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1. Introduction

In many physical and industrial applications there is the necessity of numerical
simulations for CFD models with moving geometries. In the literature one can find

Fig. 1. STR geometry.

several techniques for handling such type of problems.
Among them are fictitious domain [4], resp., fictitious
boundary [18, 19] and arbitrary lagrangian eulerian [3]
methods. Although being quite popular these meth-
ods require often a large amount of CPU time to sim-
ulate even 2D benchmark models if high accuracy is
desired. Moreover, their handling of geometry and
meshes serves as a source of additional errors in ve-
locity and pressure fields. For example, the fictitious
boundary approach often uses a fixed mesh and there-
fore may capture boundaries of a moving object not
sufficiently accurate unless the mesh is very fine. At

the same time, there is a large class of “rotating” models, when the application of
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the above methods can be avoided by some modifications of the underlying PDEs
and/or by special transformations of the model that allow considering a static
computational domain. As an example, let us consider the numerical simulation
of a Stirred Tank Reactor benchmark problem (Fig. 1).

The motion of an incompressible Newtonian fluid in the tank is modeled by
the system of Navier–Stokes equations

vt + (v · ∇)v − ν∆v + ∇q = f

div v = 0
in Ω × (0, T ], (1)

where Ω is an open bounded domain with sufficiently smooth boundary Γ, f is
a given force and ν > 0 is a kinematic viscosity. Changing the inertial frame of
reference to the noninertial frame rotating with the blades leads to the following
system:

ut + (u · ∇)u − ν∆u + 2ω × u + ω × (ω × r) + ∇q = f ,

div u = 0,
(2)

where ω is the angular velocity vector, r is the radius vector from the center of
coordinates, 2ω × u and ω × (ω × r) are the so-called Coriolis and centrifugal
forces, respectively, and u = v + (ω × r). For a more detailed derivation of (2)
see, e.g., [1]. Using the equality

ω × (ω × r) = −∇1

2
(ω × r)2

and setting p = q − 1
2 (ω × r)2 in (2), we get the following system of equations

ut + (u · ∇)u − ν∆u + 2ω × u + ∇p = f

div u = 0
in Ω × (0, T ] , (3)

which will be treated in this paper. Exclusively for the purpose of analysis we
assume homogeneous Dirichlet boundary conditions u|Γ = 0.

To handle effectively the possibly dominating Coriolis force we modify the
classical projection scheme [2, 15] in the following way: Given un ≈ u(tn)

Step 1: Find intermediate velocity ũn+1 from
{ 1

k
(ũn+1 − un) − ν∆ũn+1 + (un · ∇)ũn+1 + ω × ũn+1 = f(tn+1),

ũn+1|Γ = 0.
(4)

Step 2: Find new velocity and pressure {un+1, pn+1} as the result of the pro-
jection into the divergence-free subspace






1

k
(un+1 − ũn+1) + ω × (un+1 − ũn+1) + ∇pn+1 = 0,

div un+1 = 0,

un+1 · n|Γ = 0,

(5)
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where k is the time step, tn+1 = (n + 1)k, and n is the normal vector to Γ. One
notes that the essential modification of the well-known Chorin–Temam method
is introduced on the correction step 2, which is not an orthogonal projection any
more. The rationale and motivation of this modified scheme can be found in [13],
where the scheme is treated as an incomplete LU factorization of the transition
operator for fully implicit time discretization. Numerical experiments from [13,
14] show that including ω-terms in (5) enhances stability and accuracy of the
scheme for the case of dominating Coriolis forces. The present paper deals with
convergence analysis for the method (4)–(5).

A well established framework for numerical analysis of projection schemes is
the following, see [9, 10]: one deduces an equivalent pseudo-compressibility or
penalty method and further treats a projection scheme as the discretization of
perturbed Navier–Stokes equations. However, applying this approach to (4)–(5)
leads to a number of additional terms depending on ω, which are not easy to
handle. Therefore we analyse the problem using the techniques developed by
J. Shen in [11, 12] for the case of ω = 0. Although the arguments in [11, 12]
essentially use the fact that the projection on step 2 is orthogonal, we show that
the similar convergence results can be proved for the modified method (4)–(5).
Finally, although we discuss only the first order scheme in this paper, the second
order modification of (4)–(5) can be build in a standard way, cf. [13].

2. Preliminaries

Below we use the following notation:

| · |2 =

∫

Ω

| · |2dx, ‖ · ‖2 =

∫

Ω

|∇ · |2dx, ‖ · ‖s -norm in Hs(Ω).

By (·, ·) we will denote the inner product in L2(Ω) and by 〈·, ·〉 – the duality
between H−s and H−s

0 for all s > 0. We also define

H =
{
u ∈

(
L2(Ω)

)d
: div u = 0, u · n|Γ = 0

}
,

V =
{
v ∈

(
H1

0 (Ω)
)d

: div v = 0
}
.

In the following, we assume




u0 ∈ (H2(Ω))d ∩ V,

f ∈ L∞
(
0, T ; (L2(Ω))d

)
∩ L2

(
0, T ; (H1(Ω))d

)
,

f t ∈ L2(0, T ; H−1),

supt∈[0,T ] ‖u(t)‖ ≤ m1.

(6)

We will use c or C as a generic positive constant which depends only on Ω, ν, T ,
and constants from various Sobolev inequalities. We will denote m or M as a
generic positive constant which may additionally depend on u0, f , ω and the
solution u through the constant m1 in (6).
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Under the assumption (6) one can prove the following inequalities

sup
t∈[0,T ]

{‖u(t)‖2 + |ut(t)| + |∇p(t)|} ≤ M, (7)

∫ T

0

‖ut(t)‖2 + t|utt|2dt ≤ M, (8)

which will be used in the sequel. Indeed, in [6] the estimates (7)–(8) were proved
for the Navier–Stokes equations (1) without Coriolis term. However adding linear

skew-symmetric term ω×u to the momentum equation does not change arguments
from [6], but leads to (7)–(8) with constant M depending, in general, on ω.
Further we often use the following well-known [16] estimates for the bilinear form
b(u, v, w) =

∫
Ω(u · ∇)v · w dx:

b(u, v, w) ≤





c‖u‖‖v‖ 1
2 |v| 12 ‖w‖,

c‖u‖2|v|‖w‖,
c‖u‖‖v‖2|w|.

(9)

and b(u, v, w) = −b(u, w, v) for u ∈ H .

Let PH be the orthogonal projector in
(
L2(Ω)

)d
onto H and define the Stokes

operator Au = −PH∆u, ∀u ∈ D(A) = V ∩
(
H2(Ω)

)d
. We will use the following

properties: A is an unbounded positive self-adjoint closed operator in H with
domain D(A), and its inverse A−1 is compact in H and satisfies the following
relations [11, 12]1:

∃c, C > 0, such that ∀u∈H :

{
‖A−1u‖2 ≤ c|u| and ‖A−1u‖≤c‖u‖V ′ ,

c‖u‖2
V ′ ≤ (A−1u, u) ≤ C‖u‖2

V ′ .
(10)

Further in this section we will prove several auxiliary lemmas. The first lemma
shows that the projection (5) is uniformly (with respect to k) stable in H1. Another
two preliminary lemmas extend the results of Lemma 2 from [11] and Lemma A1
from [12] for the case of ω 6= 0 and non-orthogonal projection in (5). We also note
that in [12] the similar result was proved only for the Stokes case (no nonlinear
terms has been treated). We include the nonlinear terms in the analysis and
encounter additional assumption on the size of the time step.

Lemma 2.1. The estimate

‖un+1‖1 ≤ m̃‖ũn+1‖1

holds with some m̃ independent of k ∈ (0, 1].

1 In [11] the estimates (10) are given with H−1 norm instead of V ′. In [12] it was noted that
the low bound for (A−1

u, u) should actually involve the V ′ norm. Other estimates in (10) can
be equally used with both norms.
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Proof. First note that the pressure pn+1 from (5) satisfies the following elliptic
equation

divM−1∇pn+1 =
1

k
div ũ

n+1, (11)
[
M−1∇pn+1

]
· n|Γ = 0 (12)

with M = [I + kω×]. One can verify [8] that for d = 3 it holds

M−1 = (1 + |ω̃|2)−1[I + ω̃ ⊗ ω̃ − ω̃×], ω̃ = k ω, (13)

where (ω̃ ⊗ ω̃)ij = ω̃i ω̃j . (For the 2D case the identity (13) holds without ω̃ ⊗ ω̃

term.) Since ω̃ is a constant vector one has ω̃ × ∇q = ∇ × (qω̃) for a scalar
function q. Therefore div (ω̃ ×∇q) = 0 and the equation (11) can be written as

divB∇pn+1 =
1

k
div ũn+1 (14)

with the symmetric diffusion tensor B =
1

1 + |ω̃|2 [I + ω̃ ⊗ ω̃]. One can easily see

that the inequalities

m1|ξ|2 ≤ (Bξ, ξ) ≤ m2|ξ|2 (15)

hold with m1 and m2 independent on k, e.g. m1 =
1

1 + |ω̃|2 , m2 = 1. (For the 2D

case B is the scaled identity matrix.) Furthermore, the boundary condition (12)
can be rewritten as

∂pn+1

∂l

∣∣∣∣
Γ

= 0 with l = M−1n.

The angle φ(x) between the vector l(x) and tangential plane to Γ at x ∈ Γ is
uniformly bounded from below. Indeed, it holds:

| sin φ| =
|lT · n|
lT · l

=
|nTM−1n|

nTM−TM−1n
≥ |nTBn|

‖M−1‖2
≥ m1

4
. (16)

Here we used the identity M−T + M−1 = 2B, inequalities (15) and ‖M−1‖ ≤ 2.
Thus the smoothness assumption on Ω, (15) and (16) imply the following H2

estimate for the solution of (11)–(12) [7]:

‖pn+1‖2 ≤ m k−1|div ũn+1| ≤ m k−1‖ũn+1‖1

with some constant c independent of k. Finally, using this result we get from (5)
and the triangle inequality

‖un+1‖1 ≤ ‖ũn+1‖1 + k‖M−1∇pn+1‖
≤ ‖ũn+1‖1 + k‖M−1‖‖pn+1‖2 ≤ m ‖ũn+1‖1. �
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It is straightforward to check that the solution to (11)–(12) satisfies the estimate

|M−1∇pn+1| ≤ m k−1|ũn+1|.

Thus the projection (5) is also uniformly stable in L2:

|un+1| ≤ |ũn+1| + k|M−1∇pn+1| ≤ m |ũn+1|. (17)

Lemma 2.2. Denote

en+1 = u(tn+1) − un+1 and ẽn+1 = u(tn+1) − ũn+1.

Assume (6) and 2k|ω|2 ≤ 1. It holds:

|eN+1|2 + |ẽN+1|2 + kν
N∑

n=0

{
‖ẽn+1‖2 + ‖en+1‖2

}

+

N∑

n=0

{
|en+1 − ẽn+1|2 + |ẽn+1 − en|2

}
≤ m k, ∀ 0 ≤ N ≤ T/k − 1. (18)

Proof. Let Rn be the truncation error defined by

1

k
(u(tn+1) − u(tn)) − ν∆u(tn+1) + ω × u(tn+1)

+ (u(tn+1) · ∇)u(tn+1) + ∇p(tn+1) = f(tn+1) + Rn, (19)

where Rn is the integral residual of the Taylor series, i.e.,

Rn =
1

k

∫ tn+1

tn

(t − tn)utt(t)dt.

By subtracting (4) from (19), we obtain

1

k
(ẽn+1 − en) − ν∆ẽn+1 + ω × ẽn+1

= (un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) + Rn −∇p(tn+1). (20)

Taking the inner product of (20) with 2kẽn+1 and using the identity

(a − b, 2a) = |a|2 − |b|2 + |a − b|2,
we derive

|ẽn+1|2 − |en|2 + |ẽn+1 − en|2 + 2kν‖ẽn+1‖2 +
(
ω × ẽn+1, 2kẽn+1

)

= 2k(Rn, ẽn+1) − 2k
(
∇p(tn+1), ẽ

n+1
)
− 2kb

(
en, ũn+1, ẽn+1

)

+ 2kb
(
u(tn) − u(tn+1), ũ

n+1, ẽn+1
)
− 2kb

(
u(tn+1), ẽ

n+1, ẽn+1
)
. (21)
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Since the Coriolis term vanishes: (ω×ẽn+1, 2kẽn+1) = 0, using the same arguments
as in [11], see pages 64–65, and applying inequality (3) from [12] one deduces
from (21) the estimate

|ẽn+1|2 − |en|2 + |ẽn+1 − en|2 + 2kν‖ẽn+1‖2

≤ m̄ k

(∫ tn+1

tn

t‖utt‖2
−1dt + k

∫ tn+1

tn

|ut|2dt

)
+ 2k2|∇p(tn+1)|2 + m̄ k|en|2. (22)

It follows from (5)

1

k
(en+1 − ẽn+1) −∇pn+1 + ω × (en+1 − ẽn+1) = 0. (23)

Taking the inner product of (23) with 2ken+1, we get

|en+1|2 − |ẽn+1|2 + |en+1 − ẽn+1|2 − 2k(ω × ẽn+1, en+1 − ẽn+1) = 0.

Then

|en+1|2 − |ẽn+1|2 + |en+1 − ẽn+1|2 − 2k2|ω|2|ẽn+1|2 − 1

2
|en+1 − ẽn+1|2 ≤ 0,

|en+1|2 − (1 + km̃)|ẽn+1|2 +
1

2
|en+1 − ẽn+1|2 ≤ 0, (24)

with m̃ = 2k|ω|2. Inequality (24) yields

(1 + km̃)−1|en+1|2 − |ẽn+1|2 +
1

2(1 + km̃)
|en+1 − ẽn+1|2 ≤ 0. (25)

Since km̃ = 2k2|ω|2 ≤ 1 under the natural assumption k ≤ 1 and using (1 − b) ≤
(1 + b)−1, for b ∈ [0, 1], from (25) we derive

|en+1|2 − |ẽn+1|2 +
1

2(1 + km̃)
|en+1 − ẽn+1|2 ≤ km̃|en+1|2. (26)

Taking the sum of (22) and (26) for n = 0, . . . , N (0 ≤ N ≤ T/k − 1), we obtain

|eN+1|2 +

N∑

n=0

{
1

2(1 + km̃)
|en+1 − ẽn+1|2 +

1

2
|ẽn+1 − en|2 + kν‖ẽn+1‖2

}

≤ m̄ k

N∑

n=0

|en|2 + m̄ k

(∫ T

0

t‖utt‖2
−1dt + k

∫ T

0

|ut|2dt + sup
t∈[0,T ]

|∇p(t)|2
)

+

N∑

n=0

km̃|en+1|2.
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Denoting m = max{m̄, m̃}, we can rewrite the previous inequality as

|eN+1|2 +
N∑

n=0

{
1

2(1 + km̃)
|en+1 − ẽn+1|2 +

1

2
|ẽn+1 − en|2 + kν‖ẽn+1‖2

}

≤ m k

N∑

n=0

|en|2 + m k

(∫ T

0

t‖utt‖2
−1dt + k

∫ T

0

|ut|2dt + sup
t∈[0,T ]

|∇p(t)|2
)

+ km̃|eN+1|2.

Thanks to the condition 2k|ω|2 ≤ 1 and (7)–(8) one can write

|eN+1|2 +

N∑

n=0

{
|en+1 − ẽn+1|2 +

1

2
|ẽn+1 − en|2 + kν‖ẽn+1‖2

}

≤ m k

N∑

n=0

|en|2 + m k

(∫ T

0

t‖utt‖2
−1dt + k

∫ T

0

|ut|2dt + sup
t∈[0,T ]

|∇p(t)|2
)

≤ m k

N∑

n=0

|en|2 + m k.

Applying the discrete Gronwall lemma to the last inequality, we arrive at

|eN+1|2 +

N∑

n=0

{
|en+1 − ẽn+1|2 + |ẽn+1 − en|2 + kν‖ẽn+1‖2

}
≤ m k. (27)

Further, Lemma 2.1 provides the estimate

‖en+1‖1 ≤ m̃‖ẽn+1‖1. (28)

Applying (28) and the triangle inequality |ẽn+1| ≤ |en+1|+ |en+1− ẽn+1| and (27),
we also obtain

|ẽN+1|2 + kν
N∑

n=0

‖en+1‖2 ≤ m k.

This proves the lemma. �

Lemma 2.3. Assume (6) and

∫ T

0

|∇pt|2 ≤ m . (29)

Moreover, assume that k is sufficiently small, then it holds

N∑

n=0

|ẽn+1 − ẽn|2 + k‖ẽN+1‖2 ≤ m k2 ∀ 0 ≤ N ≤ T/k − 1.
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Proof. We shift the index n + 1 → n in (23) and take the sum with (20). This
brings us to

1

k
(ẽn+1 − ẽn) − ν∆ẽn+1 + ω × (ẽn+1 − ẽn)

= (un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) + Rn −∇(p(tn+1) − pn) − ω × en. (30)

We take the inner product of (30) with k(ẽn+1 − ẽn) and obtain

|ẽn+1 − ẽn|2 +
kν

2

(
‖ẽn+1‖2 − ‖ẽn‖2 + ‖ẽn+1 − ẽn‖2

)

= −k
(
ω × en, ẽn+1 − ẽn

)
+ k
(
Rn, ẽn+1 − ẽn

)
+ k
(
p(tn+1) − pn, div (ẽn+1 − ẽn)

)

+ kb
(
un, ũn+1, ẽn+1 − ẽn

)
− kb

(
u(tn+1), u(tn+1), ẽ

n+1 − ẽn
)
. (31)

Now we estimate terms on the right-hand side of (31). Below δ is a positive
constant to be determined later. Using (18) we get

−k(ω × en, ẽn+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 + m k2|en|2 ≤ δ|ẽn+1 − ẽn|2 + m k3. (32)

Thanks to the estimate |Rn|2 ≤ c
∫ tn+1

tn

t|utt|2dt from [12] we have

k〈Rn, ẽn+1 − ẽn〉 ≤ δ|ẽn+1 − ẽn|2 + c k2

∫ tn+1

tn

t|utt|2dt. (33)

Let us estimate the pressure-dependent term. Denote qn = p(tn+1) − pn, since
div en+1 = 0, resp. div en = 0, we obtain

k(p(tn+1) − pn, div (ẽn+1 − ẽn) ) = k(∇qn, ẽn − ẽn+1 − en + en+1). (34)

Then we deduce from (23) and (34):

k
(
p(tn+1) − pn, div (ẽn+1 − ẽn)

)

= k2
(
∇qn,∇(pn+1 − pn)

)
+ k2

(
∇qn, ω × (ẽn+1 − en+1 − ẽn + en)

)

≤ −k2
(
∇qn,∇(qn+1 − qn)

)
+ k2

(
∇qn,∇(p(tn+2) − p(tn+1))

)

+ k2
(
∇qn, ω × (ẽn+1 − en+1) − k2(∇qn, ω × (ẽn − en)

)
. (35)

We estimate the terms on the right-hand side of (35) separately:

−k2
(
∇qn,∇(qn+1 − qn)

)
=

k2

2

(
‖qn‖2 − ‖qn+1‖2 + ‖qn+1 − qn‖2

)
. (36)

We obtain from (23) the following relation:

kM−1∇(qn+1 − qn) = (ẽn+1 − en+1) − (ẽn − en) + kM−1∇
(
p(tn+2) − p(tn+1)

)
.
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Multiplying by ∇(qn+1 − qn) and using (15) and condition k|ω| ≤ 1
2 we get

k2‖qn+1 − qn‖2 ≤ 5

4
k2
(
M−1∇(qn+1 − qn),∇(qn+1 − qn)

)

≤ 5

4
k
(
ẽn+1 − ẽn,∇(qn+1 − qn)

)

+
5

4
k2
(
M−1∇

(
p(tn+2) − p(tn+1)

)
,∇(qn+1 − qn)

)

≤ 1

2
k2‖qn+1−qn‖2 +

5

4

(
5

8
+ σ

)
|ẽn+1−ẽn|2 + m k2

∫ tn+2

tn+1

|∇pt|2dt, ∀ σ > 0.

Thus, choosing sufficiently small σ we obtain:

k2

2
‖qn+1 − qn‖2 ≤ 5

6
|ẽn+1 − ẽn|2 + m k2

∫ tn+2

tn+1

|∇pt|2dt. (37)

The second term on the right-hand side of (35) we estimate as follows:

k2
(
∇qn,∇(p(tn+2) − p(tn+1))

)
≤ k3‖qn‖2 + m k2

∫ tn+2

tn+1

|∇pt|2dt. (38)

For the third and the fourth terms on the right-hand side of (35) we have:

k2
(
∇qn, ω × (ẽn+1 − en+1)

)
− k2

(
∇qn, ω × (ẽn − en)

)

≤ k3‖qn‖2 + m k
∑

i=0,1

|ẽn+i − en+i|2. (39)

Now estimates (35)–(39) give

k
(
p(tn+1) − pn, div (ẽn+1 − ẽn)

)

≤ 5

6
|ẽn+1 − ẽn|2 + m k3‖qn‖2 + k2

(
‖qn‖2 − ‖qn+1‖2

)

+ m k2

∫ tn+2

tn+1

|∇pt|2dt + m k
∑

i=0,1

|ẽn+i − en+i|2. (40)

Further, consider the following splitting:

u(tn+1) · ∇u(tn+1) − un · ∇ũn+1 = u(tn+1) · ∇ẽn+1

+ (u(tn+1) − u(tn)) · ∇ũn+1 + en · ∇u(tn+1) − en · ∇ẽn+1. (41)

Based on this splitting we estimate the last two terms on the right-hand side
of (31). The first three resulting terms can be estimated in the straightforward
manner with the help of (9) and a priori estimates (7), (8):

kb(u(tn+1), ẽ
n+1, ẽn+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 + k2m ‖u(tn+1)‖2

2‖ẽn+1‖2

≤ δ|ẽn+1 − ẽn|2 + k2m ‖ẽn+1‖2, (42)
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kb
(
u(tn+1)−u(tn), ũn+1, ẽn+1−ẽn

)
≤ δ|ẽn+1−ẽn|2 + m k3‖ũn+1‖

∫ tn+1

tn

‖ut‖2
2

≤ δ|ẽn+1 − ẽn|2 + k3m , (43)

kb(en, u(tn+1), ẽ
n+1 − ẽn) ≤ δ|ẽn+1 − ẽn|2 + k2m ‖u(tn+1)‖2

2‖en‖2

≤ δ|ẽn+1 − ẽn|2 + k2m ‖en‖2. (44)

Due to (9) the last term on the right hand of (41) is treated as follows:

kb(en, ẽn+1, ẽn+1−ẽn)≤ m k‖en‖‖ẽn+1‖‖ẽn+1−ẽn‖ 1
2 |ẽn+1 − ẽn| 12

≤ m k
3
2 ‖en‖2‖ẽn+1‖2 +

√
kνδ‖ẽn+1 − ẽn‖|ẽn+1 − ẽn|

≤ m k
3
2 ‖en‖2‖ẽn+1‖2+

kν

2
‖ẽn+1−ẽn‖2+δ|ẽn+1−ẽn|2. (45)

Finally (31) with (32)–(33) and (40)–(45) yield for sufficiently small δ > 0:

|ẽn+1 − ẽn|2 +
kν

2

(
‖ẽn+1‖2 − ‖ẽn‖2

)
+ k2

(
‖qn+1‖2 − ‖qn‖2

)

≤ M

(
k3 + k2

∫ tn+2

tn+1

|∇pt|2dt + k2
(
‖ẽn+1‖2 + ‖en+1‖2

)
+ k

3
2 ‖en‖2‖ẽn+1‖2

+ k3‖qn‖2 + k
∑

i=0,1

|ẽn+i − en+i|2
)

. (46)

We sum up the last inequalities for n = 0, . . . , N and use the assumption (29) and
the estimate (18). This gives

N∑

n=0

|ẽn+1 − ẽn|2 + k2‖qN+1‖2 +
kν

2
‖ẽN+1‖2

≤ M

(
k2 +

N∑

n=0

k3‖qn‖2 +

N∑

n=0

k
3
2 ‖en‖2‖ẽn+1‖2

)
.

Now we assume that k is sufficiently small such that 2M
√

k‖eN‖2ν−1 < 1 holds
(note that ‖eN‖ is uniformly bounded due to Lemma 2.2), then the application of
the discrete Gronwall inequality and (18) yields

N∑

n=0

|ẽn+1 − ẽn|2 +
kν

2
‖ẽN+1‖2 ≤ m k2 exp

(√
k

N∑

n=0

‖en‖2

)

≤ m k2 exp
(√

kM
)
. �



12 M. A. Olshanskii, A. Sokolov and Stefan Turek JMFM

Thanks to the embedding L2 →֒ H−1 and the L2 stability of projection, see
(17), we conclude:

‖en+1 − en‖−1 ≤ m |en+1 − en| ≤ m |ẽn+1 − ẽn|.

Therefore Lemma 2.3 yields

N∑

n=0

‖en+1 − en‖2
−1 ≤ m k2 ∀ 0 ≤ N ≤ T/k − 1. (47)

3. Error estimate

In this section we show that the scheme (4)–(5) for the Navier–Stokes equations
with the Coriolis force (2) has the same order of accuracy as the classical projection
scheme [2, 15] for the Navier–Stokes equations (1). The following theorem is the
main result of the paper.

Theorem 3.1. Assume (6) and 2k|ω|2 ≤ 1, then both ũn+1 and un+1 are weakly

first-order approximations to u(tn+1) in L2(Ω)d:

kν

T/k−1∑

n=0

{
|en+1|2 + |ẽn+1|2

}
≤ m k2. (48)

Additionally assume that k is sufficiently small and
∫ T

0
|∇pt|2 ≤ m, then pn+1 as

well as (I − k ν∆)pn+1 are weakly order 1
2 approximations to p(tn+1) in L2(Ω)/R:

k

T/k−1∑

n=0

{
|pn+1−p(tn+1)|2L2(Ω)/R+|(I − k ν∆)pn+1−p(tn+1)|2L2(Ω)/R

}
≤ m k. (49)

Proof. (i) Error estimate for the velocity. Taking the sum of (4) and (5), we obtain

1

k
(un+1 − un) − ν∆ũn+1 + (un · ∇)ũn+1 + ω × un+1 + ∇pn+1 = f (tn+1). (50)

Let us denote q̃n+1 = p(tn+1) − pn+1. Subtracting (50) from (19), we obtain

1

k
(en+1 − en) − ν∆ẽn+1 + ω × en+1 + ∇q̃n+1

= (un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1) + Rn. (51)

Taking the inner product of (51) with 2kA−1en+1, splitting the nonlinear term
into three parts, using (10) and noticing that

(A−1u,∇p) = 0, ∀u ∈ H,
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we derive (for details see [11] p. 67)

‖en+1‖2
V ′ − ‖en‖2

V ′ + ‖en+1 − en‖2
V ′ +

15kν

8
|en+1|2

≤ −2k(ω × en+1, A−1en+1) + 2k(Rn, A−1en+1) − 2kb(en, ũn+1, A−1en+1)

− 2kb(u(tn+1), ẽ
n+1, A−1en+1) + 2kb(u(tn) − u(tn+1), ũ

n+1, A−1en+1)

+ m k|en+1 − ẽn+1|2. (52)

The Coriolis term is estimated as follows

|2k(ω × en+1, A−1en+1)| ≤ m k‖A−1en+1‖|en+1|

≤ m k‖en+1‖V ′ |en+1| ≤ νk

8
|en+1|2+ m k‖en+1‖2

V ′ . (53)

Applying the same arguments as in [11, 12] we deduce from (52) and (53) the
estimate

‖en+1‖2
V ′ − ‖en‖2

V ′ + νk|en+1|2 + ‖en+1 − en‖2
V ′

≤ m k‖en+1‖2
V ′ + m (k2 + k3)‖ẽn+1‖2 + m k|ẽn+1 − en|

+ m k|en+1 − ẽn+1|2 + m k

(∫ tn+1

tn

t‖utt‖2
−1dt + k

∫ tn+1

tn

|ut|2dt

)
. (54)

The only modification of the arguments from [11, 12] here is that instead of identity

|ẽn+1|2 = |en+1|2 + |en+1 − ẽn+1|2,
which is no longer true we use the triangle inequality

|ẽn+1|2 ≤ |en+1|2 + |en+1 − ẽn+1|2, (55)

Taking the sum of (54) for n = 0, . . . , N , N ∈ [0, T/k − 1], we derive from
Lemma 2.2 that

‖eN+1‖2
V ′ +

N∑

n=0

{
‖en+1 − en‖2

V ′ + k ν|en+1|2
}
≤ m k2 + m k

N+1∑

n=0

‖en‖2
V ′ .

By applying the discrete Gronwall lemma to the last inequality, we obtain

‖eN+1‖2
V ′ +

N∑

n=0

{
‖en+1 − en‖2

V ′ + k ν|en+1|2
}
≤ m k2 ∀0 ≤ N ≤ T/k − 1.

Then, from (55) and Lemma 2.2 we arrive at

k

N∑

n=0

|ẽn+1|2 ≤ k

N∑

n=0

{
|en+1|2+ |ẽn+1−en+1|2

}
≤ m k2 ∀0 ≤ N ≤ T/k−1. (56)

(ii) Error estimate for the pressure. The skeleton of our derivations for the
pressure estimate remains the same as in [11]. Remarks from [12] are applied
through Lemma 2.3.
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We start from rearranging (51) to

∇qn+1
∗

=
1

k
(en+1 − en) − ν∆en+1

∗
+ ω × en+1

+ (u(tn+1) · ∇)u(tn+1) − (u(tn) · ∇)ũ(tn+1) − Rn, (57)

where {en+1
∗

, qn+1
∗

} = {ẽn+1, q̃n+1}.
If we denote qn+1 = p(tn+1)−(I−kν∇)pn+1, we derive that (57) is also true for

{en+1
∗

, qn+1
∗

} = {en+1, qn+1}. Hence we can consider simultaneously both pressure
approximations.

We split the nonlinear term on the right-hand side of (57) as

(u(tn+1) · ∇)u(tn+1) − (un · ∇)ũn+1

= ((u(tn+1) − u(tn)) · ∇)u(tn+1) + (en · ∇)u(tn+1) + (un · ∇)ẽn+1.

From Lemma 2.2 we derive that

‖un‖ ≤ ‖en‖ + ‖u(tn)‖ ≤ m ∀n.

By using (9) we obtain that, for all v ∈ H1
0 (Ω)d,

(
(u(tn+1) · ∇)u(tn+1) − (un · ∇)ũn+1, v

)

≤ c |u(tn+1) − u(tn)|‖u(tn+1)‖2‖v‖ + c‖en‖‖u(tn+1)‖‖v‖ + c‖un‖‖ẽn+1‖‖v‖

≤ c̄
{
‖ẽn+1‖ + ‖en‖ + |u(tn+1) − u(tn)|

}
‖v‖. (58)

Using the Schwarz inequality we have also, for all v ∈ H1
0 (Ω)d,

(
1

k
(en+1 − en) − ν∆en+1

∗
+ ω × en+1 − Rn, v

)

≤
(

1

k
‖en+1 − en‖−1 + ν‖en+1

∗
‖ + m̃ ‖en+1‖ + ‖Rn‖−1

)
‖v‖. (59)

From the inequalities (57), (58), (59) and

|p|L2(Ω)/R ≤ ĉ sup
v∈H1

0
(Ω)d

(∇p, v)

‖v‖ ,

we obtain that

|qn+1
∗

|L2(Ω)/R ≤ ĉ sup
v∈H1

0
(Ω)d

(∇qn+1
∗

, v)

‖v‖ ≤ m

k
‖en+1 − en‖−1

+m
(
‖Rn‖−1+‖ẽn+1‖+‖en‖+(1+m̃)‖en+1‖+|u(tn+1)−u(tn)|

)
.



Error analysis of a projection method 15

Therefore, applying Lemmas 2.2 and 2.3, and the inequality (56), we derive

k

T/k−1∑

n=0

|qn+1
∗

|2L2(Ω)/R

≤ m k

T/k−1∑

n=0

{
‖ẽn+1‖2 + (1 + m̃)‖en+1‖2 + ‖Rn‖2

−1 + |u(tn+1) − u(tn)|2
}

+
1

k

T/k−1∑

n=0

‖en+1 − en‖2
−1 ≤ m k.

The proof of Theorem 3.1 is complete. �

Remark 1. It was discussed in [6] that the assumption
∫ T

0 |∇pt|2 ≤ m , which we
need to prove pressure error estimate does not hold for general flows, but requires
a compatibility condition on given data, cf. [6]. The sufficient assumption for this
condition to be valid is f(x, t)|t=0 = 0.

4. Numerical results

In this chapter we examine the accuracy in time of the pressure and velocity for
the modified projection scheme and compare results with those of the nonmodified
scheme. We take a test model of a unit square domain [−1, 1]× [−1, 1] and solve
the system of the incompressible Stokes equations with the Coriolis force term

ut − ν∆u + 2ω × u + ∇p = f ,

∇ · u = 0
(60)

with homogeneous Dirichlet boundary conditions on the velocity. The exact solu-
tion (u, p) of (60) is chosen as follows [5]

u1(x, y) = π sin(t) sin(2πy) sin2(πx), (61)

u2(x, y) = −π sin(t) sin(2πx) sin2(πy), (62)

p(x, y) = sin(t) cos(πx) sin(πy). (63)

A uniform cartesian mesh with the mesh-size 1/32 is used.
We denote

vmean =
1

NDF

NDF∑

k=1

|vanalyt(k) − vnumer(k)|,

where vanalyt is some value (the velocity magnitude |u| or the pressure p from (61)–
(63)) and vnumer is a corresponding numerical value, NDF is a number of degrees
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of freedom. To examine the error at some time Tmes we apply the formula:

verr(∆t) =

(
1

N

N∑

k=1

v2
mean(k ∆t)

)1/2

, N =
Tmes

∆t
.

The following setting is chosen: ν = 1, Tmes = 1.8, ∆t ∈ {0.025, 0.05, 0.1, 0.15}
and |ω| = 10. In Fig. 2 we show graphics for uerr(∆t) and perr(∆t). An exemplary
graphic for umean(t) and pmean(t) for the time-step ∆t = 0.1 is shown in Fig. 3.

Fig. 2. Accuracy in time as a function on ∆t, (LEFT) uerr(∆t), (RIGHT) perr(∆t).

Fig. 3. Error distribution, ∆t = 0.1, (LEFT) umean, (RIGHT) pmean.

From the graphics above one can observe that the modified projection scheme
for the system of incompressible Stokes equations with the Coriolis force term is
more accurate than the standard one. Moreover, difference in accuracy between
modified and nonmodified schemes increases if larger ∆t, resp. ω, is used. For
further numerical studies of the discrete projection method for a model problem
and for 3D flow simulations in stirred tank reactors the reader is referred to [13, 14].
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