∥− Cε
≥
∥∥∥n

F̃b
− n

F̃

∥∥∥− ∥∥∥ñ(ỹ)− n
F̃b

∥∥∥− Cε
& 1

(4.49)

for sufficiently small ε.

For δ > 0 sufficiently small we define a reduced tetrahedron

T̃δ :=
{
x ∈ T̃ : dist(x, ∂T̃ \ F̃b) ≥ δ

}
⊂ T̃ ,

see Figure 4. Note that T̃δ depends on the base face F̃b. Thanks to (4.49) we can estimate

area
(
Γ̃T ∩

(
T̃ \ T̃δ0

))
. δ.

Therefore, there exists δ0 > 0, sufficiently small, such that

area
(
Γ̃T ∩ T̃δ0

)
≥ 1

2 c1

holds. Let E be an edge of the base face Fb := G
(
F̃b
)

of T , E ⊂ Fb, and φE the corresponding

nodal basis function defined above. We have

φ̃E ≥ c2δ0 (4.50)
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in T̃δ0 , with a suitable generic constant c2 > 0. Thus we obtain

∫
ΓT
φE ds =

∫
ΓT
|φE | ds

(4.48) ≥ c0h
2
T

∫
Γ̃T

∣∣∣φ̃E∣∣∣ ds
≥ c0h

2
T

∫
Γ̃T∩T̃δ0

∣∣∣φ̃E∣∣∣ ds
(4.50) ≥ c0c2δ0h

2
T area

(
Γ̃T ∩ T̃δ0

)
≥ 1

2 c0c1c2δ0h
2
T , i.e.,∫

ΓT
φE ds & h2

T .

(4.51)

Consider x? := arg minΓT ‖n(·)− nFb‖ ∈ ΓT and the corresponding normal vector and projector

n? := n(x?), P? := I−n? ⊗ n?.

We have ‖P(x)−P?‖ . h for x ∈ T . Using this and (4.51) we can estimate the first term in (4.47)

as

∫
ΓT

∑
E∈Eh(T )

h2
EφE |P tE · ∇q|2 ds & h2

T

∑
E⊂Fb

∫
ΓT
φE |P tE · ∇q|2 ds

& h2
T

∑
E⊂Fb

∣∣∣P? tE · ∇q
∣∣
T

∣∣∣2 ∫
ΓT
φE ds− ch2

T ‖∇q‖
2
L2(T )

& h4
T

∑
E⊂Fb

∣∣∣P? tE · ∇q
∣∣
T

∣∣∣2 − ch2
T ‖∇q‖

2
L2(T ) .

Due to construction of the base face Fb and the choice of x? we have that |n? · nFb | is uniformly

bounded away from zero. This implies

∑
E⊂Fb

∣∣∣P? tE · ∇q
∣∣
T

∣∣∣2 =
∑
E⊂Fb

∣∣∣tE ·P?∇q
∣∣
T

∣∣∣2 &
∥∥∥P?∇q

∣∣
T

∥∥∥2
,
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and thus we get

∫
ΓT

∑
E∈Eh(T )

h2
EφE |P tE · ∇q|2 ds & hT ‖P?∇q‖2L2(T ) − ch

2
T ‖∇q‖

2
L2(T )

& hT ‖P∇q‖2L2(T ) − ch
2
T ‖∇q‖

2
L2(T )

= hT ‖∇q‖2L2(T ) − hT ‖n · ∇q‖
2
L2(T ) − ch

2
T ‖∇q‖

2
L2(T )

= hT (1− chT ) ‖∇q‖2L2(T ) − hT ‖n · ∇q‖
2
L2(T )

hT < (2c)−1 ⇒ 1− chT >
1
2 >

1
2hT ‖∇q‖

2
L2(T ) − hT ‖n · ∇q‖

2
L2(T )

Using this in (4.47) we obtain

〈v,∇Γq〉L2(ΓT ) + hT ‖n · ∇q‖2L2(T ) & hT ‖∇q‖2L2(T ) (4.52)

for T ∈ Treg and hT sufficiently small. Summing (4.52) over T ∈ Treg yields

∑
T∈Tregh

〈v,∇Γq〉L2(ΓT ) + hT ‖n · ∇q‖2L2(T ) & |q|
2
1, reg h .

Now, using ρp & h and noting that replacing ∑T∈Tregh
with ∑T∈Th makes the l.h.s. of the above

inequality bigger and the r.h.s. smaller conclude that

bT (v, q) + sn(q, q) & |q|21, reg h (4.53)

holds for h sufficiently small.

We need the following elementary observation: For positive numbers x, y, z the inequality x+

y2 ≥ cz2 implies

x+ y(y + z) ≥ min{c, 1}z(y + z),
x

y + z
+ y ≥ min{c, 1}z.
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Using this, the estimate (4.53) implies

bT (v, q)

|q|1, reg h + s
1
2
n (q, q)

+ s
1
2
n (q, q) & |q|1, reg h . (4.54)

It remains to estimate ‖v‖A. We consider term-by-term the contributions in ‖v‖2A. Not-

ing ‖∇φE‖L∞(T ) . h−1
T for E ⊂ T and (4.25) we get

2ν ‖E(vT )‖20 + α ‖v‖20 . ‖E(v)− uN H‖20 + ‖v‖20

Γ ∈ C2 . ‖E(v)‖20 + ‖v‖20

.
∑
T∈Th

‖∇v‖2L2(ΓT ) + ‖v‖2L2(ΓT )

.
∑
T∈Th

h2
T ‖∇q‖

2
L2(ΓT )

.
∑
T∈Th

hT ‖∇q‖2L2(T )

=: |q|21, h .

(4.55)

We also have for τ . h−2 and ρu . h−1 the relations

τ ‖vN‖20 ≤ τ ‖v‖
2
0 = τ

∑
T∈Th

‖v‖2L2(ΓT )

. τ
∑
T∈Th

h4
T ‖∇q‖

2
L2(ΓT )

. τ
∑
T∈Th

h3
T ‖∇q‖

2
L2(T )

. |q|21, h ,

(4.56)

and

ρu ‖(∇v) n‖2L2(Oh) ≤ ρu
∑
T∈Th

‖∇v‖2L2(T ) . ρu
∑
T∈Th

h2
T ‖∇q‖

2
L2(T ) . |q|

2
1, h . (4.57)

From (4.55)–(4.57) we conclude that ‖v‖A . |q|1, h, and using (4.45) we get

‖v‖A . |q|1, reg h + s
1
2
n (q, q).
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Combining this with (4.54) completes the proof.

4.4 A Priori Error Estimates

We consider P2–P1 trace finite element pair (4.7). Based on the stability result in Theorem 4.2

an error analysis can be derived with standard arguments combining stability, consistency and

interpolation results. See, e.g., (Brezzi and Fortin 2012) for general treatment of saddle-point

problems, and (Olshanskii, Quaini, Reusken, and Yushutin 2018) for more specific analysis of the

surface Stokes problem. We outline the arguments below and skip most of the details that can be

found elsewhere.

First, we introduce the following bilinear form:

A
(
(u, p), (v, q)

)
:= A(u,v) + bT (v, p) + bT (u, q)− sn(p, q).

Then the discrete problem (4.12) has a compact representation: Find (uh, ph) ∈ Vh×Qh such that

A
(
(uh, pp), (vh, qh)

)
= 〈fT ,vh〉0

holds for all (vh, qh) ∈ Vh×Qh. This discrete problem has a unique solution, which is denoted

by (u?h, p?h). Due to consistency (4.18), the solution (u?T , p?) of (3.20) satisfies

A
(
(u?T , p?), (vh, qh)

)
= 〈fT ,vh〉0 ,

and we obtain the Galerkin orthogonality relation:

A
(
(u?T − u?h, p? − p?h), (vh, qh)

)
= 0

holds for any (vh, qh) ∈ Vh×Qh.

The inf-sup stability (LBBh), coercivity of A, and the Galerkin orthogonality results yield

the usual bound for the discretization error in terms of an approximation error in the problem-
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dependent norms,

‖u?T − u?h‖A + ‖p? − p?h‖h . inf
(vh,qh)∈Vh×Qh

(‖u?T − vh‖A + ‖p? − qh‖h) . (4.58)

Employing standard interpolation estimates for P2 and P1 trace finite elements (Reusken 2015; Ol-

shanskii and Reusken 2017) and assuming the necessary smoothness of (u?T , p?), we get an estimate

for the right-hand side of (4.58):

inf
(vh,qh)∈Vh×Qh

(
‖u?T − vh‖A + ‖p? − qh‖h

)
. h2 (‖u?T ‖3 + ‖p?‖2) . (4.59)

For the O(h2)-bound in (4.59) to hold, it is sufficient to assume the following bounds for the

parameters entering definitions of ‖·‖A and ‖·‖h norms:

τ . h−2, ρu . h−1, ρp . h.

Combining these restrictions with those needed for stability and algebraic conditioning, we con-

clude that, for the parameters satisfying (4.16), equations (4.58) and (4.59) yield the optimal error

estimate in the problem-dependent norm

‖u?T − u?h‖A + ‖p? − p?h‖h . h2 (‖u?T ‖3 + ‖p?‖2) . (4.60)

The definition of ‖·‖A and ‖·‖h norms and (4.60) together give

‖u?T −P u?h‖1 + ‖p? − p?h‖0 . h2 (‖u?T ‖3 + ‖p?‖2) ,

‖u?h · n‖0 . h3 (‖u?T ‖3 + ‖p?‖2) .

A duality argument can be applied, see (Olshanskii, Quaini, Reusken, and Yushutin 2018). It

results in the optimal error bound in the surface L2-norm for the velocity:

‖u?T −P u?h‖0 . h3 (‖u?T ‖3 + ‖p?‖)2 .
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5 DESIGN OF ITERATIVE SOLVER

Augmented Lagrangian (AL) preconditioning is a potent technique that has been developed to solve

some highly non-symmetric algebraic systems having a saddle point structure (Benzi and Olshanskii

2006; Niet and Wubs 2007; Olshanskii and Benzi 2008; ur Rehman, Vuik, and Segal 2008; Benzi,

Olshanskii, and Wang 2011; He, Neytcheva, and Capizzano 2011; Börm and Borne 2012; Heister

and Rapin 2013; He, Vuik, and Klaij 2018; Moulin, Jolivet, and Marquet 2019; Farrell and Gazca-

Orozco 2020). The need to treat such problems numerically emerges from the discretization of

systems of PDEs describing the motion of incompressible viscous fluid with dominating inertia

effects.

Adopting the terminology of fluid mechanics, the AL-approach augments the velocity subprob-

lem of the system using a suitably weighted incompressibility constraint. This leads to a well

conditioned pressure Schur complement matrix, but makes the velocity submatrix more difficult

to solve or to precondition. Already in the original work (Benzi and Olshanskii 2006) a special

multigrid method has been used to overcome the difficulty associated with preconditioning the

velocity block, and recently this technique was extended in (Farrell, Mitchell, and Wechsung 2019;

Farrell, Mitchell, Scott, and Wechsung 2021). Nevertheless, the specialized multilevel approach is

efficient only if a hierarchy of nested discretizations is available and only for certain finite element

velocity–pressure pairs.

In this Chapter we advocate a more general (but still efficient) way to handle the velocity sub-

problem in the AL-approach. The proposed method consists of computing a (possibly incomplete)

LU-factorization of the velocity block (or its subblocks) with further recycling of the factors over

several time steps. The factorization can be updated when the velocity field variations significantly

change the inertia term in the equations. A simpler strategy adopted here consists of updating

preconditioner when the number of outer iterations exceeds a threshold. We shall see that for

realistic unsteady 2D flows this results in a very efficient approach, which is robust with respect

to the Reynolds number and calls for only a small number of full factorizations over a long-time

simulation.
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Employing matrix factorizations in algebraic solvers for equations governing the flow of viscous

incompressible fluids is not a new theme. It is standard to factorize the discrete pressure Poisson

equation. More recently, studies were done regarding different strategies to perform incomplete

LU-factorization of the coupled systems for velocity and pressure (Segal, ur Rehman, and Vuik

2010; Dahl and Wille 1992; Konshin, Olshanskii, and Vassilevski 2015; Konshin, Olshanskii, and

Vassilevski 2017). We note that the latter cannot be done with the help of position-based incomplete

LU, since the pressure block in the matrix may be zero. The augmented Lagrangian approach

provides a framework to apply factorization only to the velocity matrix, while retaining the overall

excellent preconditioning properties. The velocity matrix results from the discretization of an

elliptic part of the system. Therefore, it is typically a positive definite matrix, and LU-factorization

is stable without any preprocessing.

Large scale 3D simulations lead to algebraic systems which are still too expensive to factorize

exactly and alternative ways of treating the velocity submatrix, e.g., based on geometric/algebraic

multigrid, domain decomposition methods, or incomplete factorization can be more feasible and

practical. The situation is different for 2D problems, where acceptable resolution is often achieved

using the number of degrees of freedom (d.o.f.) affordable by state-of-the-art direct solvers executed

on a desktop machine.

5.1 Grad-div Stabilization and Saddle Point System of Linear Al-

gebraic Equations

We proceed by designing an efficient linear solver for a linear system arising from the finite ele-

ment discretization (4.12) of the surface problem (3.6) from Section 4.2. We start by introducing a

stabilized version of the weak problem (4.12). Material in the current chapter extends the work (Ol-

shanskii and Zhiliakov 2020).

In order to increase the finite element solution accuracy and improve the performance of

the algebraic solver for the case of dominating convection, ν � 1, we stabilize (3.20) by in-

cluding a grad-div type stabilization (Olshanskii and Reusken 2004). Choosing the test func-

tion q := divΓ vT = tr E(vT ) in the second equation of (3.20), adding it to the first one, and sub-
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stituting discrete (4.7) spaces for test and trial spaces, we end up with a stabilized trace FEM:

Find (uh, ph) ∈ Vh×Qh such that

A(uh,vh) + γ 〈tr E(uh), tr E(vh)〉0︸ ︷︷ ︸
Aγ(uh,vh) :=

+bT (vh, qh) = 〈fT ,vh〉0 ,

bT (uh, qh)− sn(ph, qh) = 0

(5.1)

holds for all (vh, qh) ∈ Vh×Qh. Here we introduced an additional stabilization bilinear form,

γ 〈tr E(uh), tr E(vh)〉0 , (5.2)

with a parameter γ ≥ 0. Since

〈tr E(u?T ), q〉0 = 0

holds for the true solution of (3.20) and any q ∈ L2(Γ), the term (5.2) vanishes if one substitutes uh

with u?T . Thus the stabilized method (5.1) is consistent.

Since Aγ(v,v) ≥ A(v,v) for v ∈ Vh, Aγ is coercive. Note that

‖tr E(v)‖0 = ‖tr E(vT ) + vN κ‖0

(3.14) ≤
√

2 ‖E (vT )‖0 + ‖κ‖∞ ‖vN‖0

Γ ∈ C2 . ‖E (vT )‖0 + ‖v‖0

. ‖v‖A

for v ∈ Vh, and hence Aγ is continuous.

Corollary 5.1. For P2–P1 trace finite elements (4.7) the grad-div stabilized problem (5.1) is well-

posed in
(
‖·‖2A + ‖·‖2h

) 1
2 , and the error estimates from Section 4.4 hold. We note that the constants

in the stability and error estimates depend on parameters ν, γ, and α as studied in (Olshanskii and

Reusken 2004).

Let nu := dim Vh and np := dimQh. We now turn to the matrix form of the discretized surface
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Oseen system and define the velocity, pressure stabilization, and divergence matrices as

Aij := Aγ(ψj ,ψi), 1 ≤ i, j ≤ nu,

(C?)ij := s?(ψj , ψi), 1 ≤ i, j ≤ np,

Bij := bT (ψj , ψi), 1 ≤ i ≤ np, 1 ≤ j ≤ nu,

(5.3)

where {ψi}i=1,...,nu and {ψi}i=1,...,np are the velocity and pressure nodal basis functions spanning Vh

and Qh, respectively, and ? ∈ {0, n, full} is a choice of pressure stabilization:

1. absence of stabilization, i.e.,

s0 := 0,

implying that C0 is a zero matrix,

2. the normal derivative stabilization sn from (4.10b), and

3. the full-gradient stabilization sfull from (4.22).

After arranging velocity degrees of freedom (d.o.f.) first and pressure d.o.f. next, we arrive at

the system A BT

B −C?


︸ ︷︷ ︸

A? :=

 ~u
~p

 =

~f
~0

 . (5.4)

with the (2×2)-block matrix A? ∈ R(nu+np)×(nu+np), two vectors of unknowns ~u ∈ Rnu and ~p ∈ Rnp

corresponding to the finite element functions uh and ph in (4.12), respectively, i.e.,

uh(x) =
nu∑
i=1

~uiψi(x), ph(x) =
np∑
i=1

~piψi(x), (5.5)

and the right-hand side vectors ~0 ∈ Rnp and ~f ∈ Rnu ,

~f i :=
∫

Γ
fT ·ψi ds, 1 ≤ i ≤ nu.

The resulting system (5.4) of linear algebraic equations is non-symmetric and of saddle-point
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type with properties resembling those of the Rd-Oseen system, a well-studied problem. See, e.g.,

(Benzi, Golub, and Liesen 2005; Elman, Silvester, and Wathen 2005). In particular, the problem

is increasingly hard to solve for ν � 1. One way to avoid this increasing complexity of the linear

algebra system is to lag the entire inertia term in time, e.g., to replace the second term in (4.1)

with (∇Γwk)wk, ending up with a symmetric Stokes-type problem, same on each time step. How-

ever, numerical stability of such implicit-explicit scheme is known to impose a time step restriction

of the form

∆t ≤ C(ν)hd,

where d = 2 for two-dimension flows, and C(ν) decreasing for ν → 0, see (Temam 2001).

This leads to a serious growth of computational costs for small h and ν despite the ease of

linear algebra. In contrast, (4.1) is unconditionally stable with approximation analysis suggest-

ing ∆t ' h, see (Girault and Raviart 2012), and our strategy here is to alleviate computational

costs by employing a more sophisticated linear algebra solver re-enforced by a recycling algorithm.

5.2 Augmented Lagrangian Preconditioner

An important matrix related to the above system is the pressure Schur complement

S := B A−1 BT + C?, (5.6)

which results after elimination of the velocity unknowns from the system. A preconditioner for S

is a necessary ingredient for most iterative solvers that exploit the block structure of A?. Follow-

ing a common practice (Elman, Silvester, and Wathen 2005) we consider the block-triangle right

preconditioner for A?:

P :=

 Â BT

Ŝ

 , (5.7)

where Â and Ŝ are preconditioners for A and S, respectively.
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5.2.1 Bounds for Eigenvalues of Preconditioned Schur Complement

We continue with the design of the Schur complement preconditioner Ŝ. Consider the surface

pressure mass matrix Mp and the pressure Laplace–Beltrami matrix Lp defined as

(Mp)ij :=
∫

Γ
ψjψi ds,

(Lp)ij :=
∫

Γ
∇Γψj · ∇Γψi ds, 1 ≤ i, j ≤ np.

(5.8)

For the surface Stokes problem (α = 0, w = 0, γ = 0, ν = 1), the discrete inf-sup condition (LBBh)

implies that the matrix S is spectrally equivalent to the stabilized pressure mass matrix Mp + C?.

However, for w 6= 0, γ = 0, and ν → 0 the problem of building a suitable preconditioner for S

is known to be particular difficult. To circumvent it, the authors of (Benzi and Olshanskii 2006)

introduced an augmentation to the (1, 1)-block of the system replacing A with A +γBT M−1
p B.

Such augmentation is not algebraically consistent in our case due to presence of stabilization, i.e.,

C? 6= 0 ⇒ B ~u 6= ~0.

We note that C? 6= 0 is a typical situation for many unfitted inf-sup stable FEM discretizations

of the (Navier–)Stokes equations (both in volumes and on surfaces) as well as for stabilized el-

ements (Benzi and Wang 2011). Hence, we suggest to introduce an augmentation on the finite

element level, i.e., to add the grad-div term (5.2).

For the planar Oseen problem discretized with standard P2–P1 elements one can show that the

Schur complement of the algebraically augmented matrix is spectrally equivalent to the pressure

mass matrix scaled by (γ + ν)−1 for sufficiently large γ, see (Benzi and Olshanskii 2006). We show

that similar property holds for the trace finite elements when the algebraic augmentation is replaced

by the grad-div stabilization (5.2), i.e., the augmentation term is not of the form γBT M−1
p B.

Since the grad-div stabilization does not deliver the algebraic structure of the augmented La-

grangian as in (Benzi and Olshanskii 2006; Benzi, Olshanskii, and Wang 2011), we cannot make use

of the Sherman–Morrison–Woodbury formula or similar representations of the pressure Schur com-
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plement of the augmented system. Therefore, we base our proof of the result below on a different

argument.

Theorem 5.1 (Bounds for eigenvalues of preconditioned Schur complement). Let

SM := (ν + γ)−1 Mp + C? . (5.9)

Then the eigenvalues {λ} of the generalized (i.e., preconditioned) Schur complement eigenvalue

problem

S ~p = λSM ~p (5.10)

satisfy

|λ| ≤ ν + γ

γ
. (5.11)

Moreover, for ? 6= 0 (i.e., stable discretization), α = 1, and ν ≤ 1 we have

ν + γ

ν−1 + γ
. <(λ), (5.12)

with a constant embedded in ., see (4.15), independent of parameters ν and γ.

Proof. Since SM = STM > 0, there exists S
1
2
M =

(
S

1
2
M

)T
> 0 so that

|λ| ≤
∥∥∥S−1

M S
∥∥∥ =

∥∥∥∥S− 1
2

M

(
S−

1
2

M S
)∥∥∥∥ =

∥∥∥∥(S−
1
2

M S
)

S−
1
2

M

∥∥∥∥
= sup

~p,~q∈Rmp

〈
S−

1
2

M S S−
1
2

M ~p, ~q
〉

‖~p‖ ‖~q‖ = sup
~p,~q∈Rmp

〈S ~p, ~q〉∥∥∥∥S 1
2
M ~p

∥∥∥∥ ∥∥∥∥S 1
2
M ~q

∥∥∥∥
= sup

~p,~q∈Rmp

〈S ~p, ~q〉
〈SM ~p, ~p〉

1
2 〈SM ~q, ~q〉

1
2
.

(5.13)

Take any ~p ∈ Rnp and set ~u := A−1 BT ~p. Definition (5.6) yields

〈S ~p, ~q〉 = 〈B ~u, ~q〉+ 〈C? ~p, ~q〉
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for any ~q ∈ Rnp . Using (5.3) and (5.5), we rewrite the above in the finite element notation:

〈S ~p, ~q〉 = bT (uh, qh) + s?(ph, qh) (5.14)

Cauchy–Schwarz ≤ ‖tr E(uh)‖0 ‖qh‖0 + s?(ph, qh).

From the definition of ~u we get

BT ~p = A ~u ⇒
〈
BT ~p, ~v

〉
= 〈A ~u, ~v〉

for any ~v ∈ Rnu , or

bT (vh, ph) = Aγ(uh,vh) = A(uh,vh) + γ 〈tr E(uh), tr E(vh)〉0 (5.15)

for any vh ∈ Vh. Application of Cauchy–Schwarz inequality to (5.15) with vh := uh yields

0 ≤ A(uh,uh) = bT (uh, ph)− γ ‖tr E(uh)‖20

≤ ‖tr E(uh)‖0 ‖ph‖0 − γ ‖tr E(uh)‖20

= ‖tr E(uh)‖0 (‖ph‖0 − γ ‖tr E(uh)‖0) ,

γ ‖tr E(uh)‖0 ≤ ‖ph‖0 .

Using this we estimate (5.14) further as

〈S ~p, ~q〉 ≤ γ−1 ‖ph‖0 ‖qh‖0 + s
1
2
? (ph, ph)s

1
2
? (qh, qh)

= ν + γ

γ
(ν + γ)−1 ‖ph‖0 ‖qh‖0 + s

1
2
? (ph, ph)s

1
2
? (qh, qh)

≤ ν + γ

γ

(
(ν + γ)−1 ‖ph‖0 ‖qh‖0 + s

1
2
? (ph, ph)s

1
2
? (qh, qh)

)
Cauchy–Schwarz ≤ ν + γ

γ

(
(ν + γ)−1 ‖ph‖20 + s?(ph, ph)

) 1
2
(
(ν + γ)−1 ‖qh‖20 + s?(qh, qh)

) 1
2

= ν + γ

γ
〈SM ~p, ~p〉

1
2 〈SM ~q, ~q〉

1
2 ,

and combining it with (5.13) yields (5.11).
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Next we show the estimate (5.12) for the real parts of eigenvalues. We need the following result:

inf
~p∈Rnp

〈S ~p, ~p〉
〈SM ~p, ~p〉 ≤ <(λ), (5.16)

see (Bendixson 1902). Let ? ∈ {n, full} and define

‖vh‖2B := ‖vh‖20 + 2 ‖E(P vh)‖20 + τ ‖vh · n‖20 + ρu ‖∂nvh‖2L2(Oh) ,

i.e., ‖·‖B = ‖·‖A with α = ν = 1 fixed. The inf-sup condition (LBBh) implies that there exists

lh ∈ Vh with ‖lh‖B = 1 such that

‖ph‖20 . b2T (lh, ph) + s?(ph, ph), (5.17)

with a constant embedded in . independent of parameters α, ν and γ. We use (5.15) with vh := lh

to estimate the first term in (5.17):

bT (lh, ph) = Aγ(uh, lh) = A(uh, lh) + γ 〈tr E(uh), tr E(lh)〉0

Cauchy–Schwarz, (3.8) ≤ ‖uh‖A ‖lh‖A + ‖∇Γ (P uh)‖0 ‖lh‖0 + γ ‖tr E(uh)‖0 ‖tr E(lh)‖0 .
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We estimate further

‖lh‖0 ≤ ‖lh‖
2
B = 1,

‖tr E(lh)‖20 = ‖tr E(P lh) + κ (lh · n)‖20

(3.14), Γ ∈ C2 . ‖E(P lh)‖20 + ‖lh · n‖20

≤ ‖E(P lh)‖20 + ‖lh‖20

≤ ‖lh‖2B = 1,

‖∇Γ (P uh)‖20 ≤ ‖P uh‖21

(3.21) . ‖E (P uh)‖20 + ‖P uh‖20

ν ≤ 1, α = 1 . ν−1 ‖uh‖2A , ‖lh‖A ≤ ‖lh‖B = 1.

Thus we have

bT (lh, ph) .
(
1 + ν−

1
2
)
‖uh‖A + γ ‖tr E(uh)‖0

ν ≤ 1 . ν−
1
2 ‖uh‖A + γ ‖tr E(uh)‖0

Cauchy–Schwarz ≤
(
ν−1 + γ

) 1
2
(
‖uh‖2A + γ ‖tr E(uh)‖20

) 1
2

=
(
ν−1 + γ

) 1
2 ‖uh‖Aγ ,

b2T (lh, ph) .
(
ν−1 + γ

)
‖uh‖2Aγ .

Substituting the above estimate in (5.17) gives

〈Mp ~p, ~p〉 = ‖ph‖20 .
(
ν−1 + γ

)
‖uh‖2Aγ + s?(ph, ph)

ν−1 + γ > 1 ≤
(
ν−1 + γ

) (
‖uh‖2Aγ + s?(ph, ph)

)
. (5.18)

Employing (5.14) with ~q := ~p and (5.15) with skew-symmetry of the inertia term (3.7) we rewrite
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the right-hand side of (5.18) in matrix notation:

‖uh‖2Aγ + s?(ph, ph) = 〈S ~p, ~p〉 .

Thus we arrive at 〈Mp ~p, ~p〉 .
(
ν−1 + γ

)
〈S ~p, ~p〉, or

ν + γ

ν−1 + γ

〈
(ν + γ)−1 Mp ~p, ~p

〉
. 〈S ~p, ~p〉 . (5.19)

Finally, noting that 〈C? ~p, ~p〉 ≤ 〈S ~p, ~p〉 and ν+γ
ν−1+γ ≤

ν−1+γ
ν−1+γ = 1 we get

ν + γ

ν−1 + γ
〈C? ~p, ~p〉 ≤ 〈S ~p, ~p〉 ,

and adding it to (5.19) yields

γ + ν

γ + ν−1

〈(
(γ + ν)−1 Mp + C?

)
︸ ︷︷ ︸

SM=

~p, ~p
〉

. 〈S ~p, ~p〉 ,

γ + ν

γ + ν−1 .
〈S ~p, ~p〉
〈SM ~p, ~p〉 .

Thus the estimate (5.12) on <(λ) follows from (5.16).

We see that for large enough γ all eigenvalues are contained in a box in the right half-plane,

with the bounds independent of ν. Motivated by estimates (5.11) and (5.12), we define the Schur

complement preconditioner through its inverse as follows:

Ŝ−1 :=
(
(ν + γ)−1 Mp + Cn

)−1

︸ ︷︷ ︸
S−1
M =

+
(
α−1 Lp + Cn

)−1

︸ ︷︷ ︸
S−1
L

:=

. (5.20)

The second term is included to deal with the dominating reaction term in the Oseen problem (5.1),

i.e., if α� 1. This part of Ŝ−1 resembles the Cahouet–Chabard preconditioner (Cahouet and

Chabard 1988). We apply several conjugate gradient iterations to compute the action of S−1
M and

S−1
L on a vector. Alternatively, these matrices can be also one-time factorized. Since the number
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of the pressure d.o.f. is much smaller than the velocity ones, np � nu, either choice marginally

affects the total timings.

Note also that SL has a one-dimensional kernel, i.e., the subspace of constant pressures, which

we easily handle by iterating in a proper subspace. Strictly speaking, S−1
L is the pseudo-inverse in

our case.

5.2.2 Recycling Strategy

Next we define the preconditioner Â for the velocity block of P . The augmentation has the

downside of adding to the (1, 1)-block of A? the term (5.2) with a large nullspace. For larger γ

this makes the matrix A poor conditioned and hinders the efficiency of standard iterative methods

to approximate the action of A−1.

As a more flexible alternative, we explore here direct LU-factorization of A (or its blocks) at

the time tk = k∆t and the reuse of these factors for several time steps

ti → ti+1,

with i = k + 1, k + 2 etc. In pursuing this line, we consider two strategies of building Â:

1. We obtain ~v 7→ Â−1
~v via perform LU-factorization of the full velocity block A. Thus

Â−1
~v = A−1 ~v up to finite precision.

2. We enumerate velocity unknowns componentwise so that the first nu / 3 entries of ~v corre-

spond to the x-component of the corresponding finite element function vh, see (5.5), second

ones to the y-component, and the last ones to the z-component. Thus A attains the (3× 3)-

block form,

A =


Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

 .

75



We obtain ~v 7→ Â−1
~v from the block upper-triangle part of A,

A∆ :=


Axx Axy Axz

Ayy Ayz

Azz

 ,

via factorizing each of diagonal blocks Axx, Ayy, and Ayy of A∆, and performing block

Gaussian elimination. This approach corresponds to the one from (Benzi, Olshanskii, and

Wang 2011).

We call the first strategy full AL-approach and the second one modified AL-approach.

The modified AL-approach allows to factorize smaller matrices that structurally resemble stiffness

matrices of a conforming FEM applied to an elliptic scalar PDE. This enhanced efficiency comes

with a price of slight ν- and h-dependence of the preconditioner performance (Benzi, Olshanskii,

and Wang 2011). Numerical experiments in Section 6.2.1 show that in the case of time-dependent

2D flow the price is very tolerable.

Same approaches, of course, apply to reusing incomplete LU-factorizations, but we fix our

idea and consider the exact LU. Surface fluid problems are essentially two dimensional, and the

number of velocity d.o.f. nu allows for full LU-factorization. Furthermore, in a curvilinear metric

the viscosity term does not simplify to Laplace operators for each velocity component, i.e., for

tangential divergence-free vT we note that in general

P divΓ E(vT ) 6= ∆ΓvT

with a componentwise Laplace–Beltrami operator ∆Γ. Therefore, A does not have a block-diagonal

structure for γ = 0, and adding the γ-term (5.2) does not change the sparsity pattern of the matrix

(in contrast to the augmentation in the Rd-case).

To make the algorithm precise, consider the full AL-approach and denote by L(k) and U(k)

the LU-factors of A(k) at step k of (4.1). We let Â = L(k) U(k) to be the preconditioner for

76



all A(k + ∆k), with the index ∆k ≥ 0 such that

# iter(k + ∆k)
# iter(k) ≤ ∆iter, (5.21)

holds for some fixed parameter ∆iter ≥ 1. Here ∆iter is the maximum allowed increase of the

preconditioned outer iterations without updating the preconditioner. The recycling strategy (5.21)

for the modified AL-approach is defined in similar manner. Since the system matrix A is not

symmetric and Ŝ−1 is nonlinear and iteration-dependent (hence so is P), we use the FGMRES

method (Saad 1993) as the outer solver.
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6 NUMERICAL EXPERIMENTS

We present results of numerical experiments to support the theoretical results from previous chap-

ters. Software DROPS (Institute of Scientific Computing, RWTH Aachen; Department of Math-

ematics, University of Houston 2003), packages Belos and Amesos from Trilinos (The Trilinos

Project Team 2021), and VTK / Paraview (Schroeder, Martin, and Lorensen 1998; Ahrens, Geveci,

and Law 2005) were used for matrix assembling, algebraic solver execution, and solution visual-

ization, respectively. Mathematica computing system (Wolfram Research, Inc. 2021) was used to

approximate solutions of (generalized) eigenvalue problems.

6.1 Stokes Problem on Stationary Surfaces

For the first numerical experiment we consider the problem (3.6) with parameters

w = 0, α = ν = 1, (6.1)

i.e., the surface tangential Stokes problem

uT − 2 P divΓ E(uT ) +∇Γp = fT ,

divΓ uT = 0 onΓ.
(6.2)

We choose Γ to be either the unit sphere or a torus, Γ = Γsph or Γ = Γtor, with the corresponding

level set functions

φsph(x) := ‖x‖2 − 1 and φtor(x) := (‖x‖2 +R2 − r2)2 − 4R2(x2 + y2), (6.3)

respectively, R := 1, r := 1 / 5.

The computational domain is Ω := (−5/3, 5/3)3 such that Γ ⊂ Ω for both examples. To

build the initial triangulation Th0 we divide Ω into 23 cubes and further tessellate each cube into 6

tetrahedra. Thus we have h0 = 5 / 3. The mesh is gradually refined towards the surface, and ` ∈ N
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h = 4.17× 10−1 h = 2.08× 10−1 h = 1.04× 10−1

h = 1.04× 10−1 h = 5.21× 10−2 h = 2.6× 10−2

Figure 5: Cuts of the bulk mesh Ωh and the induced surface mesh for refinement levels `. Top: Γ =
Γsph, ` ∈

{
1, 2, 3

}
, bottom: Γ = Γtor, ` ∈

{
3, 4, 5

}
denotes the level of refinement, with the mesh size

h = h(`) = h0 × 2−` = 5
3 × 2−`,

see Figure 5 for an illustration of the bulk meshes and the induced mesh on the embedded surface

for three consecutive refinement levels.

We apply the trace FEM from Section 4.2 to discretize (6.2). For the next set of experiments

the grad-div stabilization parameter is chosen to be γ = 0. In the following subsections we

1. numerically compute optimal inf-sup stability constants for the P2–P1 and P1–P1 trace FEM

and

2. show convergence results for the P2–P1 trace FEM.
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6.1.1 Discrete Inf-sup Stability

The definition (5.8) of the surface pressure mass matrix Mp ∈ Rnp×np yields

〈ph, qh〉0 = 〈~q,Mp ~p〉 .

We also need auxiliary matrices

M? := Mp + C? ⇒ 〈ph, qh〉0 + s?(ph, qh) = 〈~q,M? ~p〉 . (6.4)

which correspond to the natural norms used in the pressure space, e.g., Mn corresponds to ‖·‖h
from (4.19).

We are interested in the generalized eigenvalue problem

S? ~q = λM? ~q, (6.5)

with ? ∈
{
0, n, full

}
. We use the notation

0 = λ1 < λ2 ≤ · · · ≤ λnp

for the generalized eigenvalues of (6.5). For the stable discretization method we have λnp ' 1, and

the discrete inf-sup property (4.23) can be rewritten in the matrix-vector notation:

c0 〈M? ~q, ~q〉 ≤ 〈S? ~q, ~q〉

holds for any q ∈ Rnp \
{

const
}
. See, e.g., (Olshanskii and Tyrtyshnikov 2014, Lemma 5.9). Thus

we have

c0 ≤ λ2,

i.e., for ? ∈
{
n, full

}
the smallest effective eigenvalue of the generalized Schur complement (6.5)

must be bounded away from zero, and the bound must be independent of h and how the surface
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cuts the ambient mesh.

Assembling the Schur complement matrix S? becomes prohibitively expensive even for rather

small mesh sizes, since one needs to calculate A−1. One possible solution is to write (6.5) in the

mixed form, i.e.,

A BT

B −C?


 ~v
~q

 = −λ


M?


 ~v
~q

 , leading to

A BT

B −C?


 ~v
~q

 = −λ(ε)

 εA

M?


︸ ︷︷ ︸

Mε
? :=

 ~v
~q

 , (6.6)

with 0 < ε � 1. Here we introduced an ε-perturbation to the right-hand side matrix to make

it Hermitian positive definite. In this form, the problem is suitable for any standard generalized

eigenvalue solver that operates with sparse Hermitian matrices. The spectrum of the perturbed

problem consists of two sets of eigenvalues,

sp
(
(Mε

?)−1 A?

)
= Λε ∪ Λε−1 .

The eigenvalues from the first set converge to those of (6.5), i.e.,

λ(ε) = λ+ o(1) as ε→ 0, with λ(ε) ∈ Λε and λ ∈ sp
(
M−1

? S?
)
.

For the eigenvalues in the other set we have −λ(ε) = O(ε−1), λ(ε) ∈ Λε−1 . This makes it straight-

forward for ε � 1 to identify the eigenvalues we are interested in. To simplify the computation

further, we replace the (1, 1)-block of Mε
? by ε I.

To check that our computations are stable with respect to small ε and yield consistent results, we

solve (6.6) for ε = 10−5 and ε = 10−6. It turns out that we obtain very close results. Furthermore,

for the coarse mesh levels, when solving (6.5) is feasible, we also check that the dense solver for (6.5)

and the iterative one for (6.6) with ε = 10−6 give eigenvalues that coincide at least up to the first

five significant digits.
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Tables 1 and 2 report λ2, i.e., the lower bound for the discrete inf-sup stability constant,

and λnp , i.e., the maximum eigenvalue so that λnp / λ2 defines the effective condition number, for

the following methods:

1. the trace P2–P1 finite element method, and

2. the trace P1–P1 finite element method from (Olshanskii, Quaini, Reusken, and Yushutin

2018).

For both discretizations we solve the eigenvalue problem (6.6) with different matrices C? which

correspond to three choices of pressure stabilization ? ∈
{
0, n, full

}
.

For experiments with the trace P2–P1 elements we choose parameters satisfying (4.16),

τ = h−2, ρp = h. (6.7)

For the velocity volume stabilization choose ρu = h−1, i.e., the upper extreme for admissible

parameters, since for smaller ρu the stability constant c0 from (4.23) can only increase. For the

trace P1–P1 finite elements we use (6.7) and set ρu = h, which was the choice in (Olshanskii,

Quaini, Reusken, and Yushutin 2018). If the resulting method is inf-sup unstable for ρu ' h, it has

the same property also for larger ρu.

From Table 1, which shows results for the P2–P1 trace elements, we see that for C0 (no pressure

stabilization) λ2 tends to zero with mesh refinement, which indicates that the discretization is not

inf-sup stable. The normal gradient stabilization matrix Cn is sufficient for the inf-sup stability,

λ2 is uniformly bounded from below, which confirms the main result of the Section 4.2. Of course,

including the full pressure gradient term also leads to a stable method, but in this case, the method

has consistency errors that are suboptimal, see Corollary 4.1.

For the two cases Γ = Γsph and Γ = Γtor the behavior is essentially the same. From Table 2 we

see that only full gradient stabilization matrix Cfull guarantees inf-sup stability of the P1–P1 trace

elements, which is different to the situation with the P2–P1 trace elements.

Next, we illustrate our claim that the optimal inf-sup stability constant c0 in (LBB) is uniformly

bounded with respect to the position of Γ in the background mesh. To this end, we introduce a set
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Table 1: Extreme eigenvalues of the preconditioned Schur complement (6.5) for the trace P2–P1
finite elements.

Γ = Γsph

h nu np
S0 Sn Sfull

λ2 λnp
λ2 λnp

λ2 λnp

8.33× 10−1 789 51 2.33× 10−1 1.07 6.3× 10−1 1. 8.81× 10−1 1.
4.17× 10−1 3276 190 4.72× 10−2 6.97× 10−1 5.29× 10−1 1. 7.64× 10−1 1.
2.08× 10−1 11718 664 7.93× 10−2 6.7× 10−1 5.09× 10−1 1. 6.39× 10−1 1.
1.04× 10−1 48762 2764 3.71× 10−2 6.69× 10−1 5.03× 10−1 1. 5.73× 10−1 1.
5.21× 10−2 193086 10912 1.81× 10−3 6.68× 10−1 4.98× 10−1 1. 5.36× 10−1 1.
2.6× 10−2 775998 43864 6.65× 10−4 6.65× 10−1 4.92× 10−1 1. 5.17× 10−1 1.

Γ = Γtor

h n m
S0 Sn Sfull

λ2 λnp λ2 λnp λ2 λnp

2.08× 10−1 5580 324 2.15× 10−1 9.56× 10−1 3.12× 10−1 1. 3.4× 10−1 1.
1.04× 10−1 28116 1580 1.59× 10−2 7.6× 10−1 3.21× 10−1 1. 3.35× 10−1 1.
5.21× 10−2 116592 6568 1.31× 10−3 7.48× 10−1 3.21× 10−1 1. 3.26× 10−1 1.
2.6× 10−2 477708 26936 1.9× 10−4 7.42× 10−1 3.2× 10−1 1. 3.22× 10−1 1.

of translated surfaces

Γ 7→ Γ + ss, (6.8)

with some s ∈ R and s ∈ R3, ‖s‖ = 1; see Figure 6.

We repeat eigenvalue computations for the P2–P1 trace finite element method, with a fixed

mesh size h = 1.04× 10−1 and a varying translation parameter s in (6.8). Results are reported in

Table 3. The results confirm the robustness of the inf-sup stability constant with respect to the

position of Γ for the method with the normal derivative stabilization.

6.1.2 Convergence for a Smooth Solution

We set Γ = Γsph and define

u?T (x) := Px(−z2, y, x)T , p?(x) := xy2 + z (6.9)
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Table 2: Extreme eigenvalues of the preconditioned Schur complement (6.5) for the trace P1–P1
finite elements.

Γ = Γsph

h n m
S0 Sn Sfull

λ2 λnp
λ2 λnp

λ2 λnp

8.33× 10−1 153 51 1.32× 10−2 1.42 7.48× 10−1 1.13 9.58× 10−1 1.06
4.17× 10−1 570 190 5.12× 10−3 1.04 5.77× 10−1 1. 8.54× 10−1 1.
2.08× 10−1 1992 664 4.4× 10−3 7.93× 10−1 3.87× 10−1 1. 6.71× 10−1 1.
1.04× 10−1 8292 2764 2.01× 10−3 7.79× 10−1 2.19× 10−1 1. 5.82× 10−1 1.
5.21× 10−2 32736 10912 6.04× 10−5 9.81× 10−1 1.17× 10−1 1. 5.37× 10−1 1.
2.6× 10−2 131592 43864 3.53× 10−5 8.67× 10−1 5.72× 10−2 1. 5.16× 10−1 1.
1.3× 10−2 525864 175288 2.16× 10−6 7.34× 10−1 2.84× 10−2 1. 5.04× 10−1 1.

Γ = Γtor

h np np
S0 Sn Sfull

λ2 λnp
λ2 λnp

λ2 λnp

2.08× 10−1 972 324 5.04× 10−2 4.93 2.84× 10−1 1.35 3.64× 10−1 1.19
1.04× 10−1 4740 1580 2.99× 10−3 3.83 1.58× 10−1 1.02 3.35× 10−1 1.01
5.21× 10−2 19704 6568 1.11× 10−3 5.45 7.73× 10−2 1.01 3.25× 10−1 1.
2.6× 10−2 80808 26936 1.2× 10−4 5.42 3.07× 10−2 1.01 3.21× 10−1 1.
1.3× 10−2 327036 109012 1.77× 10−5 5.23 1.18× 10−2 1.01 3.16× 10−1 1.

on Γsph, see Figure 7. We have
∫
Γ p

? dx = 0. To define (6.9) in Oh, we use the canonical extension p

from (2.23) and the signed distance function

dist(x) = ‖x‖ − 1

defined in Oh.

Note that due to (4.11) and the choice of φ = φsph in (6.3) we have

nφ = n ◦ p,

inOh, i.e., the normal vector nφ induced by φ = φsph coincides with the canonical extension of n. To

approximate the integrands containing nφ and related quantities, e.g., (4.14), we use the nodal P2-

interpolant I2
h(φ) defined in Th. Note that φsph ∈ P2(R3) implies I2

h(φsph) = φsph, and so the normal

vector and related operators can be computed exactly at every quadrature point. To approximate
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Γsph Γsph + ss

Figure 6: The unit sphere (left) and the shifted unit sphere (right). Here s = (1, 1, 1)T /
√

3, s = 0.4,
and h = 5.21× 10−2.

the domain of integration, we use a sufficiently refined piecewise planar approximation Γh /m of Γ,

see Remark 4.2. We take m ' h−1 so that we have an O(h4)-accurate approximation of the surface.

We use the preconditioned iterative solver as described in Chapter 5 with the final residual

tolerance ‖ri‖ ≤ 10−8. We do not add the grad-div term (5.2) since the problem is stationary,

the parameters (6.1) are fixed with the viscosity coefficient ν = 1 being not small, and the linear

system is symmetric.

We first consider the convergence rates of the P2–P1 trace finite element with the normal

derivative volume stabilization matrix Cn. Results are reported in Table 4. From the table we

see that the formulation gives optimal convergence rates in all the norms as predicted by the error

analysis in Section 4.4.

Table 5 reports results of a further experiment in which the normal derivative volume stabiliza-

tion for the pressure is replaced by the full gradient stabilization, i.e., the stabilization matrix Cfull

is used. This option was discussed in Remark 4.4. It is expected that this results in suboptimal

convergence rates due to only O(h2)-consistency of the added term. This is what we see in Table 5,

which shows suboptimal rates in L2-velocity error norm.
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Table 3: Extreme eigenvalues of the preconditioned Schur complement (6.5) for the shifted sur-
face Γ + ss for the trace P2–P1 finite elements. Here s = (1, 1, 1)T /

√
3 and h = 1.04× 10−1.

Surface S0 Sn
λ2 λnp λ2 λnp

Γsph + 0.0 s 3.71× 10−2 6.69× 10−1 5.03× 10−1 1.
Γsph + 0.1 s 1.31× 10−3 6.87× 10−1 5.03× 10−1 1.
Γsph + 0.2 s 1.25× 10−3 6.70× 10−1 5.03× 10−1 1.
Γsph + 0.3 s 1.04× 10−2 6.72× 10−1 5.03× 10−1 1.
Γsph + 0.4 s 5.32× 10−4 6.72× 10−1 5.03× 10−1 1.

Surface S0 Sn
λ2 λnp λ2 λnp

Γtor + 0.00 s 1.59× 10−2 7.6× 10−1 3.21× 10−1 1.
Γtor + 0.05 s 9.20× 10−3 1.14 3.21× 10−1 1.
Γtor + 0.10 s 3.00× 10−3 1.91 3.19× 10−1 1.
Γtor + 0.15 s 8.67× 10−3 1.02 3.21× 10−1 1.
Γtor + 0.20 s 6.68× 10−3 3.04 3.21× 10−1 1.

6.2 Kelvin–Helmholtz Instability

Next we consider the surface tangential Navier–Stokes problem (3.5) with ρ = 1 and fT = 0, i.e.,

∂tuT + (∇ΓuT ) uT − 2νP divΓ E(uT ) +∇Γp = 0,

divΓ uT = 0 on Γ,
(6.10)

to simulate the mixing layer of isothermal incompressible viscous surface fluid at several Reynolds

numbers. The setup resembles the classical problem of the Kelvin–Helmholtz instability (KH). For

a detailed discussion of the planar analogue we refer to (Schroeder, John, Lederer, Lehrenfeld, Lube,

and Schöberl 2019) and references therein. At higher Reynolds numbers the flow exhibits sharp

internal layers and intensive vortical dynamics, offering a good test problem for both discretizations

methods and flow solvers.

As in the previous example, we choose Γ to be either the unit sphere or a torus, Γ = Γsph or Γ =

Γtor, with the corresponding level set functions (6.3). For the torus, we set R := 1 and r := 1 / 2.

The design of numerical experiment for the sphere follows (Lederer, Lehrenfeld, and Schöberl
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Figure 7: Exact velocity solution u?T (left) and pressure solution p? (right) on Γsph as in (6.9)

Table 4: Convergence results for the trace P2–P1 finite elements with the normal derivative stabi-
lization ? = n

h ‖u?
T − uh‖1 Order ‖u?

T − uh‖0 Order ‖p? − ph‖0 Order ‖uh · n‖0 Order
8.3× 10−1 2.2 6.4× 10−1 7.4× 10−1 4.5× 10−1

4.2× 10−1 3.8× 10−1 2.5 6.1× 10−2 3.4 1.2× 10−1 2.6 5.3× 10−2 3.1
2.1× 10−1 9.2× 10−2 2.1 5.8× 10−3 3.4 2.5× 10−2 2.2 4.9× 10−3 3.4
1.× 10−1 2.2× 10−2 2.1 5.6× 10−4 3.4 6.1× 10−3 2.1 5.× 10−4 3.3
5.2× 10−2 5.3× 10−3 2. 5.2× 10−5 3.4 1.6× 10−3 1.9 4.9× 10−5 3.4
2.6× 10−2 1.3× 10−3 2. 5.2× 10−6 3.3 4.1× 10−4 2. 5.× 10−6 3.3
1.3× 10−2 3.4× 10−4 2. 6.× 10−7 3.1 1.× 10−4 2. 5.8× 10−7 3.1

2020; Jankuhn, Olshanskii, Reusken, and Zhiliakov 2020). Consider a parametrization

χ(ξ1, ξ2) :=


cos(2πξ1) cos(πξ2)

sin(2πξ1) cos(πξ2)

− sin(πξ2)

 , ξ ∈ Ξ :=
(1

2 ,
1
2

)2

of the unit sphere Γsph = χ
(
Ξ
)

around χ(0) = e1 ∈ Γsph, see (2.2). The coordinates ξ1 and ξ2 are

(renormalized) azimuthal and polar angles, respectively. Let τ̂α be the normalized basis vectors

spanning TΓsph, τ̂α := ∇Γξα / ‖∇Γξα‖. The initial velocity field is given by the counter-rotating

upper and lower hemispheres with velocity speed approximately equal to one closer to the equator

and vanishing at poles. The velocity field has a sharp transition layer along equator, where we add

87



Table 5: Convergence results for the trace P2–P1 finite elements with the full gradient stabiliza-
tion ? = full

h ‖u?
T − uh‖1 Order ‖u?

T − uh‖0 Order ‖p? − ph‖0 Order ‖uh · n‖0 Order
8.3× 10−1 1.6 7.8× 10−1 1.3 3.5× 10−1

4.2× 10−1 6.9× 10−1 1.2 3.9× 10−1 1. 8.1× 10−1 6.3× 10−1 5.4× 10−2 2.7
2.1× 10−1 2.4× 10−1 1.5 1.3× 10−1 1.6 3.1× 10−1 1.4 4.9× 10−3 3.4
1.× 10−1 8.1× 10−2 1.6 3.6× 10−2 1.8 1.1× 10−1 1.5 5.× 10−4 3.3
5.2× 10−2 2.4× 10−2 1.8 9.5× 10−3 1.9 3.2× 10−2 1.7 4.9× 10−5 3.4
2.6× 10−2 6.5× 10−3 1.9 2.4× 10−3 2. 8.8× 10−3 1.9 5.× 10−6 3.3
1.3× 10−2 1.8× 10−3 1.8 6.1× 10−4 2. 2.5× 10−3 1.8 5.9× 10−7 3.1

Figure 8: Left: Initial velocity field uT (·, 0) from (6.11). Right: The initial vorticity, curlΓ uT (·, 0),
in the strip |z| ≤ 2δ0. We see that the initial perturbation consists of 8 vortices squeezed around
equator.

perturbation to trigger the development of the vortical strip:

uT (χ (ξ) , 0) := dχ(ξ2)
(

tanh
(2ξ2
δ0

)
τ̂ 1(ξ) + cn curlΓ ψχ(ξ)

)
,

ψχ(ξ) := exp
{
−ξ

2
2
δ2

0

}(
aa cos(maπξ1) + ab cos(mbπξ2)

)
,

(6.11)

where d is the distance from Γsph to the z-axis. We take δ0 := 0.05 (for |z| & δ0 the velocity field is

close to a rigid body rotation around the z-axis), cn := 10−2 (perturbation parameter), and aa = 1,

ma = 16, ab = 0.1, mb = 20 (perturbation magnitudes and frequencies). The initial velocity field

is illustrated in Figure 8. Note that the velocity field (6.11) is tangential by construction.

Note that τ̂ 1 ∈ TΓtor. For the torus initial condition we use the same formula (6.11) with one
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modification: The scaling factor d is chosen as

d(x) :=
√
x2 + y2 − (R− r) =

√
x2 + y2 − 1

2 ,

and thus the initial velocity field vanishes on the inner ring of the torus.

The Reynolds number Re ' ν−1δ0 is based on ‖uT (·, 0)‖∞ ' 1 and the initial layer width. We

perform numerical simulations with ν = ν(k) = 10−k / 2 which corresponds to Re = Re(k) = 10k−1

for k ∈
{
3, 4, 5

}
, i.e.,

Re ∈
{
102, 103, 104}.

The final time T is chosen to be 20 and 60 for the sphere and torus, respectively. For the time

discretization and linearization of (6.10) we apply the second order semi-implicit scheme (4.2) from

Section 4.1, and for the space discretization we employ the grad-div stabilized trace FEM (5.1)

from Chapter 5 with P2–P1 Taylor–Hood finite elements. The mesh construction and the choice

of stabilization and penalty parameters is the same as in Section 6.1. We consider three mesh

refinement levels ` ∈
{
4, 5, 6

}
with the corresponding number of time steps nt ∈

{
320, 640, 1280

}
and nt ∈

{
960, 1920, 3840

}
for the sphere and torus, respectively, i.e., we have

∆t = ∆t(`) = 2−` ' h(`), α = α(`) = 3
2 × 2` ' h−1(`). (6.12)

In Figure 9 we show several snapshots of the surface vorticity distributions starting from the

initial condition. The solution reproduces the well known flow pattern of the planar KH instability

development, which includes the initial vortices formation in the layer followed by pairing and

self-organization into larger vortices. Conservation of the initial zero angular momentum prevents

further pairing. The two remaining vortices should decay for t→∞ due to energy dissipation.

Figure 10 visualizes the vorticity field of the KH flow on the torus for Re = 104 (ν = 10−5 / 2).

The initial stage of the vortical layer formation and small vortices pairing is similar to the case of

the sphere and the plane. The different geometry (and topology) of the torus apparently affects the

interaction of larger vortices. From the time of about 20 units there are 4 large vortices formed,

which further travel in the both toroidal and poloidal directions without pairing up to time t = 45.
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Figure 9: KH flow at Re = 104 on the unit sphere Γsph: Snapshots of the surface vortic-
ity wh = curlΓh uh for t ∈

{
0, 2.5, 5, 6.25, 10, 12.5, 15, 20

}
. Click hereherehereherehereherehereherehereherehereherehereherehereherehere for the full animation.

After t = 45 the motions loses any apparent axial symmetry and becomes rather complex (see the

animation).

In the following subsections we

1. test the robustness of the algebraic solver from Chapter 5 w.r.t. varying parameters h,

α ' h−1, and ν. We do not study the dependence of optimal γ on these parameters. It

is known (Olshanskii, Lube, Heister, and Löwe 2009) that there is a wide range of quasi-

optimal values of the grad-div stabilization parameter γ such that the solution quality is

almost insensitive to the parameter variation, and hence γ can be taken smaller or larger

depending on other considerations. For simplicity we adopt γ = 1 for the full AL-approach,

and mesh-dependent γ for the modified AL-approach. Next we

2. explore the energy dissipation of the computed solutions and compare the results of the surface

KH flow with a planar (i.e., posed in a domain in R2) benchmark.
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Figure 10: KH flow at Re = 104 on the torus Γtor, R = 1, r = 1 / 2: snapshots of the surface vortic-
ity wh = curlΓh uh for t ∈

{
0, 2.3, 8.4, 9.3, 14, 18.7, 25.7, 30.4, 35

}
. Click hereherehereherehereherehereherehereherehereherehereherehereherehere for the full animation.

6.2.1 Algebraic Solver Robustness

First we fix the viscosity parameter ν = 10−4 / 2 and vary the mesh size h. The number of unknowns

grows by a factor of four from one level to the next one, and the parameter α in (5.1) increases

two times for each refinement level, see (6.12). The FGMRES outer iterative solver with the full

AL-preconditioner is applied to solve the system of algebraic equations on each time step. We use

zero vector as the initial guess and the drop of residual by a factor of 108 as the stopping criterium.

Table 6 summarizes the solver averaged statistics over the time of simulation t ∈ [0, 20]. We

see that the percentage of re-initializations of the preconditioner (this is when we compute new

LU-factors) is small and decreases for finer mesh levels. The later can be due to the growth of α

and more significant role of the diffusion term for smaller h. The choice of ∆iter = 5 in (5.21)

keeps the average number of FGMRES iterations about 30 with a very slight variation among
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Table 6: Full AL-preconditioned FGMRES solver statistics for Γ = Γsph, fixed ν = 10−4 / 2, and
varying h

(
α ' h−1). The total number of time steps nt for three mesh levels reported are 320, 640,

and 1280, respectively, leading to α ∈
{
24, 48, 96

}
.

# d.o.f. Tassemble % factor steps “fresh” LU-steps all steps
Niter Tfactor Tlinsol Niter Tfactor Tlinsol

51526 3.55 3.44 9.00 1.72× 101 0.53 33.53 0.59 2.15
203998 18.6 1.88 8.33 1.76× 102 2.55 32.77 3.30 10.3
819862 180 0.86 7.55 1.73× 103 12.1 29.86 14.9 49.9
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# d.o.f. = 51526, nLU = 10 # d.o.f. = 819862, nLU = 10

Time step ti ∈ [0, 20]
Figure 11: Computation time (Tfactor + Tlinsol) in log-scale vs. time step. Red bars correspond to
time steps for which new factors are computed, nLU is a number of such steps.

refinement levels. To compare, the number of FGMRES iterations with “fresh” LU-factorization

in Â is about 8. As expected, factorizing the matrix Â is by far the most computationally expensive

procedure (see Tfactor in “fresh LU-steps” table section). However, due to the heavy and efficient

recycling, overall the expense of the factorization is minor compared to the iterations cost (cf. Tfactor

and Tlinsol in “all steps” table section). This allows to keep the averaged computation cost of the

linear solver comparable and even less than the cost of matrix assembling.

This balance is further visualized in Figure 11 for two mesh levels, where we see that the time

steps with updated LU-factors are more expensive but rare. It is interesting to note that most

updates are needed for t ∈ [4, 10], when vortixes are paring.

Because of the additional refinement used to define numerical quadratures, see Remark 4.2,
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the matrix assembling time grows superlinear in our examples. The optimal complexity here can

be obtained by using isoparametric trace finite elements (Lehrenfeld 2016; Jankuhn, Olshanskii,

Reusken, and Zhiliakov 2020) which are not implemented in the software we use.

Next we repeat the simulation of the KH problem on the sphere but now for several values

the viscosity parameter and the finest discretization level. All parameters of the algebraic solver

are the same as above. The averaged statistics of the solver for this set of experiments are sum-

marized in Table 7. It appears that the solver is remarkably w.r.t. the variation of the viscosity

parameter. For higher Reynolds numbers we see only a slight increase of the percentage of time

steps, where the preconditioner is updated by the new LU-factors. Figure 12 illustrates the balance

between computationally expensive but rare steps with updated preconditioner and the majority

of calculations with the recycled AL-preconditioner.

We now consider the surface KH flow on the torus. For the given values of outer and inner

radius the surface area of Γtor is approximately 1.57 times the surface of the unit sphere. This

explains why we get larger systems in terms of the number of d.o.f. for the same levels of mesh

refinement in this example. This makes the problem naturally suitable for testing the recycling

strategy with the modified AL-preconditioner. In general, the modified AL-preconditioner is less

robust with respect to ν and h, so its efficient use needs some tuning.

Following recommendations in (Benzi, Olshanskii, and Wang 2011) we find optimal value for γ

on a coarse level, and then apply 1 /
√

2-rule to scale it for finer mesh levels. This leads us to γ3 =

0.04 for the third refinement level, and

γ = γ(`) = 2
3−`

2 × γ3

for the refinement levels from 4 to 6, ` ∈
{
4, 5, 6

}
. These are the levels we use to report the solver

statistics in Table 8. In this experiment, we take the velocity field and pressure from the previous

time step as the initial guess in FGMRES and relax the stopping criterium to the relative drop

of residual by 106, ‖ri‖ < 10−6 ‖b‖. The number of iterations increased compared to the full AL-

preconditioner, since only the block upper-triangle part of the matrix A is used to define Â. We

also see a slight increase of the iteration number for h getting smaller, which is also the observation
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Table 7: Full AL-preconditioned FGMRES solver statistics for Γ = Γsph, fixed h = 2.6× 10−2

(# d.o.f. = 819862, α = 96), and varying ν.

ν Tassemble % factor steps “fresh” LU-steps all steps
Niter Tfactor Tlinsol Niter Tfactor Tlinsol

1
2 × 10−3 177 0.391 7.00 1.59× 103 9.87 32.87 6.23 50.7
1
2 × 10−4 180 0.859 7.55 1.73× 103 12.1 29.86 14.9 49.9
1
2 × 10−5 198 0.938 7.75 1.81× 103 12.4 31.95 17 50.2
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ν = 10−4 / 2, nLU = 10 ν = 10−5 / 2, nLU = 11

Time step ti ∈ [0, 20]
Figure 12: Computation time (Tfactor + Tlinsol) in log-scale vs. time step. Red bars correspond to
time steps for which new factors are computed, nLU is a number of such steps.

in (Benzi, Olshanskii, and Wang 2011). The overall computation time is dominated by the matrix

assembly because of the non-optimal numerical quadrature, as discussed above. If we take the time

of assembly off the table, then the recycling strategy turns out to be very effective also with the

modified AL-preconditioner. The average time of factorization per one solve is negligible and each

factorization is more efficient in terms of time and memory requirements since it is done for each

individual velocity block.

It is out of scope for this dissertation to carry out a systematic comparison of the full and

modified AL-preconditioners. Results in this direction can be found in (Benzi, Olshanskii, and

Wang 2011). For the factorize–recycle framework introduced here, our general recommendation

is the following: If the storage of factors is affordable, then use the full AL-preconditioner as the
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Table 8: Modified AL-preconditioned FGMRES solver statistics for Γ = Γtor, fixed ν = 10−5 / 2,
and varying h (α ∈

{
24, 48, 96

}
). The total number of time steps nt for three mesh levels reported

are 960, 1920, and 3840, respectively.

# d.o.f. γ Tassemble % factor steps “fresh” LU-steps all steps
Niter Tfactor Tlinsol Niter Tfactor Tlinsol

78244 0.028 7.65 6.25× 10−1 37.33 1.63 2.94 68.31 1.02× 10−2 5.02
315792 0.020 38.3 4.17× 10−1 42.75 18.1 16.3 75.32 7.55× 10−2 24.6
1279180 0.014 324 3.65× 10−1 64.71 181 97.6 75.51 6.61× 10−1 112
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# d.o.f. = 315792, nLU = 3 # d.o.f. = 1279180, nLU = 6

Time step ti ∈ [0, 60]
Figure 13: Computation time (Tfactor + Tlinsol) in log-scale vs. time step. Red bars correspond to
time steps for which new factors are computed, nLU is a number of such steps.

most robust and free of parameter tuning; Otherwise, switch to the modified AL-preconditioner

and tune γ so that the number of outer iterations is somewhat higher but comparable to the full

AL-approach case.

6.2.2 Energy Dissipation and Comparison with R2-Benchmark

We next assess the method by monitoring the energy dissipation of the computed solutions on

three subsequent levels. To have a better insight into the expected behavior, we note that the

initial velocity uT (·, 0) is L2-orthogonal to all rigid tangential motions of Γ (also known as Killing
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velocity fields), i.e., functions from

Vkill :=
{
vT ∈ VT : E(vT ) = 0

}
.

It is straightforward to check that a velocity field uT satisfying (6.10) preserves this orthogonality

condition for all t > 0, and hence it satisfies the following Korn inequality:

‖uT ‖0 ≤ CK(Γ) ‖E(uT )‖0 . (6.13)

For the total kinetic energy

E(t) := 1
2 ‖uT (·, t)‖20 ,

testing (6.10) with vT = uT and applying (6.13) leads to the following identity and a corresponding

energy bound:

dtE(t) = −2ν ‖E(uT (·, t))‖20 ≤ −
4ν

C2
K(Γ) E(t) ⇒ E(t) ≤ E(0) exp

{
− 4ν t
C2
K(Γ)

}
. (6.14)

We outline an approach for estimating the Korn constant CK(Γ). The best value of this constant

is obtained if C−2
K (Γ) is the smallest strictly positive eigenvalue of the diffusion operator −P divΓ E

restricted to the space of tangential divergence free vector fields, see (6.13). We have the following

relation between this surface diffusion operator and the Hodge-de Rham operator ∆H
Γ (Jankuhn,

Olshanskii, and Reusken 2018, equation (3.18)):

−2 P divΓ E(vT ) = ∆H
Γ vT − 2KvT

for any vT ∈ VT such that divΓ vT = 0. The Gauss curvature of the unit sphere Γsph is equal to

unity, K = 1. The eigenvalues of ∆H
Γ are given by

λk(∆H
Γ ) = k(k + 1), k ∈ N

for Γ = Γsph, see (Chow, Chu, Glickenstein, Guenther, Isenberg, Ivey, Knopf, Lu, Luo, and Ni 2007,
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Table 9: Five smallest eigenvalues of (6.16). The first eigenvalue µ1 corresponds to a constant
pressure mode, eigenvalues µ2, µ3, and µ4 correspond to 3 Killing vector fields on the unit sphere,
and µ5 is an estimate for the Korn constant C−2

K (Γ). The results are reported for ε = 10−7 (we
verified that 8 significant digits of µ5 stay the same for ε = 10−6).

h nu + np µ1 µ2 µ3 µ4 µ5

1.04× 10−1 51526 1.03× 10−12 3.6× 10−4 3.86× 10−4 3.86× 10−4 2.0029
5.21× 10−2 203998 1.28× 10−13 1.45× 10−5 1.84× 10−5 1.84× 10−5 2.00018
2.6× 10−2 819862 2.97× 10−14 7.87× 10−7 1.06× 10−6 1.06× 10−6 2.00001

p. 349). The tangential rigid motions are eigenfunctions corresponding to λ1. Hence, we estimate

C−2
K (Γ) = inf

vT∈VT \Vkill
divΓ vT=0

‖E(vT )‖20
‖vT ‖20

= inf
vT∈VT \Vkill

divΓ vT=0

1
2

〈
∆H

Γ vT − 2KvT ,vT
〉

0
‖vT ‖20

≥ inf
vT∈VT \Vkill

1
2

〈
∆H

Γ vT − 2KvT ,vT
〉

0
‖vT ‖20

= 1
2
(
λ2(∆H

Γ )− 2
)

= 2,

(6.15)

resulting in C2
K(Γ) ≤ 1

2 .

We confirm the estimate (6.15) numerically. To this end, consider a generalized eigenvalue

problem AK BT

B −Cn


 ~v
~q

 = µ(ε)

M

ε I


 ~v
~q

 (6.16)

with the velocity mass matrix

Mij :=
∫

Γ
ψj ·ψi ds, 1 ≤ i, j < nu,

and the sum AK of the velocity diffusion, normal penalty, and volume stabilization matrices, i.e.,

〈~u,AK ~v〉 =
∫

Γ
E(uh) : E(vh) + τ (uh · n) (vh · n) ds+ ρu

∫
Oh
∂nuh · ∂nvh dx

for any ~u, ~v ∈ Rnu . Akin to (6.6), we introduced an ε-perturbation in the right-hand side matrix

of (6.16) to make it Hermitian positive definite, so that the problem is solvable by any standard

generalized eigenvalue solver that operates with sparse Hermitian matrices.
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5.21× 10−2 9.96× 10−4

2.6× 10−2 3.44× 10−4

Figure 14: Left: Numerical kinetic energies Eh(t) := 1 / 2 ‖uh(·, t)‖20 as functions of time for the
mesh refinement levels ` ∈

{
4, 5, 6

}
(straight lines) and corresponding exponential fitting (dashed

lines). Right: Values of the exponent β in the fitting function B exp {−βt}.

Results of the numerical solution of (6.16) are shown in Table 9, which confirm the esti-

mate (6.15). Moreover, the results strongly suggest CK(Γ)2 = 1 / 2 for Γ = Γsph. Substituting

this in the estimate (6.14) for the kinetic energy, we arrive at the bound

E(t) ≤ E(0) exp {−8ν t} = E(0) exp
{
−4× 10−5 t

}
. (6.17)

In Figure 14 we show the kinetic energy plots for the computed solutions together with expo-

nential fitting. There are two obvious reasons for the computed energy to decay faster than the

upper estimate (6.17) suggests: the presence of numerical diffusion and the persistence of higher

harmonics in the true solution. On the finest mesh the numerical solution looses about 0.5% of

kinetic energy up to the point when the solution is dominated by two counter-rotating vortices.

This compares well to results computed with a higher order method in (Schroeder, John, Lederer,

Lehrenfeld, Lube, and Schöberl 2019) for the planar case with Re = 104.
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6.3 Navier–Stokes Problem on Evolving Surface with Prescribed

Motion

For the last set of numerical experiments we consider the evolving surface tangential Navier–Stokes

problem (3.3) with ρ = 1, i.e.,

(P .uT + uN H uT )− 2νP divΓ E(uT ) +∇Γp = bT ,

divΓ uT = g on Γt>0,

(6.18)

with the right-hand sides

g := −uNκ, bT := fT + 2νP divΓ(uN H) + 1
2∇Γu

2
N . (6.19)

The initial triangulation is built as explained in Section 6.1. Further, the mesh is refined in

a sufficiently large neighborhood of a surface so that tetrahedra cut by Γt belong to the same

refinement level for all t ∈ I. We apply the BDF2 time stepping scheme to discretize (6.18) in time.

To approximate the inertia term

P .uT + uN H uT = P (∂tueT + (∇ueT ) u) + uN H uT

at the time t = tk, we use the fact that uN is given and apply (4.2). Thus at every time step t = tk

we solve

P [u]kt + P
(
∇uk

) (
wk + ukNn

)
+ ukN H uk − 2νP divΓ E(uk) +∇Γp

k = bk,

divΓ uk = 0
(6.20)

on Γ = Γtk , where the surface operators P, H, ∇Γ etc. are constructed for Γtk . The trace P2–

P1 Taylor–Hood finite element method is applied for the space discretization of (6.20) with the

choice (6.7) of the stabilization and penalty parameters. To ensure that the previous step velocities

required for the construction of [u]kt and wk are defined on Γtk , we discretize the problem in a
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(sufficiently wide) narrowband Oh(t) of the surface for t < tk. The width of Oh(t) is dependent

on uN and ∆t. Note that the velocity volume stabilization term naturally enforces the velocity

solution to be constant in the (quasi-)normal directions of the surface. For the rigorous analysis

of the trace FEM method for the evolving surface case we refer to (Olshanskii, Reusken, and

Zhiliakov 2022).

6.3.1 Convergence for a Smooth Solution

To verify the implementation and check the convergence order of the discrete solution, we set up an

experiment with a known tangential flow along an expanding / contracting sphere. In this example

the total area of Γ is not preserved, but it allows to prescribe a flow uT analytically and calculate

the right-hand sides in (6.18).

We choose ν = 5× 10−3 and consider t ∈ [0, 1]. The surface Γ is given by its distance function

dist(x, t) := ‖x‖ − r(t), r(t) := 1 + 1
4 sin(2πt), (6.21)

The surface normal velocity is then uN = uN n, with

uN (t) = dtr(t) = π cos(2πt)
2 , n(x) = x

‖x‖ . (6.22)

The exact solution is given by

u?T (x, t) := P(x, t)(1− 2t, 0, 0)T , p?(x) := xy2 + z, (6.23)

and the right-hand sides bT and g = divΓ uT + uN κ are computed accordingly from (6.18)

and (6.21)–(6.23). For numerical integration, the exact solutions and right-hand sides are extended

along normal directions of Γ.

The numerical solution was computed on four consecutive meshes with refinement levels ` ∈
{
2, . . . , 5

}
and the time step ∆t = 0.05 on level 2. The time is halved for each consecutive spatial refinement.

The narrowband mesh together with the embedded surface Γt and computed velocity solution uh
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t = 0 t = 0.15 t = 0.9

Figure 15: Illustration of the narrowband mesh and velocity solution at the mesh refinement
level ` = 3 for the tangential flow along an expanding / contracting sphere.

Mesh level ` 2 3 4 5
h 4.17× 10−1 2.08× 10−1 1.04× 10−1 5.21× 10−2

Averaged # d.o.f. 4.41× 103 1.73× 104 6.82× 104 2.73× 105

‖u?T − uh‖1 Order ‖u?T − uh‖0 Order ‖p? − ph‖0 Order
9.3× 10−1 1.3× 10−1 3.2× 10−1

1.9× 10−1 2.3 9.9× 10−3 3.72 3.5× 10−2 3.2
4.3× 10−2 2.13 9.2× 10−4 3.42 7.3× 10−3 2.27
1.2× 10−2 1.92 1.2× 10−4 2.98 1.8× 10−3 2.02

Table 10: Convergence results for the tangential flow along an expanding / contracting sphere.

are illustrated in Figure 15.

In Table 10 we show the mesh parameter h and the resulting (averaged over all time steps)

number of active d.o.f. We see that one refinement leads to approximately four times more d.o.f.

Table 10 further reports the velocity and pressure errors measured in (approximate) ΓI -norms

‖v‖21 :=
∫ 1

0
‖v(·, t)‖2H1(Γt) dt, ‖v‖20 :=

∫ 1

0
‖v(·, t)‖2L2(Γt) dt, ‖f‖20 :=

∫ 1

0
‖f(·, t)‖2L2(Γt) dt.

These norms were computed using a quadrature rule for the time integration. Results demonstrate

the expected second order convergence in the “natural” norms and a higher order for the velocity

error in the L2(ΓI)-norm (0-norm). These orders are optimal for the P2–P1 elements used.
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6.3.2 Tangential Flow on a Deforming Sphere

t = 0 t = 0.1 t = 0.3

t = 0.5 t = 0.7 t = 0.9

t = 1

Figure 16: Visualization of the velocity field for axisymmetric deformations of the unit sphere.
Mesh level ` = 4, ∆t = 0.01. Click hereherehereherehereherehereherehereherehereherehereherehereherehere to see the full animation.

In this numerical example we consider a deforming unit sphere and compute the induced tangen-

tial flow, i.e., the numerical solution of (6.18) with fT = 0 and uN ' UN such that the inextensibility

condition is (approximately) preserved, see below. Denote by Γ0 = Γsph the reference sphere of
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t = 0 t = 0.1 t = 0.3

t = 0.5 t = 0.7 t = 0.9

t = 1

Figure 17: Visualization of the velocity field for asymmetric deformations of the unit sphere. Mesh
level ` = 4, ∆t = 0.01. Click hereherehereherehereherehereherehereherehereherehereherehereherehere to see the full animation.

radius 1. Consider a parametrization χ : Ξ→ Γ0 of the unit sphere with ξ1 and ξ2 being the polar

and azimuthal angles, respectively, Ξ = [0, π]× [0, 2π), and denote by ξ 7→ Hmn (ξ) the normalized

spherical harmonic of degree n and order m, ‖Hmn ‖L2(Γ0) = 1. For the evolving surface we consider
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as ansatz

Γt =
{
r(ξ, t)χ(ξ) : r(ξ, t) := 1 +

N∑
n=1

∑
|m|≤n

Anm(t)Hmn (ξ), ξ ∈ Ξ
}
, (6.24)

with suitably chosen time-dependent coefficients Anm = Anm(t). The function

δr(ξ, t) :=
N∑
n=1

∑
|m|≤n

Anm(t)Hmn (ξ)

describes the radial deformation.

We assume small oscillations, |δr| � 1. Under this assumption, an accurate approxima-

tion UN ' uN of the surface normal speed uN is given by

UN := dtδr =
N∑
n=1

∑
|m|≤n

Hmn dtAnm. (6.25)

We want the surface to be inextensible, i.e., dt areaΓ(t) ≡ 0. Appropriate coefficients Anm such

that we have inextensibility can be determined as follows. Application of the surface Reynolds

transport formula (2.34) and integration by parts gives for the variation of surface area:

dt areaΓ(t) = dt
∫

Γt
1 ds =

∫
Γt

divΓt uN (·, t) ds =
∫

Γt
κ(·, t)uN (·, t) ds. (6.26)

For the (doubled) mean curvature we have

κ = 2− 2δr −∆Γδr = 2−
N∑
n=1

∑
|m|≤n

(2AnmHmn − n(n+ 1)AnmHmn )

= 2 +
N∑
n=1

(n(n+ 1)− 2)
∑
|m|≤n

AnmHmn .

see (Lamb 1924). Using
∫

Γ0
Hmn = 0 for n ∈ N and orthonormality property

∫
Γ0
Hmn Hm

′
n′ ds = δn

′
n δ

m′
m
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Figure 18: Relative surface area variation (area Γ0 − area Γt) / area Γ0 as a function of time for
axisymmetric (left plot) and asymmetric (right plot) deformations of the sphere.

we compute the area variation

dt areaΓ(t) '
∫

Γt
κ(·, t)UN (·, t) ds =

N∑
n=1

(n− 1)(n+ 2)
∑
|m|≤n

Anm dtAnm. (6.27)

Based on this formula we set

A20 := ε

2 cos(ωt), A30 := ε√
10

sin(ωt),

and Anm := 0 for other coefficients. For this choice of coefficients one easily verifies that (6.27)

gives zero. The evolving surface tangential Navier–Stokes equations (6.18) are then discretizad and

solved with the right-hand side given by (6.19) with uN replaced with UN from (6.25). The initial

velocity is zero.

In the first numerical example we let ε := 0.2, ω = 2π, ν = 10−4 / 2, and include H0
2 and H0

3:

two zonal spherical harmonics of degree 2 and 3. The relative variation of the surface area in the

left plot of Figure 18 shows less than 0.1% of surface variation, which is due to approximation

errors and finite (rather than infinitesimal) deformations. The latter causes an approximation error

in (6.25).

The velocity field induced by these axisymmetric deformations of the sphere is visualized in

Figure 16. We see that the velocity pattern is dominated by a sink-and-source flow driven by the

term −κuN on the right-hand side of the divergence condition in (6.18).
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We repeat the experiment, but decrease the viscosity to ν = 10−5 / 2 and add two more spherical

harmonics: H1
3 and H3

4, the sectorial harmonic and the tesseral one, respectively. This addition

makes the surface deformation asymmetric. The radial displacement in this experiment is then

given by

δr(ξ, t) = 0.2
(1

2 cos(2πt)H0
2(ξ) + 1√

10
sin(2πt)H0

3(ξ)
)

+

0.1
(1

2 cos(4πt)H1
3(ξ) + 5

18 sin(4πt)H2
4(ξ)

)
.

Again, the coefficients are such that the surface area stays constant according to (6.27). The

resulting velocity field is visualized in Figure 17. The velocity pattern is still dominated by the

sink-and-source flow as in the previous experiment. Note that in both cases there are no outer

forces, and the flow is driven completely by geometrical deformation.
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